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Chapter I

INTRODUCTION

1. GENERAL INTRODUCTION AND REVIEW
OF THE LITERATURE

Recent developments in acoustic and electromagnetic diffrac-
tion theory show that the formulation of diffraction problems in
terms of integral equations is a subject of growing importance
(see Bouwkamp (13)). Therefore, it seems worth while to attempt
a generalization of the relevant methods to the field of elasto-
dynamic diffraction theory. Now it is a well-known fact that in a
homogeneous, isotropic, elastic solid there are two velocities of
propagation; the larger of the two is associated with the wave
fronts of irrotational or compressional waves, the smaller of the
two is associated with the wave fronts of equivoluminal or shear
waves. In a medium of infinite extent the two types of waves can
propagate independently; however, as soon as boundaries occur,
an interaction between the two types of waves takes place., There-
fore, the phenomena related to the diffraction of elastic waves are
expected to be of a complicated nature.

One of the most important applications of the theory of elastic
wave propagation is the field of seismology. This explains why
the emphasis is not on the steady-state behaviour of a system but
rather on its transient response to a source which starts to act at
a certain instant, Also, most of the problems that have been inves-
tigated deal with the radiation from a source located in an elastic
medium consisting of several layers with different elastic prop-
erties (model of the earth). In this respect we mention Lamb's
(26) classical solution of the problem of the radiation from a line
source or a point source located at the free surface bounding an
elastic half-space. A recent book by Ewing, Jardetzky and Press
(16) covers most of the work that has been done on this type of
problems.

Another publication we want to mention is Cagniard's mono-
graph (14) on the generalization of Lamb's problem to the case of
a point source located in one of two coupled elastic half-spaces.
In this monographthe author develops a general method of solving
transient problems. The idea is roughly as follows. After having
taken the Laplace transform with respect to time, the remaining
boundary value problem is solved. The solution of this boundary
value problem is then written in such a form that the transient
problem under consideration can be solved more or less by in-
spection and not by evaluating a Mellin inversion integral. During
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the whole procedure, the Laplace transform variable is real and
positive.

To the opinion of the present author, it is slightly unelegant that
Cagniard introduces, be it temporarily, a complex variable which,
after some transformations, plays the role of the actual time.
In the present thesis Cagniard's method is modified in such a
way that the relevant variable is real all the way through. The
method thus developed can be applied to all sorts of mixed initial
and boundary value problems associated with the acoustic, elec-
tromagnetic or elastodynamic wave equation,

Coming to our subject proper, we observe that the first step
towards the formulation of diffraction problems in terms of inte-
gral equations is a representation theorem for the displacement
in an elastic solid similar to Kirchhoff's formula (19,1, 42)in
scalar wave propagation. Part of the thesis deals with the deriva-
tion of such a representation theorem. The special case of har-
monic time dependence has been discussed by Kupradse and can
be found in the German edition of his book (25).

With the aid of the representation theorem the problems con-
cerning the diffraction by a perfectly rigid or a perfecily weak
screen are reduced to the solution of certain (differential-)inte-
gral equations, Several problems dealing with the diffraction of a
plane pulse by a half-plane are worked out in detail, In these
examples, the Wiener-Hopf technique for solving certain integral
equations plays an important role,

Special attention has been paid to the saltus-problem formula-
tion of the diffraction by a screen of vanishing thickness. This
investigation has been inspired by Kottler's theory of diffraction
(23, 24) by a black screen,

The literature on the subject matter is scarce, Maue (32) solved
the problem of the diffraction of a time-harmonic plane wave by a
perfectly weak half-plane with the aid of the Wiener-Hopf tech-
nique, A recent paper by Knopoff (21) is of a more general char-
acter. In this paper the author derives a representation theorem
for the acceleration vector. In applying this representation theo-
rem to the Kirchhoff diffraction by an aperture in a plane screen,
certain line integrals along the edge of the aperture are intro-
duced. In Section 6 we show that the way in which this has been
done is inconsistent with the proper saltus-problem formulation
of the problem.

Several useful formulae in relation to the reflection and refrac-
tion of a plane elastic wave at the plane surface bounding two
media with different elastic properties can be found in Kolsky's
book (22) and in Schoch's review paper on acoustic diffraction
theory (39).

The present thesis deals mainly with the analytical methods in-
volved in solving the diffraction problems under consideration.
The numerical evaluation of the results is still a project of con-
siderable extent,
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2. BASIC PARTIAL DIFFERENTIAL EQUATIONS
IN ELASTIC WAVE PROPAGATION

We consider wave motions of small amplitude in a homogene-
ous, isotropic, elastic solid occupying the entire three-dimen-
sional space. The displacement and the stress, which charac-
terize the motion in this medium, satisfy the partial differential
equations

3Ty /3%; - p(d%ui/ot?) = -fi, (2. 1)

Tij = Cij,pa(QUp/3Xq), (2. 2)
where

Cij,pq = NOijOpq+ M(Bipdjq + Bjpdiq). (2. 3)

The symbols in these equations have the following meaning:

uj = displacement vector,

Tij = stress tensor,

f; = density of body forces (per unit volume),
¥%; = cartesian coordinates,

t = time,

p - = density of the elastic medium,

A,u = Lamé constants of the elastic medium,
&;j = unit tensor: &11= 6= 83371, 6;;=0 if ifj.

If in an expression a lower case latin subscript occurs twice, the
expression has to be summed over this subscript from 1 to 3.

Eq. (2.1) is Newton's equation of motion for an element of vol-
ume (27); eq. (2.2) is the stress-strain relation (28). Substitution
of (2.3) in (2.2) shows the stress-strain relation written in full

Tiy = MUk /3% +u(3u;/ox; + du;/ox;). (2.4)

In view of later applications we use the stress-strain relation in
the form (2. 3). The tensor cjj,pq Satisfies a number of symmetry
relations: Cij,pq = Cji,pq = Cji,qp = Cij,aps Cij,pa = Cpa,ij-

Elimination of T from (2.1) and (2.2) leads to the elastodynamic
wave equation

Cij, pq (3 Ap /3%;9%) - p(3%;/0t?) = -fi. (2.5)
The more familiar form of (2.5),
vp? grad div U - vs? curl curl U - 924 /ot2 = - Plo, (2. 6)

where @ = (ug,ugug, I = (f1,f2,3) and



12 Sec. 2
{(+2p) /p}E, (2.7)
vs = (u/p)h (2.8)

shows the occurrence of two velocities of propagation (29): vp is
the velocity of propagation of compressional, irrotational or P-
waves (for which curl u = 0), vy is the velocity of propagation of
shear, equivoluminal or S-waves (for which div 4@ = 0), In an
elastic medium of infinite extent the two types of waves propagate
independently. At boundaries an interaction between the two types
of waves takes place. This property makes elastodynamic bound-
ary value jproblems of such a complicated nature,

We now proceed to give the form to which the equations reduce
in two-dimensional problems. A problem is called two-dimen-
sional if the geometrical configuration and all physical quantities
involved are independent of one of the cartesian coordinates. Con-
sequently, all derivatives with respect to that coordinate vanish,
‘Let xpbe this particular coordinate. The differential equations
(2.1) and (2,2) show that the general two-dimensional wave motion
in an elastic solid is the superposition of two separate systems of
displacements and stresses. One system only contains up and
satisfies the equations

vp

3’523/3)‘3 - p(gZuz/th) = -f,, (2.9)
Tag = u(a‘uz/axﬁ). (2.10)

The other system only contains u; and uz and satisfies the equa-
tions

ar(m/ax{3 - p(a"ha/atz) = -1, (2.11)

Tag = CaB,Yé(auY/axé)’  Te® A(auY/axY). (2.12)
Elimination of the stress from (2.9) and (2.10) leads to the
scalar wave equation

u(azuz/axﬁaxﬁ) - P(32%u, /ot?) = -f,. (2.13)

Eq. (2.13) indicates that a wave with displacement (0, u,,0) is a
pure shear wave; it is often called a SH-wave (horizontally polar-
ized shear wave). _

Elimination of the stress from (2.11) and (2. 12) leads to the
two-dimensional elastodynamic wave equation

cag, y6(3%uy /3xgaxg) - p(Pug /o) = -1g. (2.14)
Eq. (2. 14) indicates that a wave with displacement (uj, 0, u3) con-

* Greek subscripts only run through the values 1 and 3. As before, latin subscripts run through
the values 1,2 and 3, If useful, the subscript 2 will be written explicitly.
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sists of a compressional and a shear wave. The corresponding

shear wave is often called a SV-wave (vertically polarized shear
wave).
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Chapter 11

R REPRESENTATION THEOREMS
3. DISPLACEMENT DUE TO A POINT FORCE VARYING IN TIME

. The displacement ¥ =W(Ey, £2,E3,1) due to a force of magnitude
h(t), directed along the constant unit vector & and acting at the
point’ §; = x; (i = 1,2, 3) satisfies the inhomogeneous differential
equation

vp? grad div @ - vs? curl curl d - 3% /at2 =
= -(@/p) 8{E1-%x1,E2-%2,E3-X3) h(t), ‘ (3.1)
where §(£1-x1, E2-%2, E3-x3) denotes the three-dimensional Dirac
delta function, It is assumed that h(t) is a continuous function of
time, together with its first and second derivative. In the right-

hand side of (3,1) we employ the identity

- & 6(&1-xy, E2-%2, E3-X3) = grad div (d/4nr) - curl curl (2/41r),
(3.2)

where r = {(§1-x1)2+(§2—x2)2+(§3—x§2}% 2 0. The displacement 4 is
written in the form

U = grad div &, - curl curl &, (3.3)

In order that the right-hand side of (3.3) is a solution of (3.1) it is
sufficient that Ap and Ajg satisfy the equations

w2 v2hp - 3%p /o2 = (3/4npr) hit), (3. 4)

vs2v2hg - 9%A¢ [ot? = (3 /4mpr) h(t), (3.5)
where v2 = 932/3E12+ 92/38,2+ 323832 With Ap = Ap¥ and K = A3,
eqgs.(3.4) and (3.5) reduce to the inhomogeneous scalar wave equa-
tions

vp?v2 Ap - 32A; /3t = h(t) /4npr, (3. 6)

vs?v2 Ag - 9%A¢ [ot? = h(t) /4mpr. (3.7)

The solutions of (3.6) and (3.7) that are bounded at r=0 are
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readily obtained as integrals similar to the advanced and retarded
potentials in electromagnetic theory (see, e.g., Stratton (41)).
The result can be written in the form

Ar(e,0) = g [ ] hieer e ey - I:h(tiv)vdvﬂ, (3.8)
Ag(r,t) = Irl_c_p l:% j:h(tir/vsj:v)vd\: —%— j:h(tiv)vdv:]. (3.9)

The upper s1gn corresponds to a wave converging towards r=0,
the lower sign corresponds to a wave diverging from r=0, The
behaviour of h(t) at large values of ltl is supposed to be such that
the integrals in (3.8) and (3.9) exist. With the aid of (3.9) it can be
shown that
h
curl curl Xg = grad div Ag - 1 (tr /vs) 2. (3.10)
' 4rpvg? T

This result enables us to write the displacement in the form

R h(ttr '
= grad div (Kp - Kg) + —> (ter /vs) o (3. 11)
47 pvg? r

Substitution of (3.8) and (3.9) in (3.11) gives, in subscript notation,
the expression

u = 47Ep Bﬁ —ag [ j t:l‘_'f' /Vpﬂ’_\)) - h(tﬂ‘ /Vsi_ij)] Vdv.‘J +
1 h(tdr /v ) o ..
+‘—7-5—2 "'-"———r S éqia]. (3. 12)

In the right-hand side of (3.12) only the lower sign is physically
acceptable, since only this choice leads to waves diverging from
the source. Explicit expressions for the components of the dis-
placement under consideration are given by Love (30).

On the other hand, the solution of (3. 1) corresponding to waves
converging towards r=0 will play an important role in obtaining
the three-dimensional representation theorem to be derived in
Section 4,

4., THREE -DIMENSIONAL REPRESENTATION THEOREM

The object of the present section is to obtain a representation
theorem similar to Kirchhoff's formula (19, 1, 42) in scalar wave
propagation, As usual, this will be derived from Gauss' diver-
gence theorem applied to a suitably chosen vector.

Let S be a sufficiently regular closed surface and let V be its
interior. Further, we introduce the vectors u; and w;, which,togeth-
er withtheir first and second derivatives, are continuous functions
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of position and time. From Gauss' theorem, applied to the vector
W Cij, pq (3Up/3Xy), We obtain 3
]V ¢ij,pa Wi(3%u, /3% Pxg)dxdx,dx; +

+ [V Gij,pq (3W; /3%;) (3u,/2xg)dx;dxdx, =

= [, cij,paWi (3up /3% )n;ds, (4.1)

where n; is the unit vector in the direction of the outward normal
to S. Since Cij,pg = Cpq,ij» an interchange of u; and w;, followed
by subtraction o? the resulting identity from (4. 1), leads to

IV Cij,pq [w, (azup/axjaxq) - ui(azwp/axja*xq)] dx,dx,dx; =
= fs Cij,pq [Wi(Bu,/oxy) - u; (3w, /3% ) ] n;ds. (4.2)

Let (xi1,x2,x3) be any point of observation located inside S and
denote the variables of integration in (4.2) by £1,8,5,83. In (4.2),
we take for u; a solution of (2.5). Further, w; is chosen as

1 32 1 (o0
w; = Tip 3m [ Jo [hgt+r/vP+v) -h(t+r/vg+v)] vdv:, +

T

+ . . : 4,3
Vg2 r H gaJ’ (4.3)

where a; is a constant vector, r = {(§1—x1)2+(£2—x2)2+(§3 —X3)2}% 20
and h(t) is a continuous function of time,. together with its first
and second derivative, The behaviour of h(t) at large positive val-
ues of t is assumedto be such that the integrals in (4.3) exist. The
vector w;, given by (4. 3), represents a wave motion converging
towards r=0 and satisfies, as long as r#0, the homogeneous elas-
todynamic wave equation (see Section 3)

Cij,pq(azwp/agjasaq) - p(@®w; /at?) = 0. (4. 4)

In the neighbourhood of r=0 we have
h(t) (1/ 1 1N 1 1/1 1 c-X3) (Ei-x%.
wy = ) 3_<_§+_2>_6ij +§<ﬁ _ )(; ) Erx))
inp (2w Vpd r Vs2  Vp2 r3 y
+ O(1), (4.5)

which indicates a behaviour of order O(r-}) as r-0,

Since w; is singular at r=0, eq. (4.2) cannot be applied to the
entire domain inside S. To exclude the singularity, a sphere S .
with radius >0 is circumscribed around €i1=x;(i=1,2,3) and V
is taken as the domain bounded externally by S and internally by
Se. From (2.5), (4.4) and (4. 2) we obtain

Jy [wi@% /38%) - ui(a®w; /ath)] p dE1dEades - [y w £,08,dEdEs =

= Jsus, Ciipa [Wi(RUp/3EQ) - u;(aw /28 ) ] nyds., )
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In the limit £-0, the contribution of the surface integral over S¢
reduces to ‘

lim I Cij’qui(Bup/agq)nde = O, (4. 7)
e-0 /5¢
lim j Cij,pq Ui (AWp/3Eq)N;dS = a;ui(x1, X2, X3, 1) h(t). (4.8)
€0 SE

With (4.7), (4.8) and the identity
wi (2%u; /3t?) - wy(22w; /38) = (3/at) [ wi(du;/at) - wi(aw; /at) 1, (4.9)
integration of both sides of (4.6) over all values of t gives
r CQ
‘jm a,u,(%y, X5 X3, t) h(t)dt +
#[ [y [n@uifon) - wow /o0 1 o dzideatzs

= [Zat [, Witidg dEpdEs +
00

t=00

t=-x

+ j: at [ cippg [ Wi(2up/08y) - (oW, /2E) ] nidS.  (4.10)

Now, h(t) is chosen such that the second term on the left-hand
side of (4.10) vanishes. Introduction of the tensor operator Gyj,
defined foreany quantity ¢ (scalar, vector, tensor) by

G o] = Qij[@(ﬁpiz 53:")] =
1 a2 1
T e N

- CP(E,»IJ §z§3,t"r/VS‘V)] Vd\)] +;;1_2 q(gl’ éz’is’t-r/VS) 6‘]%
S

3

(4.11)
enables us to write (4, 10) in the form

4 J’—oo (1) (x4, X2, 33, 1)dt = &, J-: ht)dt fv Gy [fj] dgdE dE+
. 09 X
+a;. J_ooh(t)dt ]S Cipg | Gy [dup/oE ] +

+(3/3%)Gyp [u;]] nds, (4.12)

where the property 3w;/3&;=-ow;/9x; has been used. Since eq.
(4.12) holds for any h{t) satisfying the proper conditions as re-
gards continuity and behaviour at infinity and sinee a; is anarbi-
trary constant vector, it follows that
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Ui(xl, KXo, X3, t) = J’V gl] [fj] d&ld ézda?’ + js cjk,pq gl] [Bup/aﬁ,q] nde+
+(2/3%9 [ cii,pg Gip [u;] mds. (4.13)

Eq. (4.13) is valid for any point of observation inside S. For
points of observation located outside S, the function w;, given by
(4. 3), is regular inside S and hence, the sum of the three expres-
sions on the right-hand side of (4. 13) vanishes identically. The
three terms on the right-hand side of (4.13) can be interpreted as
follows. The first term represents the displacement due to the
distribution of the body forces in V with density f;. The second
term represents the displacement due to a single layer distribu-
tion on S with density cjx pq (Qup/9€gny. The third term repre-
sents the displacement due to a double layer distiibution on S
with density u;n.

In subsequent applications we frequently deal with problems
where the sources start to act at t=0, while the displacement is
identically zero for negative values of t. In connection with these
problems it will be useful to introduce the one-sided Laplace
transform with respect to time. Let

Ui (x1, %2, %358) = | exp(-st)u,(x X, X5, 1), (4.14)

where s is a real, positive number large enough to ensure the
convergence of integrals of the type (4.14). If u; and 3u;/st are
continuous functions of time, U;(xy, Xp,x3;s) satisfies the equa-
tion

L4

Cij,pq (3°Up/3%;9%y) - ps?U; = -F, (4.15)
where F; = Fj(Xy, Xp, X3;8) denotes the one-sided Laplace trans-
form of f,(xy, x,, X3, 1).

The representation theorem for Uj(xy, X,, X;;8) is obtained by
multiplying through in eq. (4. 13) by exp(-st) and integrating over
all positive values of t. The result is

Us (%1, %, %338) = || Gy FdE dEdE; +
+ js Cjk,quij(aU'p/éF’q)nde +(3/pxy) fs Ck,pq GipUjBdS,

(4.16)
in which

Gy (2%, %38, £, Ey38) =

.1 3L 32 [eXp(-Sr/vP) _»exp(-sr/Vs)] +
dp {2 ox;0x, r r

o L CXRCEr/) 4 o (4.17)
Vg r
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is the Green's function, for an infinite medium, associated with
the differential equation (4. 15).

5. TWO-DIMENSIONAL REPRESENTATION THEOREMS

The two-dimensional representation theorems associated with
the wave equations (2.13) and (2. 14) respectively are obtained as
follows. Let C be a simple closed curve in the x;,x3;-plane and
let D be its interior. In the three-dimensional representation
theorem (4.13) we take for S the closed surface consisting of the
plane portions &= Xp- ~-L, iz—x2+L (x1, x3)€D, together with the cy-
lindrical part -L 2E,-x,%L, (x,X3)eC, where L>0. Due to the
behaviour of Gl ] at large values of |E,-x3|, the contribution
of £,=%,-L and é =%X,+L, (x4, X3)eD, to the surface integrals van-
ishes in the limit Lsoe, In this way we obtain from (4.13)

ui{xy, X3, 1) = ,[D Dy [f;] dgdes +
+ fc Cmp5—13 [aup/aaé] n,ds + (a/ax5) fc cju,pégipﬂ uj] n,ds,
(5. 1)

where the operator Lj[cp.], for any quantity (&;, Z3,t)independ-
ent of &,, is defined by

L loEnEsn ] = [ Gy [9€1.5.0 ] dE, (5.2)

It is assumed that the behaviour of ¢(&;,53,t) at large negative
values of t is such that the integral in (5.2) exists.
From the definition (4.11) of G;; [¢ ] we see that

Lo [9(£,E51)] = 0. Introduction of the variable of integration

(S Cd

Tt % [ rx) P (Ep2) (8 57%5) % (5.3)
in the expression for Fzz[cp] gives the result
t-r /v 9 1, £, T)
1> >3
22 [9(21, 85,0 ] = 2mpv g2 j-oc {(t-T)2-r2 /vs2} 5 dr, (5. 4)

where now r = { (£ ~x)2+(E;-x?}220, Similarly, we obtain

E(XB [(P(gl; E'-:3.0 t)] =

t-r /v
=L ) 9 P dt i )
" 2mp %axaaxB{: o (TP -T2/ 2t jo<M§p£3,r v)vdy

t-r /vg

- dt . S:cp(al,‘as,r—v)vdv ] +

0 f(t-1)2-r2/v¢3}z
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. [ 1 (t'r/Vs P(EpEs )

——

vs2 J oo z(t—'t)z—rz/vs"’}% dT] 6(15 % :

(5.5)

With these results we obtain from (5. 1) the two-dimensional rep-
resentation theorems

ugxy, X3 t) = [ Loz [2] dEsdE; +
+f wp [3uy/08, Inds + (3 /ox fc b Iy [up] myds  (5.6)
C
and ’
Ug(Xq, X3, t) = fD Lap [fg] dEiaE; +
+ jc CBu,v6 Lap [auy/ag"é] n,ds + (3/3xg) fc °Bu,y6 Lay [uﬁ] n,ds
(5.7)
Eq. (5.6) is nothing but Volterra's solution (45, 2) of the two-
dimensional scalar wave equation, This result, of course, would
be expected from eq. (2.13).
The Laplace transform Uy(xy,%3;8) of ux(x,,x;,t) satisfies the
differential equation
LU, [3xg dxg) - ps?U, = -F,. (5.8)
The representation theorem for U,(x, Xj;s) is obtained by multi-
plying through in eq. (5.6) by exp(-st) and integrating over all
positive values of t. Since (46)

f:;v exp(-st) (t2-r2/v?) ‘%‘dt = K (st /v), (s>0), (5.9)

where K,denotes the modified Bessel function of the second kind
and order zero, the result is

U (x4, X358) = fD [y FpdE dEs +
+ [ b T2a(3U2 /08, ) myds + (3 /ox,) [ b T2Upn,ds, (5.10)
where
1
Poa(x1, x3,81,&3;8) =2TQ;;EK0(51"/V5)‘ (5. 11)
Similarly, Ug(xy, x5;5) satisfies the differential equation
cap, y83°Uy 9xgaxg) - psPUg = -Fy. A (5.12)
Multiplying through in eq. (5.7) by exp(-st) and integrating over

all positive values of t, we obtain the representation theorem for
Ug (%1, X358):
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Ug(xy, X358) = [D I‘anFBdgldga +

+ IC CﬁK:Y{)PO‘B(aUY /aié)nuds + (9 /Bxé) J.C'CB%’,YE)PWUB_nudS,

.(5, 13)
where
1 1
aB(Xv x3:81,8358) = 2np 3'82 o g [K (sr/vp) - (SI‘/Vs)]
1
+v—s‘2-Kd’SI'/VS)6aB€ . . (5. 14)
Since (5.9) can be rewritten as
o0 - 2\4

f‘ exp[ (s/v)(?,zfr )] dE = 2 KO(SI‘/V), (s>0), (5.15)

> (gxr2)E

eqs. (5.11) and (5. 14) are in accordance with (4,17).
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Chapter III

DIFFRACTION OF ELASTIC WAVES BY A
SCREEN OF VANISHING THICKNESS

6. GENERAL REMARKS ON DIFFRACTION OF
ELASTIC WAVES

Consider the scattering or diffraction of an arbitrary incident
wave by a ''screen'' I of finite extent and vanishing thickness. In
the elastic solid, I is a two-dimensional region across which the
displacement and the stress may be discontinuous. The shape,
dimensions and location of £ are assumed to be independent of
time. Although the displacement and its first spatial derivatives
are, in general, discontinuous across I, we still assume that at
an arbitrary distance fror: £ the displacement and its first and
second derivatives are continuous and that Newton's equation of
motion (2.1) and the stress-strain relation (2.2) are satisfied.
This condition limits the number of quantities, the jumps of which
can be prescribed arbitrarily. It is easy to verify that, e, g., the
three components of the displacement and the three components
of the traction (i.e. the force per unit area) may jump across X
by arbitrary amounts. This is an important fact, since these are
the quantities that appear in the representation theorem (4.13).

Let the incident wave u;' hit the screen at t=t,. When t 2 t,,
due to the presence of the screen, a scattered wave u;® is gener-
ated; when t<t,, u;* =0 everywhere in space. In subsequent calcu-
lations the effect of body forces will be neglected. Both the inci-
dent and the scattered wave then satisfy the homogeneous elasto-
dynamic wave equation

Cij,pq (3205 /0%;3% ) - p(d2u, /313) = 0. (6. 1)

With the aid of the representation theorem (4.13) the displacement
u;® will now be expressed in terms of the jumps across I in the
displacement and the traction. Let n;* and n; - denote the unit
vectors in the direction of the normaltoft and %" respectively;
It is one face of ¥ and I~ is the other face. The positive sense
of ni* and n;” is taken tawards I; hence, nt = -n;”. The jump in
the displacement is denoted by

[ui.]f = ui+ -u; . (6.2)

A similar notation will be used to denote the jumps in the first
derivatives of u;. In order that the representation theorem can be
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applied, we have to construct a closed surface on which the nor-
mal is defined everywhere. To this aim we introduce a toroid-like
surface Sg consisting of the points at a distance € from the edge
of the screen (Fig.1). Further, let Sz be a sphere arcund the
point of observation (x,, %Xy, X3), the radius R of which is chosen
such that I lies entirely within Sz. Application of the representa-
tion theorem (4.13) to the domain bounded externally by Sy and
internally by L%, £~ and S¢ gives

S
u (%, Xp, %3, t) = IE Cipy (U /aiq] Syt ds +
+
+ (3/9x%y). IZ ¢k, paSip [ujs] "ot ds +
+ J‘SR+SE € s, paSj [aups [3Eq] my dS +

+ (3 /3%, ISR+S€ Cie,peSip [uf ] mds. (6. 3)

O (X4, X2X3)

Fig. 1. Domain to which the representation theorem is applied.

By virtue of the initial condition u;® £ 0, when t<t,, together with
the finiteness of the velocities of propagation, the contribution of
Sy to the surface integrals vanishes for sufficiently large values
of R. Further, it is assumed that the quantities [u]T and

cjk,Pq.[aups/agq]J_’ are such that the integrals over S; vanish in

the limit €-0. Moreover, since u;' and its derivatives are con-
tinuous across, I we have, when u; = u;' +u;® is the total wave
motion, [uf] ¥ =[u;]* and [pug/ag,] ts [2u /32 ] ¥, Theex-
. pression (6. 3) for u;® then reduces to :

+ :
u‘is (xl) ng X3, t) = jz Cjk,quij [aup/aaql_ nk+ds +
: +
+ (3 /3%y fz C,paGip [u; ). nyF ds. (6. 4)

The first term on the right-hand side of (6.4) is the displace-
ment due to a single layer distribution onZ, The second term is
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the displacement due to a double layer-distribution on £. It can be
shown that the term due to the single layer distribution leads to a
displacement which is continuous across I, but gives a traction
which jumps across I by the assumed amount. On the other hand,
the term due to the double layer distribution leads to a displace-
ment which jumps across I by the assumed amount, but gives a
traction which is continuous across £. The proofs run along the
same lines as those in potential theory (see Kellogg (18)) and are
given in Kupradse (25) in the case of harmonic time dependence.

The corresponding two-dimensional results follow fromthe rep-
resentation theorems (5.6)and (5.7). A method similar to the one
given above leads to the following expressions for the scattered
wave

+
up’ (xy, X5, t) = IZ u I, [auz/af,u]_ nu+ds +

+ (3 /3%y) Iz u Dpluy]’ n,* ds, (6. 5)

+
uf(x,%,t) = IE B, Yégaﬁ [auY/agé_]_ nn+ ds +
- + o+
+ (3 /3%g) f): %B,v5 Lay [uB]_ n,*ds, (6. 6)
where £ now denotes the intersection of the screen with the plane
X, = constant, '
For convenience, we also list the corresponding results for the
Laplace transform of the scattered wave. They are obtained in the
usual way by multiplying through in the relevant equation by
exp(-st) and integrating over all positive values of t,
For three-dimensional diffraction problems we obtain in this
way s
gy = t ot
U (X,, Xy, %,38) = fz C,paCiyj [3U, /38 J. nyFas +
+
+ (2 /9%y fz cik,peGip [Uj 1. i ds. (6.7)
For two-dimensional diffraction problems we have
+
Uz (x5, %538) = [ p T2 [0U,/38, ] n, Fds +
+
+ (9/3%,) jZ p Ty [U,]) nytds (6.8)
and
‘5) = tat
Uas (X, %558) = IE CB%:Yéraﬁ [BUY /aéé] _n ds +
o+
+ (3 /9xg) fz gy, 5 Loy .[Ug]_ nytds. (6. 9)

In (6.8) and (6.9), ¥ denotes the intersection of the screen with the
plane x; = constant.

We now include some remarks on the analogous problems in
electromagnetic diffraction theory, For an exteysive investigation
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of electromagnetic representation theorems the reader is refer-
red to Bouwkamp's review paper (7) and to the relevant chapter
in Baker and Copson (3). Consider the diffraction of an electro-
magnetic wave by a screen of vanishing thickness. In general, all
three components of the electric field and all three components of
the magnetic field will be discontinuous across the screen. How-
ever, since Maxwell's equations have to be satisfied at an arbi-
trary distance from the screen, the amounts by which the six
aforementioned quantities jump cannot be prescribed arbitrarily.
It is easy to verify that if, e.g., the amounts by which the tan-
gential components of the electric and the magnetic field jump are
prescribed, the jumps in the normal components follow by virtue
of Maxwell's equations. This implies that a representation theo-
rem, in which only the tangential components of the electric and
the magnetic field occur, is a suitable one. Such a representation
theorem is known (Bouwkamp (8)). Physically, the surface dis-
tribution of the jumps in the tangential components of the electric
and the magnetic field are equivalent to a surface distribution of
magnetic and electric currents respectively, The Green's function
occurring in this representation theorem is not of a point source
type but of a dipole type; this ensures that the divergences of the
fields thus generated vanish identically. Some authors (Heins and
Silver (17)), however, prefer the use of a different represen-
tation theorem, in which the Green's function is of a point source
type. Such a representation theorem is known, too, but here also
the normal components of the électric and the magnetlc field occur
(Bouwkamp (9)). When the latter type of representation theorem
is applied to the diffraction by a screen of vanishing thickness,
the jumps in the normal components have to be in accordance with
the prescribed jumps in the tangential components of the field
quantities. Moreover, it turns out that, in order to get the same
scattered field as the one determined from the surface distribu-
tion of magnetic and electric currents, certain line integrals
along the edge of the diffracting screen have to be added (Bouw-
kamp (10)). The physical explanation of this is as follows. The
surface distributions of the jumps in the normal components of
the electric and the magnetic field are equivalent to a surface
distribution of electric and magnetic charges respectively, By
virtue of the equation of continuity (for both electric and magnetic
currents and charges) the charge distributions follow from the
assumed current distributions. Furthermore, the sudden termina-
tion of a current at the edge of the screen leads to a line charge
along the edge of the screen (Stratton (43)). These line charges
give rise to the line integrals mentioned earlier.

In elastodynamic diffraction theory the situation is different.
Since there is no restriction upon the source distributions (single
layer and double layer) occurring in the representation theorem
for the displacement, analogous to the equation of continuity in
electromagnetic theory, no additional line integrals are to be ex-
pected. In this respect we mention a recent paper by Knopoff (21).
In this paper, the author derives a three-dimensional representa-
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tion theorem for the acceleration vector, in which the divergence
of U, the tangential components of curl @, the normal compbnent
of U and the tangential components of @ occur. It is easy to verify
that the jumps in these six quantities can be prescribed arbitrar-
ily. Nevertheless, in applying this representation theorem to the
diffraction of elastic waves by a screen of vanishing thickness,
the author introduces certain line integrals along the edge of the
screen. The way in which this has been done is inconsistent with
the proper saltus problem formulation of the problem.

7. DIFFRACTION OF ELASTIC WAVES AS A BOUNDARY
VALUE PROBLEM

When the physical properties of the diffracting screen I are
given in terms of boundary values of the different quantities on z,
two cases are of primary interest: (a) £ is perfectly rigid (i.e. 2
is a domain of vanishing displacement), (b) I is perfectly weak
(i.e. X is a domain of vanishing traction).

The scattered wave u,;® arising from the diffraction of an inci-
dent wave u,! by a perfectly rigid screen is subjectto the following
conditions:

(1) u;® is a solution of the elastodynamic wave equation (6.1);
(i) us = -uif onZ*t and £-;
(iii) u$ = 0 everywhere in space when t<t,;
(iv) the kinetic and the potential energy density are integrable
everywhere in space,

The scattered wave u arising from the diffraction of an inci-
dent wave u;! by a perfectly weak screen is subject to the follow-
ing conditions:

(i) u;® is a solution of the elastodynamic wave equation (6.1);
(1) €45, pq0i(3Up’ /%) = -cyj pqny(duy) /3xg) on I+ and I-;
(iii) uis) = Oleverywhere in space when t<tg;
(iv) the kinetic and the potential energy density are inte grable
everywhere in space,

It will now be shown that in both cases the scattered wave u;® is
uniquely determined by the conditions (i) - (iv). Let uj be the dif-
ference of two possible solutions. In (4.1) we take w; = du;/3t.
Since u; satisfies the homogeneous elastodynamic wave equation

(6.1) we obtain
-21-% J'V (3u; /3t)(du; /at) p dxdxxdxs +

13

+ = =
2 3¢

.[V cij,pq (aui /axj)(aup/axq)dX1dX2dX3 =
) f £F+ET 48, 45, Cij,pq (3u1/3t) (3, /3xg)nydS, (7.1)

where S¢ is the toroid-like surface introduced in Section 6 and
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Sg is a sphere of radius R around ‘the origin. The radius of Sgis
chosen such that ¥ lies entirely within Sy, In (7.1), V is the do-
main bounded externally by Sg and internally by ¥, £~ and S¢.
The first term on the left-hand side is the time derivative of the
kinetic energy; the second term on the left-hand side is the time
derivative of the potential energy. By virtue of condition (ii) the
surface integral over X%t and I~ vanishes. By virtue of condition
(iii), together with the finiteness of the velocities of propagation,
the surface integral over Sy vanishes for suificiently large values
of R. By virtue of condition (iv) the surface integral over S¢ van-
ishes in the limit &-0. Consequently, eq. (7.1) requires that the
sum of the kinetic and the potential ehergy is a constant,independ-
ent of time, at all instants t)t,. By virtue of the initial condition
and the continuity of u; and its first derivatives, this constant has
the value zero. Since, further, the potential and the kinetic energy
density are non-negative functions of position and time this means
that u; is a constant, independent of position and time. Since u;
vanishes at t = t;, we have u; = 0, Hence, the uniqueness has
been proved (see also Love (31)). It may be remarked that condi-
tion (iv) is necessary to ensure the existence of the integrals on
the left-hand side of (7. 1), especially in the neighbourhood of the
edge of 2.

To obtain the solution of the boundary value problems stated
above, there are principally two different methods. The first
method assumes that the technique of the separation of variables
can be applied, thus reducing the problem to solving ordinary dif-
ferential equations, The separation constants are then determined
from the initial and boundary conditions. This method can only
be applied in a limited number of geometrical configurations. The
second method reduces the problem to solving certain (differen-
tial-)integral equations. This method has no restriction concern-
ing the geometry of the diffraction problem., The way in which
these (differential-)integral equations are obtained will be briefly
outlined below.

In the case of diffraction by a perfectly rigid screen we obtain
from (6.4) the expression

+
WS (Xqy Xy, X, 1) = jz Coe,peGiy L2728 ] mt s, (7.2)

The boundary condition then leads, for points located on I, to the
(pure) integral equation

+ .
th €k, pq Gij [aup/aéq]_ ng' ds = “ugt (X, %, X3, 1),
(X1 %z, x3)e L. (7.3)

For the analogous two-dimensional diffraction problems we have,
from (6. 5), '

05 0eg, %, 1) = [ B [polou,/08, 1" ny,tds (7. 4)
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and, from (6. 86),
+
U (Xq, X3, t) = fz cgy, y6Lap [Puy/3Eg ] n,*ds, (7.5)
with the resulting (pure) integral equations
+ o+ i
Iz Lo [3u, /38, ] 1y ds = “u (X, X, 1), (X, %,)el, (7.6)
and
+ :
‘{Z B, y6Lap [au.Y /856]_ nu+ds = ~ug(Xy, X5, 1), (Xys%3)el .
(7.7

In terms of the corresponding Laplace transforms with respect
to time we have, from (6. 7),

+
U5 (xy, %5, %538) = [ ¢y Gy [aUp/af,q]_ n tds, (7.8)

z
which leads to the integral equation

]

+ 4 . ‘
5 cjk,quij [BUp/agq]- n, ds = ‘Uil (Xl,Xz,X3;S), (X1,X2, X3)€Z.

(7.9)

For the ahalogous two-dimensional diffraction problems we have,
from (6.8),

Uo* (x1, %538) = [ w T2V, /08, 11 s (7.10)
and, from (6. 9),
s +
Uy *(%, X558) = [Z cgu, ysTap [3Uy /3E5] m, tds, (7.11)

which lead to the integral equations

+ .
IZ Wl [0U, /08, 1. my*ds = -Ua'(x1, x3:8), (¥, %)eE,  (7.12)
and
+ .
fz cgw, yo ap [aUY [Eg]” n,Tds = U (x,%558),  (x,%5)€l .
(7.13)

In the case of diffraction by a perfectly weak screen we obtain
from (6. 4) the expression

. .
Uy (X4, Xp, X3, 1) = (3/3%) jE S, pqGip [uj] " n’ds. (7.14)

The boundary condition then leads, for points located on'%, to the
differential-integral equation
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© 9+
Crs,ih Iy (3 2/333,9%y) fz €k, pq Gip (U5 ] mFdsS =
+ .
= ~Ci,m Dy (u;/3%y),  (Xy,Xp, X3)el. (7. 15)

For the analogous two-dimensional diffraction problems we have,
from (6.5),

+
usS(Xy, X3, t)= (3/3%) Iz p [pplu,] nytds (7.186)
and, from (6. 6),
s - + +
Ug (x4, X3:t) (8/3X6) fz CBu,yé an [U-B]_ Ny ds, (7- 17)
with the resulting differential-integral equations
+ >
pn}f (az/ax}\ax”) fzp L,, [uz]_ nu+ds = —un;\+ (3u,i/axy),
(x1,x9€Z, (7.18)
and
N,y BT (37 /3%,3x5) fz,cﬁu,yé an[us-r_— mytds =
= oy avPA RUugi/Axy), (X, x5)el. (7.19)

In térms of the corresponding Laplace transforms with respect
to time we have, from (6. 7),

+ o+
Uy (%1, X5, %338) = (3/0%,) Iz Cp pGip LU; 12 n7ds, (7.20)
which leads to the differential-integral equation
2 -+ +
Crs,in 0y (97 /0%3% ) JE ¢, pqCip [U; I T dS =
“Cm B, QU /Rx), (XX, %)l (7.21)

For the analogous two-dimensional diffraction problems we have,
from (6. 8),

+

Uy* (x4, %538) = (9/0%) fz ur,,[U,]” n,fds (7.22)
and, from (6.9),

. = + o+

Uy (x4, X538) = (3 /0xg) fZ By, v 6 P“Y[UB']— n, " ds, (7.23)
which expressions lead to the differential-integral equations

+ :
ooy (2 %/0x)0%,) fz w, [U,] nu*ds = -t QU /exy,),
(x4, X)€Z, (7.24)

E 4

and



30 Sec. 8
: +
A, av m* (32/ox,3xg) [2 Byys ay [UB 'ntds=

= “CAuav n,* (U, fox,), (%, %) €l . (7.25)

The theory outlined in the present section will be applied to a
few problems concerning the diffraction by a half-plane. When the
relevant problem is formulated in terms of the Laplace trans-
forms, the (differential-)integral equations are of the Wiener-
Hopf type and hence, can be solved withthe aid of the Wiener -Hopf
‘technique (6, 12).

8. DIFFRACTION OF ELASTIC WAVES AS A SALTUS PROBLEM

In the optical theory of diffraction by a black screen of vanish-
ing thicknessthe following assumptions concerning the wave func-
tion (due to Kirchhoff (20, 4)) are often made: on the illuminated
part of the screen (in the sense of geometrical optics) the wave
function and its normal derivative are equal to their correspond -
ing values as if the screen were absent; on the dark part of the
screen the wave function and its normal derivative vanish. Sub-
stitution of these assumed values in Kirchhoff's formula (19, 1)
gives the well-known "Kirchhoff approximation" *. It can be shown
that the wave function thus obtained does not reproduce the as-
sumed values at the screen (Poincaré (35), Bouwkamp (11), Baker
and Copson (5)) and hence, is not a solution of the diffraction
problem stated as a boundary value problem. In fact, the values
of the wave function and of its normal derivative cannot be pre-
scribed simultaneously on a closed surface (the corresponding
three -dimensional hypersurface in four-dimensional xl,xz,x3,t -
space has a space-like orientation, see M. Riesz (36)).

Kottler (23) has pointed out that if, in applying Kirchhoff's for -
mula, it is assumed that the wave function and its normal deriva-
tive jump across the screen by given amounts, the assumed dis-
continuities are exactly reproduced. Consequently, from Kirch-
hoff's assumptions a rigourous solution of a saltus problem is
obtained rather than an approximate solution of a boundary value
problem. The physical properties of the screen are now specified
in terms of the jumps of the wave function and of its normal de-
rivative across the screen, If these jumps are numerically equal
to the corresponding values of the incident wave at the screen,
the screen is called perfectly absorbing or "black'.

An analogous method will now be developed in elastodynamic
diffraction theory. Let I be a screen of vanishing thickness. The
physical properties of I are now specified in terms of theamounts
by which the displacement and the traction jump across Z. This
implies that the densities of the single layer distribution and the
double layer distribution on £ are known functions of position and

* Usually the Kirchhoff approximation is given in the case of harmonic time "®:pendence.
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time. The scattered wave is then directly given by eqs. (6. 4),
(6.5) and (6. 6). Similarly, the Laplace transform of the scattered
wave is given by eqs. (6.7), (6.8) and (6.9).
The solution of the saltus problem is unique when the following
conditions are satisfied:
(i) u;* is a solution of the elastogynamlc wave equation;
(ii) the quantities c, ik, {au /Biq] " ng' and [ul]_ are known, in-
tegrable functiofls of pos1tlon on I and time;
(iii) u;* £ 0 everywhere in space, when t<t,;
(iv) When Se denotes the toroid-like surface consisting of the
points at a distance £ from the edge of X,

lim ‘[Se ¢ ,paGij [9up’ /084 ] mdS = 0
£-0
and

lim (3 /9%y f Cik, paSip [u nds =

£-+0
For ihe proof we observe thatthe difference of two possible solu-
tions satisfies all the requirements that were needed in the der-
ivation of eq. (6.4). Since this difference is continuous across I,
the resulting scattered wave vanishes identically.



32

Chapter 1V
DIFFRACTION OF SH-WAVES BY A HALF-PLANE

8. DIFFRACTION OF A PLANE SH-PULSE BY A
PERFECTLY RIGID HALF -PLANE

Let x,y,z denote right-handed cartesian coordinates in three-
dimensional space. Consider the two-dimensional problem of the
diffraction of a plane SH-pulse by a perfectly rigid half-plane co-
inciding with z=0, 0<x<s (Fig.2). The incident wave @' = (0, u,t, 0)
is given by

uy(%,z,t) = £[t-(x/vs)cos Bg-(z /vs)sin 6 , {9.1)

where 8g is the angle of incidence and f(t) =-0 when t<0. We re-
strict the angle of incidence to 0<0s€{n/2; the scattered wave
as (0,u,°, 0) then satisfies, everywhere in space, the condition
1% = 0 when t<0. :

0 diffracting
X screen

Fig. 2. Cartesian and polar coordinates used in the diffraction by a half-plane.
The Laplace transform of the scattered wave is given by
s b s
U, (%, 2;8) = JO exp(-st)u,(x, z, t)dt, (9.2)
where s is a 7eal positive number, large enough to ensure the

convergence of integrals of the type (9.2). The Laplace transform
of the incident wave is given by

U\ (%, 2;8) = F(s)exp [-(5/vs) (x cos Otz sin 6g)], (9. 3)
where
F(s) = [ exp(-st)f(t)dt. (9.4)
o

Similarly, Ty, denotes the Laplace transform of T -
From (7. 10) we obtain the following expression for the Laplace
transform of the scattered wave

»
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-
US(x,238) = - | Ty [Tyt dE, (9. 5)
‘o
where £Tyz]f = Ty(E,+0;8) - Ty, (€, -0;8). According to (5. 11) we
have

*

r Ko(sR /vs), (9.6)

_ 1
Y omp
where R = | (x-£)%z2]2)0,

It is anticipated that the diffraction problem will be solved with
the aid of two-sided Laplace transforms with respect to x. Let

[ exp(-spe) [Ty, " dg = F(s)A(p), (-(1/¥s)cos 8s<Re p). (9.7)

In view of subsequent calculations the transform wvariable has
been chosen as sp rather than p; since s is a real and positive
number this amounts to a change of scale in the complex p-plane.’
As will be seen from the solution of the problem, A(p) does not
depend on s. The indicated domain of regularity of A(p) is deter-
mined from the asymptotic relation

[Tyz]*_r ~QOlexp {-(s&/vs)cos 8g} ] asE-oo. This relation follows
from -the physical assumption that the scattered wave predicted
from the geometrical solution of the diffraction problem is pre-
dominant, Further, it can be shown (Watson (47)) that

I 7 exp(-spk (s fvs) (242 Hax = R

(-1/vs<Re p<1/vs), (9. 8)

where Ys =Ys(p) = (1/vs2-p?)2. The sign of the square root has tobe
chosen such that Re ys20 in the indicated strip of convergence.
In view of subsequent calculations we choose Reyg20 everywhere
in the p-plane. This implies that branch cuts are introduced at
Im p=0, 1/vs<|Re p|<=. Eq. (9.5) is multiplied through by
exp(-spx) and integrated over all x. Application of the convolution
theorem to the rightshand side gives

_ F(s) exp(-sys lzl) A(p). (9.9)

o
- 5 . -
(_w exp(-spx) U (x, z;s)dx

2us Ys
In the limit z=0 we obtain
oQ
( exp(-spx)US(x, 0;s)dx = - F(s) A(p) . (9.10)
J 00 v 2us Yq

By virtue of the boundary condition, U,%(x, 0;8) = —in(x, 0;s) when
0¢x{>, we have
F(s)

“slp-po)’ (-(1/vg)cos 8¢ < Re p),

(9.11)

[>¢]
( exp(-spx) Uy’ (x, 0;8)dx =
c0
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where p, = -(1/vs)cos 8. Further, let

® exp(-spx)US (x, 0;8)dx = - %ﬂB(p), (Re p<1 /vs), (9.12)

1

where the domain of regularity has beep determined from the
asymptotic relation U,%(x, 0;8) ~ O [(-x)-%exp(sx /vg) ] as x--00,
This relation follows from (9.5) by substituting in the right-hand
side the asymptotic expansion of K, Again, the factor in front of
B(p) has been chosen such that B(p) does not depend on s.

Eq. (9.10) reduces to '

1 1 A(p)

B(p) + = 5— 2
P)* 575" 20 Ys(p)
Eq. (9.13) holds in the indicated strip of regularity common to all

transforms involved. The kernel function ys(p) is now written in
the form (6, 12)

(-(1/vg) cos 85 <K Re p < 1/vg).  (9.13)

Ys(P) = ¥s*(P) Ys (D), (9. 14)

where yf:(p) and its reciprocal are regular in the right half-plane

-1/vs < Re p and Y5 (p) and its reciprocal are regular in the left
half-plane Re p<l/vs. By inspection we see that this is accom-
plished by writing

Y F(B) = (L/vs+ ) ¥s(p) = (1/vs - p)b. (9. 15)

Eq. (9. 13) is now rewritten as B
_ - - A(p)  Ys (P '
Y BO) + i Y50 -1 (00 = por - 2 L (9.16)

The left-hand side of (9.16) is regular in the left half-plane

Re p<l/vg; the right-hand side is regular in the right half-plane
-(1/vg)cos 8s<Re p. Eq. (9.16), valid in the common strip, implies
that either side of (9. 16) is the analytic continuation of the other
side, Therefore, both sides represent one and the same entire
function, Since A(p) and B(p) are bounded in -(1/vs)cos 6Re p
and Re p<1 /vs respectively, this entire function is at most

O(p2) as [f—%. An extension of Liouville's theorem (44) shows
that this is a constant. The behaviour of the right-hand side as
|p|—-°° shows that this constant has the value zero. Consequently,

+ -
Ys (P) ¥s (Po)
Alp) = 2p————— . 9.17
(p) = 2u .y (9.17)
From (9.9) we deduce that the scattered wave can be written as
the following Mellin inversion integral

c+ioo

S(x. z:g) = - EA8) , - A(p)
U (x, 2;8) Tt Sc—ioc exp(spx-sysz|) o) dp, (9.18)
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where the path of integration, Re p=c, is restricted to the strip
-(1/vg)cos Bg<c<1/vs. The singularities of the integrand are: a
simple pole at p=p, and branch points at p=+l/vs. Besides, the
behaviour of the integrand as |p|-o shows that the conditions for
the application of Jordan's lemma (48) are satisfied.

The next step towards the solution of the transient problem is
to transform the integral on the right-hand side in such a waythat
it can be recognized as the Laplace transform of a certain func-
tion of time (Cagniard (14), Pekeris (33, 34)) * Let r=(x2+z2)3
and O=arc tan (z/x) be polar coordinates in the plane y=constant
(0€ r <0, 0K 68K 2T)., By virtue of the symmetry property
US(x,z;8) = UJS(x, -z;8), it is sufficient to investigate the region
z2 0 (or 0 £ 0 € 7 only. The path of integration is modified such
that

px - Yg(p) z = -t, (9.19)

where t, the new variable of integration, is real and positive.
Solving for p we find

p = -(t/r)cos O £ i(t%r? - 1/v?fsin 6, (9. 20)

where the positive square root is taken. When rivg g t<oo,
eq. (9.20) represents a hyperbola whose point of intersection with
the real axis always lies between the branch points p = -1/vs and
p = 1/vg (Fig. 3). Therefore, no difficulties arise in connection
with the branch cuts. On the other hand, the contribution of the
pole p = p,has to be taken into account separately for values of 6

p-plane

p=wg [

LU LUy
1
Vs

Fig. 3. Paths of integration for diffraction of a plane SH-wave by a half-plane.

* For another modification of the technique, see Sauter (37,38).
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in the region 0 6 < 6. It is easily verified that this contribu-
tion gives the scattered wave that would be predicted from the
geometrical solution of the diffraction problem. The integral
along the hyperbola is introduced as the diffracted wave

UY r, 8;s). Since the modified path of integration is symmetric
with respect to the real axis and since s and t are both real, the
diffracted wave can be written in the form

d(r g:g) = - £(8) > - A ws) ows
U4, 6;5) G -[r/vs exp(-st) Im gmm_ dt, (9.21)
where
ws = wg(r,8,t) = - (t/r)cos B + i(t?/r? - l/vsz)%sin . (9.22)

A further simplification is obtained by making use of the relation

1 dws -3
) "at—s = i(t2-r2/v y i, (9.23)

Eq. (9.21) then reduces to

o0

U, %(r, 6;5) = -5 [

“onp r [y exp(-st)(t-r /vs®) Re {Awg)} dt.

(9. 24)

The right-hand side of (9.24) indicates that the diffracted wave is
influenced by both the wave shape of the incident wave and the
geometry of the diffraction problem. In order to separate the two
effects, (9.24) is written in the form

Uydr, 6;5) = F(s) &, )(r, 0;5), (9. 25)
where
0, 5)(r, 0;5) =
-

= - m fr N exp(-st) (#-r2/vs?iRe {Aw)} dt. (9. 26)
: S

The function 9,.5)(r, 6,1) of which ,()(r, 6;5)is the Laplace trans-
form satisfies the integral equation

0,5, 0;5) = fmexp(—st)(py(s)(r, 0, t)dt, (9.27)
‘0

where @Y(S)(r', B;s) is given by (9.26). By inspection we obtain
the solution

1

oy r, 0,4 = - m(tz'-rz/Vsz)‘%Re [Aws)} H(t-r /vg),

(0§ 0<m), (9.28)
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where H(t) denotes Heaviside's unit step function: H(t) = 0 when
+< 0, H(t) = 1 when t> 0, Since the right-hand side satisfies the
conditions for the application of L.efich's theorem (Doetsch (15)),
the solution is unique., The diffracted wave is then given by the
composition product

-t

S
uyd(r: 9,t) = % JI’/VS f(t'T)q’y( )(I‘, eaT)dTE H(t‘I’/Vs), (0\< 6« n).

(9. 29)

This result shows that the diffracted wave is a cylindrical wave
originating at the edge of the diffracting half-plane and whose
wave front travels with the velocity vs.

The geometrical solution of the diffraction problem (contribu-
tion from the pole p=p,) is given by

geom 0 =
0, uy #7(r, 6, 1) (0 8< 6g),

= f[t-(r /vg)cos (8-6g)], (85€08<2 M- 6g),
£[t-(r /vg)cos (6-65)] -f[t-(r /vg)cos(8+65)], (2n-04<8€2m).
' (9. 30)

The total wave motion is obtained as the superposition of the
diffracted wave and the geometrical solution given in (9.30). The
special values @ = Ogand 6 = 21 - 85 have to be investigated in-
dividually. In order to get an expression which is valid at all
values of 0, the definition of the geometrical solution is general-
ized to

u, 8" (r, 0, t) =-21- }uyse“’ (r,0-0,t) +u %" (r, 9+0,t)§, (9. 31)

where the terms on the right-hand side are given by (9.30). In ad-
dition, the expression for the diffracted wave is generalized to

) t
udr,0,1) = 3 Lim '(r/vsﬂ-: ‘f(t-'r)cpy(s)(r, 0, 1)dt ; H(t-r /vg),
(0§ 0<T). (9.32)

When ® € 6 € 2n, the diffracted wawve is obtained from the sym-
metry relation uyd(r, 0,t) = uyd(r, 2n-0,t). For all values of 9, the
total wave motion is then given by

ufr,6,t) = uyvge““ (r,8,t) +u,Yr, 6, t). (9. 33)
The corresponding wave fronts are shown in Fig. 4.

Carrying out, in the right-hand side of (9.28), the algebraic
operations, we obtain
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o, 5r, 0,1) =

v % sin}(0s-8)  sin}(0g+6) g H(t-r [vy)

zimr (vst/r-cos(8s-0) vgt/r-cos(0s+6) (vst/r-1)z 7’
(0€£6<2n). (9. 34)

This expression also follows from the results obtained by Som -

merfeld (40), who discussed the problem of scalar diffraction by
a half-plane with the aid of multi-valued wave functions.

I = incident wave
II = reflected wave
II = diffracted wave

Fig. 4. Wave fronts for diffraction of a plane SH-wave by a half-plane.

10. DIFFRACTION OF A PLANE SH-PULSE BY A PERFECTLY
WEAK HALF-PLANE

Consider the diffractionof a plane SH-pulse by a perfectly weak
half-plane coinciding with z=0, 0<x<%. From (7.22) we obtain the
following expression for the Liaplace transform of the scattered
wave : :

[>¢]
U (x,238) = - < [Op Iylu,l? de, (10.1)

where [U,]" = U, (£, +0;8)-Uy(E, -0;s) and

r,,= '2_1% Kol (s /vs){ (x-EP+22}F ] (10. 2)

Since the analysis in the present section runs parallel to the
one given in Section 9, we confine our attention to the essential
steps. Again the two-sided Laplace transforms with respect to x
are introduced. Let
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j:exp(—spa).[Unyda = - ZLB(p),(~(1/v5) cos O5<Re p). (10. 3)
From (10.1), (10.3) and (9. 8) we obtain
f: exp(-spx)U, (%, z;8)dx = + Ezisﬂ exp(-sys|z] )B(p),  (10.4)

where the upper sign applies when z>0 and the lower sign when
z <0, Hence,

. |
J . exp(-spx)T S (x, ;5)dx = & F(s)exp(=sYslzl )s(P)B().
(10.5)
In the limit z=0 we obtain from the last equation
| %2 exp(-sp)Ty.0 (x, 035)dx = § F(s)ys(p)B(p). (10.6)

By virtue of the boundary condition we have T, (x, 0;s) =
=—Tyzl(x, 0;s) when 0<x<co. Consequently,

(-(1/w)cos 8,<Re p),
(10. 7)

[ 00 y F(s)sin Bs
1 exp(-s xTSx,O;sdx=~‘-l-———-—-——,
jo P(-sPX)T,; (x, 0;s)dx = o S
where p, = -(1/vg)cos 05, Further, let

.J'O exp(-spx)T,,’ (x, 0;s)dx = F(s)A(p), (Re p<1l/vg). (10.8)

Eq. (10, 6) then reduces to

Ap) + 5= S = By (0)B(p), (~(1/vgcos 8<Re pC1/vs). (10.9)

Eq. (10.9) holds in the indicated strip of regularity common to all
transforms involved. With the factorization of y;(p), given in
(9. 14), eq. (10.9) is rewritten as

A(p) b osinBg/ 1 1 >

— +— = - —= =
Ys"(P) Vs PP, \Ys (P} Ys (Po (10. 10)
M+ b sin 65
=5t B e s vy el

2 s (PR 50 oopoys (b9

Application of the usual reasoning leads to the solution
2 sin Og

B(p) (10.11)

T Vs (PPNYs (P)Ys (Po)

- From (10.4) we deduce that the scattered wave can be written
as the following Mellin inversion integral

-cHiso :
US(x,2;8) = F 580 [ 7 exp(spx-stg 2] )B(p)dp, (10. 12)
y A Je-i
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where the path of integration, Re p=c, is restricted to the strip
-(1/vg)cos 85<c<1/vs. In the same way as in Section 9 the path of
integration is changed into the hyperbola, given by (9.20). The
integral along the hyperbola is introduced as the diffracted wave
and can, when 0£8¢n, be written in the form .
F(s 00 1
Uy d(r, 6;s) = - —2%_1 jr /v exp(-st)(t*-r2/vs®) *Re{ys (w9 Blug)} at,
$ (10, 13)
in which ws=wg(r, 8,t) is given by (9.22). The right-hand side of
(10. 13) is of the general form )
Uy, 8;5) = F(s) Y, O, 0;9), (10.14)
where

(5) L[ 2_12/y2-h v
¥ (r, 858) = - 5 Lt exp(-st)(t?-r2/vs?)-z Refys(ws)Bws)}dt
s (10. 15)
represents the §ffect of the geomet{g) of the diffraction problem.

The function d:y( )(r, 9,t) of which ¥,\”)(r,6;s) is the Laplace trans-

form satisfies the integral equation
+00
v O, 0;5) = Jo exp(-st)d,O)(r, 0, t)dt, (10. 16)

where “I’X(S)(r, 8;s) is given by (10.15). By inspection we obtain
the solution
S 1 1
0, (r,0,1) = - 5= (B-r2/ve?riRe fylog) Bog) JH(t-r /v,
(0g06gm). (10, 17)
The diffracted wave is then given by the composition product

-t
u,d(r, 0,) = %J / ft-t)b,O)(r, 8, 1yaTd Hit-r fvs),  (0<6¢T).
rIvs (10. 18)
In this case, too, the diffracted wave is a cylindrical wave orig-
inating at the edge of the diffracting half-plane and whose wave
front travels with the velocity vs.

The geometrical solution of the diffraction problem (contribu-
tion from the pole p=po,) is in this case given by

u, 8™ (r,0,t) =

0, (0€0<8y),
=§f[t—(r/vs)cos(9—95)], (85<0<27-0y),
£ [t-(r /vs)cos(8-8g)] + f{t-(r [vs)cos(8+0g)], (2n-0s<08¢2n).
» (10.19)

In order to get an expression which is also valid at 8=05 and
0=21 -B5, the definition of the geometrical solution is genefalized
to
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4y 8™ (r,0,1) = ${u B (r,0-0,t) + u 57 (r, 0+0,1) |,
(10.20)
where the terms on the right-hand side are given by (10.19). In
addition, the expression for the diffracted wave is generalized to
u,4r, 0,1) = g‘lim [gt t(t-r)p, ) (r, 0, T)dT H(t-r /vg),
€20 °rfvgte (0<0gm). (10.21)

Whenng 08€2n, the diffracted wave is'obtaih_ed from thé symmetry
relation uyd(r, 9, t)='—uyd(r, 27-0,t). For all values of 6, the total
wave motion is then given by

uy(r; 8,1) = u, & (r,0,1) + u dr,0,1). (10. 22)
The correspondihg wave fronts are shown in Fig, 4, Section 9.

Carrying out, in the right-hand side of (10.17), the algebraic
operations, we obtain

o P00 =
v 3 sin(6g-0) sin(0g+6) .gH(t—r/vsl
" 22nr {vgt/r-cos(8-8)  vgt/r-cos(8g+e) (vst/r-l)%’

(0$6$2m). (10. 23)

This expression, too, follows from the results obtained by Som-
merfeld (40).

11. DIFFRACTION OF A PLANE SH-PULSE BY A HALF-PLANE
AS A SALTUS PROBLEM

When an elastodynamic diffraction problem is stated as a saltus
problem, we prescribe the amounts by which the displacement
and the traction jump across the screen. In Section 8 we have
seen that these amounts can be prescribed arbitrarily as long as
they are integrable functions of position on the screen. Further,
it is clear that either the jumps themselves can be prescribed
as a function of time or their Laplace transforms as. a function of
the transform variable s. In order to give a uniform presenta-
tion, we prescribe the Laplace transforms of the jumps. In this
case, the transient solution is obtained in exactly the same way as
in Section9 and Section 10, namely by a modification of Cagniard's
method,

Although the jumps can be prescribed more or less arbitrarily,
only a few examples are of practical interest. It has often been
attempted to consider the solution of certain saltus problems as
"approximate' solutions of certain boundary value problems, How-
ever, in what sense this would be an approximation is not quite ¢
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clear without further explanation. The examples we intend to give
show that, when the jumps are prescribed as if the geometrical
solution of the diffraction problem were the exact one, the geo-
metrical part of the solution is reproduced; in addition, there ap-
pears a diffracted wave which is continuous across the screen,

We now proceed to give some examples in which the incident
wave is the plane SH-pulse ‘

u,i(x,2,t) = f{t-(x/vs)cos Bg - (z /vg)sin 6], (11.1)
where the angle of incidence 85 is restricted to values 0€8g(n /2

and f(t)=0 when t<0, The Laplace transform of the incident wave
is then given by

U (x,2;8) = F(s)exp[-(s /v5)(x cos 8 + z sin QS)], . (11. 2)
where
F(s) = j:exp(-st)f(t)dt. (11. 3)

In the first place the jumps are prescribed in accordance with
the geometrical solution of the diffraction by a perfectly rigid
half-plane, viz.

[u,]7 =0, (11. 4)

[T,.] T =2 s F(s)(u/vs)sin 6 exp [~(s /vg)E cos 6 ]. (11.5)
Consequently, we have

J exp(-spe)[1,,]" 4 = Fe)A@), (~(1/vg)cos bs<Re p)(11.6)
where .

A(p) = %z—li—% , (11.7)

i. which py= -(1/vgcos 8s. From (9.9) it follows that the scat-
tered wave is given by the Mellin inversion integral

F(s) g“““ A(p)
S

(I)Uys(x,z;S) = - Tnai .C_iwexp(spx—sys |z[) ) dp. (11.8)

The path of integration, Re p=c, is restricted to the strip
-(1/vgcos 8£c<1 /vs. In exactly the same way as outlined in Sec-
tion 9 we arrive at the expression for the diffracted wave

.t :
Dy d4r, 0,1 =31im j t(t-1) By O, Q,T)d'ch(t-r/vs),
' €0 /vt o (11.9)

in which
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Mo O, 0,4) = - 5o (123 Re (A} HET /vy,

(08 ), (11.10)

and ws=wg(r, 6,t) is given by (9. 22). In the regionn & 2n, the dif-

fracted wave follows from the symmetry relation (I)uy‘{(r, 6,t) =
= (I)uyd(r,ZTt—Q,t). The geometrical solution is given by

(I)uy,geom (r,8,1) = %3(I)u BEOM L 0-0.1) + (I)uyge,om (r,e+0,t)%,

y
(11.11)
where the terms on the right-hand side follow from
(I)uygeom (r) e ] t) =
s OJ (0<9< GS)J
=) £[t-(r /vg)cos(0-84)] , (85<0 <21 -85),
(f[t%(r/vs)cos(e—gg] - tt-(r /vg)cos(0+65)], (2n-0K 6K2m).
(11.12)

The total wave motion is then the superposition of the geometrical
solution and the diffracted wave. The corresponding wave fronts
are shown in Fig. 4, Section 9.

Carrying out, in the right-hand side of (11.10), the algebraic
operations we find

My Gz, 0,1 -

Vs ' sin(65-8) + sin(Bgt+06) % H(t-r /vg) .

T oy Vgt /r-cos(8g-6) vgt/r-cos(04+6) ‘(Vsztz/rz—l}%
(ogeg2my.  (11.13)

In the second place the jumps are prescribed in accordance
with the geometrical solution of the diffraction by a perfectly weak
half-plane, viz. :

[U,]7 = -2 F(s)exp[-(s /vsE cos o], | (11.14)
+
fr,17 =0, (11.15)
Consequently, we have

J exp(-sp0)[U,17 at = -EL2 B(p), (-1 /vg)cos 8¢ Re ),
(11. 16)
where A
2

B(p) = Ppe

From (10.4) it follows that the scattered wave is given by the
Mellin inversion integral

(11.17)
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~c+ioo

My s (x,2;8) = 7 58 jc_l exp(spx-sys|z| )B(p)dp,  (11.18)

in which the path of integration is restricted to the strip
-(1/vs)cos 85<c<1 /vs. In exactly the same way as outlined in Sec-
tion 10 we arrive at the expression for the diffracted wave

it
Dy &r, 0,1) = 3lim f s(t-1) My B, G,T)drgH(t-r/vs),

=0 ‘T /vete
g0 “T /s (11.19)

in which

MD4Bir, 0,1) = - o= (12-r2/v5)4 Refy By} Ht-r /vy,
(0€8¢n ). - (11.20)

In the region nﬁ@ 2n, the dﬁfr?ﬁed wave follows from the sym-
metry relation )u (r 0,t) = 4r,2n-6,t). The geometri-
cal solution is glven by

Dy seom (- 0,4) = § §Mu = (¢ g-0,4) + Wy, = (r 040, 1)},

(11.21)
where the terms on the right-hand side follow from
(II)uygeoin (I‘, 9, t) =
0, (0€8<0y),
=%f[t—(r/v5)cos(9—95)], (95<8<21-8y),
flt-(r /vg)cos(0-85)] + f[t-(r /vs)cos(8+85)], (2n-6s<O2M),
(11.22)

The total wave motion is then the superposition of the geometrical
solution and the diffracted wave, The corresponding wave fronts
are shown in Fig, 4, Section 9,

Carrying out, in the right-hand side of (11.20), the algebraic
operations, we find

¢S, 0, =
_ Vs sin(08s-0) ) sin(0g+0) 2 H(t-r /vg)
" 2nr vt /r-cos(85-8)  vgt/r-cos(0g+0) ) (Vszt2/12~1)%’
(0€8g2 ). (11.23)

Finally, we consider the saltus problem where the jumps in the
displacement and the traction are numerically equal to the corre-
sponding values of the incident wave (Kirchhoff's assumptions),
viz. ‘

[U,]7 = -F(s)exp[-(s /%)E cos 6], (11.24)
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[T,.]7 = s F(s)(u /vs)sin 6 exp[-(s /vs)E cos 6s]. (11.25)

Comparison of (11.24) and (11.25) with (11. 4); (11.5), (11.14) and
(11.15) shows that the total wave motion in this case is given by

uqu%r,&t)=§ ﬂDu#r,Qt)+(Hth39J)g. (11.26)
This leads to a geometrical solution which is given by

(K)y seom g4y = 3 §(K)y geom 1 g0t) By geom (r,e%o,t)i,

Y b4
(11.27)
where the terms on the right-hand side follow from
0, (0€8<8),
Bo om (r,0,1) - 3 (11. 28)
f[t-(r/vs)cos(8-8g)], (0s<6g2m). :

Further, we have from (11.13) and (11. 23) the result

% 3 (I)CPY(S)(I‘, 9, 1) + (II)qu(S)(r’ 9, t) € =

. Vs 3 5in(0s-0) 2 .H(th/vs),
2nr { vgt/r-cos(8g-8) § (v 2 ?3/r2-1)%

The corresponding wave fronts are shown in Fig. 5. :

The structure of the geometrical solution (K u, 8°m (r, 6,t) ex-
plains why the assumptions (11.24) and (11.25) are supposed to
solve the problem of the diffraction by a perfectly absorbing
screen (in optical terms a '"black' screen).

(0S6K2m).  (11.29)

I = incident wave
I = diffracted wave

Vst

Fig.5. Wave fronts for Kirchhoff diffraction of a plane SH-wave by a half-plane.
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Chapter V

DIFFRACTION OF P-WAVES BY A HALF-PLANE

12, DIFFRACTION OF A PLANE P-PULSE BY A
PERFECTLY RIGID HALF-PLANE

The present section deals with the two-dimensional problem of
the diffraction of a plane compressional pulse by a perfectly rigid
half-plane coinciding with z=0, 0<x<c0, The incident wave is rep-
resented by

u(x,z,t) = cos 8 f[t-(x/vp)cos 8p -(z/vp)sin 6p], (12. 1)
u,(x,z,t) = sin Op f{t-(x/vp)cos B -(z/vp)sin 6], (12.2)

where 8p is the angle of incidence (08p<n/2) and f(t)=0 when
t<0. For the corresponding Laplace transforms with respect to
time we obtain

U,i(x,2;8) = F(s)cos 8p exp[-(s/vp)(x cos Bp + z sin 6)],  (12.3)
U, (x,2;8) = F(s)sin 8p exp[-(s/vp)(x cos Op +z sin 8p)], (12.4)

where
r 00

F(s) = Jo exp(-st)f(t)dt. (12. 5)

Similarly, U,, U,, Ty, and T, denote the Laplace transforms of
Uy, U;, Txz and 1, respectively. Eq. (7.11) leads to the follow-
ing expressions for the Laplace transforms of the components of
the scattered wave

Uk, 238) = - | L [T, 1T dg - _{:PXZ[THJT dE, (12.6)

OXX

U} (x,2;8) = - j:ru[*rn]f dg - j:’ru [T, 1" g, (12.7)

in which [T]7 = T, +0;s)-T, (€, -0s), [T,17 = T, (E,+0;s) -
T, (€, -0;8) and
1

" 32
. 2,”,5 % 12 olSR/Vp) + — Ll K(sR/vS)i (12.8)



Sec. 12 47

L1 22 )

Pee = I ZEPSZ 3 9X9z K (SR/VP) X9 K o(SR /vg) g (12.9)
1

e 3 K (SR /vp) + ——zKo(sR/vS)% (12. 10)

with R = [(x-£)2+22]%30. The right-hand sides of (12.8), (12.9) and
(12. 10) follow from (5. 14) together with the equation

(32/0%2+32/322-52 /v YK o(sR /vg) = 0. (12.11)

In the same way as in the preceding sections we introduce the
two-sided Laplace transforms with respect to x. Let

f exp(-sp?) [T,]7 de = F(s)A(p), (-(1/vp)cos 8,<Re p),
(12.12)

J exp(-spt) [T,,]7 d& = F(s)B(p), (~(1/vp)cos G<Re p).
(12.13)

The indicated domain of regularity of A(p) and B(p) follows from
the assumption that the geometrical solution of the diffraction
roblem determines the asymptotlc expansion of {TXZJ_ and
T] T as 00, which means [ T,]* ~ Olexp{-(s/vp) £ cos 6] |
and [T, ]T ~ O[ exp{-(s/vp)E cos & ] ). Transformation of the
right-hand sides of (12.6) and (12.7) gives, with the aid of (9. 8)

and the convolution theorem, the result

o
[ exp(-spx)U (x, z;s)dx =
J oo

exp(-stp |2|)

=SB 3 p%m) Fove B |

2ps

3 Ys? A(p) £ P Y B(p) i ———S—Y-Sﬂl] (12.14)
[oo exp(-spx)U *(x, z;s)dx =
— exp(-sYrl|z})
- B [T, A v vBE) {
+ 3 +p Y5 A(p) + p?B(p) % E(B%XS‘ILI)J (12.15)
where
Yp = Yp(p) = (1/v,2-p?)z | (12.16)
and
Ys = Ys(p) = (1/vg2-pA)2 - (12.17)
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The sign of the square roots has to be taken such that Re Yp 2 0
and Re Yg » 0, The upper sign in (12.14) and (12.15) applies when
z>0 and the lower sign when z<0. In the limit z=0 these equations
reduce to

il

‘: exp(-st)UxS (x, 0;8)dx = - F(s) (pz"’YPYs) %&m s (12.18)

2ps

Lo exp(-spx)U;’ (x, 0;8)dx = - Z(8) (24 %XSBZ . (12.19)

2ps
By virtue of the boundary conditions we have U®(x, 0;s) =
= - U (x, 0;s) and U} (x,0;8) = -U;" (%, 0;8) when 0<x<e0; hence
F(s)cos 6,
S(p'po) ’
" (~(1/vp)cos 8:<Re p), (12.20)
Lol s F(s)sin 6p
0 exp(-spx)U, (x, 0;s)dx = - W ,
(-(1/vp)cos 8,<Re p), (12.21)
where p, = -(1/vp)cos 8p. Further, we introduce the functions

[>¢]
g exp(—spx)st(x, 0;s)dx = -
0

0
| , exp(-spx)UA(x, 0;8) dx = - E8 c(p), (Re p<t fvp), (12.22)

0
| exp(-spx)U21x, 03)ax = - E&) nip), (Re p<t frp). (12.23)

The indicated domain of regularity follows from the asymptotic
behaviour of the right-hand sides of (12.6) and (12, 7) as x—~-,
and z=0. Substitution of (12.20) - (12,23) in (12.18) and (12.19),
followed by division by the common factor F(s)/s, gives

c +cos9p_1<l+l>K A(p)
BY* 55 = %p ve? vyl (p)Yp(p)’

(-(1/vp)cos B,<Re p<l/vy), (12.24)

D(p) + s;risz = -417'\712*‘ V—;-) p);—i% ,
(-(1/vp)cos 8p<Re p<l/vp), (12.25)
where
K(p) = —> -, [P v (P)Y(P) ] | (12. 26)

-2 -
Vg +VP
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The only singularities of K(p) are branch points at p = + l/vP and
p = + 1/vs. Its behaviour at infinity is found to be

K(p) =1+ O(p-? as |p| - (12.27)
Eqgs. (12.24) and (12.25) hold in the indicated strip of regularity
common to all transforms involved,

In order to apply the Wiener-Hopf technique, K(p) is written in
the form

K(p) = K" (DK (p), (12. 28)
where K¥(p) and its reciprocal are regular in the right half-plane
-1/vp<Re p and K™(p) and its reciprocal are regular in the left
half-plane Re p{l /VP. Furthermore, we make this factorization
unique by requiring

K¥*(p) = 1 + O(p-Has |p|—o00 -~ (12.29)
and

K°(p) = 1+ O(p-l) as |p| —oo. (12.30)

. Explicit expressions for K*(p) and K~(p) are derived in Section 13.
Similarly, we write

Y (P) =7, () v, (P), (12. 31)
where

Yp'(p) = (1/v,+p), (12. 32)

Yp (P) = (1/v, -p). (12. 33)

L3

It is clear that yp +(p) and its reciprocal are regular in the right
half-plane -1/vp<Re p and that Yp'jp)andits reciprocal are reg-
ular in the left half-plane Re p<l/vp. A similar factorization
holds fory¢(p); it is obtained by replacing, in the relevant ex-
pressions, vp by vg.

Eqs. (12,24) and (12. 25) are now rewritten as

C)Yp (P) . cos Bp /Yp (P) Y (Po))\.
+

K™ (p) P-p, N K(P)  K7(po)
; (12. 34)
- L (k) KB agp - Yo (mlcos &
4p \ vg2  vp2/ y,H(p) (P-pP K (p,) ’
D(p) s (p) N sin 6p <Ys'(p) Y5 (Py) ) -
K™ (p) P-P, N K'(p)  K(p,) -
: (12. 35)

_ 1 1 1\ K'(p) _Ys (pJsin 8
5(_+—_>——B<p) Ys (pdsin &

vs? v?/ ¥s'(p) (P-PJK (p,)
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The usual reasoning leads to the solution
4 Yo '(P)Yp (P)COS &

A(p) = ——— , (12. 36)
vy -2 (p-p KT (P)K T (p,)

4p Y& (P)Ys™(Py)sin 6p
voRv, 2 (p-p ) KT (P)K T (R,)

Now that expressions for A(p) and B(p) have been obtained, we
turn our attention to the determination of the transient solution of
the problem. From (12.14) and (12.15) we conclude that U,*(x, z;s)
and U j(x,z;s) can be written as the following Mellin inversion
integrals

c+ixo
U0 (x,2;8) = - F(s) (  exp(spx) .
~C-1x

B(p) = (12.37)

exp [-syp (p) 2]
Yp(P)

, ) exp[-sys(p)lz] ]
# VST RIA®) = PY(PIBER)] —— ] dp,

LIpAm Tey, ()80
3 (12. 38)

(s c+ioo
0 i) = - T [ onpto

_ pl-svp(p) |7
L3P e e @am) « vRerel = al,
exp [-sys(p) 12/ ]

) Jer

+

 py, (P)A(P) + sz(p)E (12.39)

where the path of integration, Re p=c, is located in the strip
-(1/vp)cos 8p<c<l/vp. The integrands at the right-hand sides of
(12, 38) and (12. 39) are singular at the simple pole p=p, and at the
branch points p=t1/v, and p=t1/vg, It has been mentioned earlier
in this section that the square roots defining Y, and yg have to be
chosen such that Reyp » 0 and Re yg » 0 on the path of integra-
tion, With a view to subsequent deformations of the path of inte-
gration, we impose this condition onyp andyg everywhere in the
p-plane. This implies that the integrands are made single-valued
by introducing branch cuts at Im p=0, l/VP< ‘Re p|<% and at Im p=0,
1/v< |Re pl<s.

The right-hand sides of (12.38) and (12. 39) show that the scat-
tered wave consists of a compressional wave and a shear wave,
. both having a part which is symmetrical * with respect to z=0

* A vector (uy,0,u;)is called symmetrical with respect to z=0 when uyx(-z)=uy(z)and u,(-z)=-tz(z);
it is called antisymmetrical when uy(-z)=-uy(z) and u,(-z)=u,(z).
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and a part which is antisymmétrical with respect to z=0, Due to
the complexity of the expressions involved, the different terms
will be discussed separately. In each term the path of integration
will be modified in such a way that the resulting expression can
be recognized as the Laplace transform of a certain function of
time.

In the first place we consider the compressional wave which is
symmetrical with respect to z=0, Its components are given by

(I)st(x,z;s)

c+ioo
B [ cxplapx-s (8) 1] p7A)

dp
dnpi Je-g Yp(P)

(12. 40)

(I)UZS (x,2;8)

(s) c+ioo
iani yc_imexp{spx—syp(p) |z|] PYP(p)A(p) 7(_;%)_).

(12.41)

We introduce the polar coordinates r=(x2fz2)z and 8=arc tan (z/x),
(0gr<eq, 0¢6¢2n), and confine our attention to the region z »0 or
0€0<1. The path of integration is transformed into the hyperbola

p = ~(t/r)cos 0 + i(t?/r2-1/v 2Fsin 6, (12. 42)

with r /vpgt<ee, The contribution from additional circular arcs at
infinity vanishes by virtue of Jordan's lemma (48). Since the point
of intersection of the hyperbola (12. 42) with the real axis always
lies between p = -1/vp and p = 1/vp, no difficulties arise in con-
nection with the branch cuts. In changing the path of integration
we may pass the pole p=p,. The contribution from the latter will
be taken into account later on; the integral along the hyperbola is
introduced as the diffracted wave. Introduction of the function
wp =wp(r,6,1) = -(t/r)cos 8 + i(t?/r2-1/v ?)isin B, (0K6T),
(12.43)

where the square root is taken to be positive, enables us to write
the diffracted wave in the form

(I)de(r, 9;s) =

F(s) (® -2 “A(
. _Z_T(c_p)_.(r/vp exp(—st)(tz“rz/vl’z) Re {wp A(wp)} dt’(l2.44)

(I)Uzd(r, 0;s) =

F(s) (* \
- 5 .{r/vp exp(-st)(12-1 2/vp2)} Refuwpyp (wp)Alp) }(dltz,.%)

where we have used the relation
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YpWp) = (t/r)sin @ + i(t%/r%1/v,2fcos 6, (0€6m).  (12.46)

The expressions are simplified by introducing the polar compo-
nents of the displacement. The result is

Dyl(r, 6;8) =

_ F(s) ("" exp(_st)(l_rz/vpztz)-% Refw, Awp)} dt, (12.47)
' vp

Dy 4, 6;5) = - ) [N/ exp(-st) Im fuwp A(wp)] dt. (12.48)
‘r/vp

The right-hand sides of these expressions are of the form

Dy d(r, 0;8) = Fs) @, F)(r, 0;5), (12. 49)
Dy dr, 6; 8)= F(s) 2 ir, 0;5), (12.50)
whére
2, Flir, 0;5) =
1 ( exp(-st)(l-r Z/sztz)'% Re jwpA(wp)} dt,

CMPT Uy (12.51)

[N exp(-st) Im {wpAfwp)} dt. (12.52)

(P) .g) = -
Qe (I‘, Q,S) - 21pr ‘I‘/VP

» The functions cp,(P)(r, 6,t) and ¢ Q(P)(r, 0,1) of which @,(P)(r, 8;s)
and @e(P)(r,G;S) are the respective Laplace transforms are readily
obtained as

o) (x, 0,1) = 2Ttlpr (1’1”2/"?2112)'%Rei‘”PA(‘”P)ZH(t-r/VP)El2 53)
96 (r, 0, 1)= '27tlpr Im {wp Afwp JJH(t-r /Vp). 0o

The polar components of the diffracted compressional wave which
is symmetrical with respect to z=0 are then given by the compo-
sition products

t

N

Duldir,0,1) = 3
r VP

f(t-1)9 F)(r, 0, 7)dr 2H(t—r/vP), (12.55)

1
(I)ued(r: g: t) = % "

f(t—x).cpe(P)(r,e,r)drEH(t—r/vP), (12.56)
“r/vp

"in which 0¢6K7n.
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In the second place we consider the scattered compressional

wave which is antisymmetrical with respect to z=0, The Laplace
transforms of its compone‘nts are given by

M x, 250 =+ 5E [T explspx-stp )1zl Jp Bo)p,  (12.57)

4mpi |
D), s F(s) (Cctioeo
U (29 = - g | exp[spxosvp(p) 2l lve (PIB(IP. (12.59)

In a way similar to the one outlined above, the diffracted wave is
introduced. The transformation of the path of integration enables
us to write the Laplace transforms of its polar components in the
form

IDydir, 6;8) = F(s) ¥ Pz, 0;5), (12. 59)
Wy e, 055) = F(s) ¥ F(r, 655), (12. 60)
where

‘l’r(P)(r, 9;s) =
1 [°°
anpr ‘r/vp

exp(-st)(1-1r2/vp?t?)-2 Re{ypwp)B(wp)idt,
(12. 61)

¥o Pz, 0;8) = .[m exp(-st) Im{ypwp)Blp )] dt, (12.62)

with 0€6¢n, The functions q,,( )(r, 0,t) and q,e(P)(r, 0,t) of which
¥ (P)(r 0;s) and ‘I/g( )(r, 0;s) are the respective Laplace transforms
are readily obtained as

4. Fr, 0, 1) =

= - lpr (1—r2/vpzt2)-% Re {vpwp)Bwp)H(t-r /vp), (12.63)
¢ Fr, 0,1 = S~ Im (p)Bp) JH(t-T /vy) (12.64)
8 sV Srpr o {vplp)Blop ] p)- 3

The polar components of the diffracted compressional wave which
is antisymmetrical with respect to z=0 are then given by the com-
position products

(IDy dr, 0,1 = gxr/v (t-t)b, Fhir, 0, 7)dv %H(t r/v,,)212 )
P
My dc, 0,1 = 3 . f(t 1) T, 0,7)dT % H(t-r /v ),

(12. 66)
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in which 0€6gn, )

We now proceed to give the analogous results for the scattered
shear wave which is symmetrical with respect to z=0. Eqs. (12.38)
and (12.39) give the following expressions for its components

Cc+ioo
My, 258) = - gagr | explspx-syso)lel ] vs()APIdD,
(12.67)

I - F(s) (1™
D ys (x,2;5) = FEE [ explspx-sys(p) ] p A(p) db.
R
(12.68)
In the firstinstance the path of integration is transformed into the
hyperbola.

p = ~(t/r)cos 8 + i(t%/r?-1/vgd? sin o, (12. 69)

with r /vg{t{= and 0€8<n. The contribution from additional circular
arcs at infinity vanishes by virtue of Jordan's lemma. The point
of intersection of the hyperbola (12.69) with the real axis is lo-
cated at p = -(1/vg)cos 8. Only in the region 0€|cos 8[< vs/vp,

this point lies between p = - 1/vp and p = 1/vp. In this region we
are free to cross the real axis. When vg/vp<cos <1, however,
the point of intersection lies to the left of p = - 1/vp. Since

p=-1/vp is a branch point of the integrands, we are not allowed to
cross the corresponding branch cut Im p=0, o<Re p§ -1/vp. Ac-
cordingly, the integral along the hyperbola (12.69) has to be sup-
plemented by an integral around the branch cut from

p=-(1/vs)cos 8-i& to p=-(1/vgcos 8 + 15, where 60 (5>0). In order
to identify this branch cut integral as the Laplace transform of a
certain function of time, the path of integration is taken as

p = -(t/r)cos 8 + (1/vs®-t2/rdisin 6 £ 18, (5-0), (12.70)
where tp<t<r/vg and

tps = (r /vp)cos 8+ (r [vg)(L-vs2/vp2) sin 6, (12.71)
plus an integral along a circle with radius € around p = -1/vp

(Fig. 6). It is easily verified that the integral along the circle
vanishes in the limit £€-0. An analogous situation does not arise
in the region -1 cos 8<-vg/vp. Since A(p) and B(p) are regular
in the right half-plane -(1/vp)cos 8p,<Re p, the point p = 1/vp is
not a branch point of the integrands of the shear waves and we
may freely cross the real axis as long as the point of intersection
lies to the left of p = 1 /vs, which is always the case,
Introduction of the functions

wg = wgr, 0,1) = -(t/r)cos 0 + i(t3/r®1/v A Esin @ (12.72)

‘and



Sec.12 55

Fig.6. Paths of integration for diffraction of a plane P-wave by a perfectly rigid
half-plane.

Wps =Wps (T, 0,t) = -(t/r)cos 8 + (1/vg2-t?/rP)Esin 6 + 18, (8-0),
(12.73)

enables us to write the diffracted wave as

(111

r

I‘/V 1
= Ez?(c%l ( ; exp(-st)(r 2/vs?-t)% Im fy s*(w ps) Al pg )} dt -

)de(r, 8;s) =

F 0 1
- 7%&% '(r/vs exp(-st)(t3-r?/vs?)-2 Re{ysz(wS)A(ws); dat, (12.74)

(IH)Uzd(r, 9;s) =

AL 1
.—.Ez%s-% .(tps > exp(-st)(r?/vs®-t3) -7 ImwpsYs(wps)A(wes) } dt -
- F‘z = (w exp(-st)(t2-r2/v?)t Re [wy WgAW) ] dt,
CETP e v (12.75)

where we have used the relations

Ys(wps) = (t/r)sin 6 + (1/vg*t?/r2)icos 8 (12.76)
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and
Ys(@g = (t/r)sin 6 + i(t?/r?-1 /vAicos 0, (12.77)

with 0€8<n. It must be observed that the first term on the right-
hand sides of (12, 74) and (12.75) is only present in the region
0€6<arc cos(vg/vp). The polar components of the diffracted wave
under consideration can be written in the form

PS)

My d(r, 6;5) = F(s) @, F(r, 055) + F(s) 8, (r, 858),  (12.78)

My edr, 6;5) = F(s) 2T (r, 55) + F(s) 2 (r, 139),  (12.79)

where

r[vg
‘I’r(PS)(r» 8;s) = znlpr “t exp(-st) Imfyg (wps) Ao pg )} dt, (12.80)
PS :
r/v .
@Q(PS)(r, 9;s) = - 2_Tc1'p_r ‘{t i exp(-st)(r2/v2t3-1)2 Im [y (Wpg 1AW )] dt
Ps (12.81)
and \
2.5, ;) = 2nlpr .(ro;vs exp(-st) Im{ y; ) Al)]dt, (12.82)
1

0,5)(r, 8;5) = I~ exp(-st)(1-r?/vg??)* Refy, () AWs)}dt.

2npr |
v /vs (12.83)

The functions (p,(PS)(r, 0, 1), cpg(PS)(r, 0, t), (pr(s)(r, 6,t) and
905N (r, 0, ) of which 8,(FS)(r, 6;5), &,F)(r, 6;5),8, ®)(r, 0;5) and

@G(S)(r, 8;s) are the respective Laplace iransforms are obtained
as

¢r(PS)(r’ 0,t) = 2;? Imfyg (Wpg ) AWps)} [H(t-tyg) -H(t-r /v) ],
(12.84)

9.9z, 0,1) =

=- 21:pr (r2/vg2t2-17% Im [yg (ps ) Abops ) } [H(t-tps) -H(t-r /vg) ]
(12.85)
and
)y .1
¢, " (r, 8,t) = mlmns(ws)A(ws);H(t—r/vs,.), (12.88)

90 0(r, 0,1) = g (1-r2/ws%:)F Refyg(w9Atog) JH(E-T /v).
(12.87)
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The polar components of the diffracted shear wave which is sym-
metrical with respect to z=0 are then given by the composition
products

Dy 4r, 0, 1) =

: % (min(t,r/vs) (PS)

f(t-’t)cpl‘ (I‘,G,’T)d'f 2H(t—tPS)+

“tps

t.
+ 3 ( f(t~T)<pr(S)(r, 8, T)dT%H(t-r/vsi, (12.88)
.r/VS

A TVS) o (BS) e 6 mydn! H(t-teg +

(III)U.Qd(I" 0,1) - 3J \

tes
-t )

* Ej f(t'T)CPe(S)(r,G,T)dTZH(t-r/Vs), (12.89)
r fvs )

in which 00<7 and where the firstterm on the right-hand sides of
(12.88) and (12.89) is only present in the region 0{8<arc cos(vg/vp).

Finally, we consider the scattered shear wave which is anti-
symmetrical with respect to z=0, According to {12.38) and (12.39),
the Laplace transforms of its components are given by

c+ioo
V)Y s(x,258) = F EBL [T explspx-sys(p) izl ] Prs(P)B(P) s

Inpi loojoo Ys(P)’
rion (12.90)
(IV)y s gy = - £48) | - 2 dp
U/ (6,258) = - ot |, eXPlspx-sts(p) 2] P*B) 1 (p) -
(12.91)

In exactly the same way as outlined above, the diffracted wave is
introduced. The transformation of the path of integration enables
us to write the Laplace transforms of the polar components of the
corresponding diffracted wave in the form

MWy d(r, 0;8) = F(s) LED(r, 058) + F(9) ¥, O)ir, 0;9), (12.92)

Iy d(r, 05 5) = F(s) L F(r, 0:5) + F(s) ¥ e, 035),  (12.99)

where

v (PS)r, 0;5) = 2n1pr ‘: s exp(-st) Im{wps B(wps)}dt, (12.94)
g

WQ(PS)(I‘: Q;S) =

21
2npr

A 2 '2 2 4y
(t exp(-st)(r? /v@t2-1y? Im{wpsBpg)idt (12.95)
“ps
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and

‘lr(s)(r, 9;s) = -ZELP-IT L:;v exp(-st) Im{wsB(ws)}dt, (12.96)
S

v, ) (r, 0;5) = 2n1pr [ exp(-st)(1-r ¥vs4?) 4 RefwsB(w) Jdt,
v /vs (12.97)

with 0€0€n. The functions cl),(PS), ¢9(PS), ¢,(S) and 4)9(8) of which
¥, (PS), ‘I/Q(PS), ‘l’,(s) and ‘l’e(s) are the respective Laplace trans-

forms are obtained as

¢ T)(r,0,1) = o Im [ups Blops )} [H(t-tpg) -Htr v 1 (12.98)

4P r, 0,1 =

= - 2n1T(r2/V52t2-1)-% Im{wpBpe)} [H(t-ty)-H(t-r /v)]
and (12. 99)
() S
b e, 8,t) = SHeT Im{ wgB(wg) JH(t-r /vy), (12.100)
1

boSr, 8,1) = (1-r2/vg2?)-$Re fusBg ) JH(t-r /vg). (12.101)

2npr
The polar components of the diffracted shear wave which is anti-
symmetrical with respect to z=0 are then given by the composi-
tion products

IV, 0,1 =

T

: 3 (min(t, T [vg)

| t(t-0)p, (FS)(r, 6, 1)dT { H(t-tpg) +
,’tps

-t
+ g | 20, Fr, 0, 1yar %H(t-r/vs), (12.102)
’r/VS

(e, 0,1) =

_ 3 ‘min(t, r/vg)

£(t-1)0g T ) (r, 0, Tyd7 g Ht-tpg) +
“tps

+3 N AR T)dt%H(t-r/vS), (12.103)
’r/VS
in which 0€9¢n and whére the first term on the right-hand sides

of (12,102) and (12. 103) is only present in the region
0gO<arc cos(vg/vp).
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Now that the diffracted waves have been discussed, we investi-
gate the contribution from the pole p=p, It can be shown that the
incident wave plus this contribution gives the geometrical solution

of the diffraction problem. Introduction of the angle 85 which is
related to the angle of incidence 8p through Snell's law

(1/vp)cos 8p = (1 /vg)cos 8, (arc cos(vg/vp) €8Lm /2), (12.104)
enables us to write the result in the form ‘
W EO (r,0,1) =
0, (069(91’):
cos @p ft-(r/vp)cos(8-6p)], (8p<0<27-0y),

éos 8p f[t-(r /vp)cos(0-0p) ]+ Rpg sin 6 f[t—(r /¥ )cos(8+65) ],
' (21-6K 8<2m-05),
cos Op f[t—(r/vP)cos(G—Gp)] + Rpp cos QPf[t—(r/vP)cos(9+9P)]+

+ Rps sin 05 f[t-(r /vs)cos(8+6s)], (2m-0p<6¢2M),
(12.105)

u, B (r,0,1) =

0 (0€6<0 p),

sin 0p £[t-(r /vp)cos(8-6p)], (0p <0<2m -0g),

sin 0p £[t-(r /vp)cos(8-0p)]+ Rps cos 8g f t-(r /vs)cos(8+8g)] ,
(2n-8K0<27-0p),

sin 0p £[t-(r /vp )cos(8-0p)] - Rpp sin Op fft-(r /vp)cos(0+8,)]+

+ Rpe cos 0 flt-(r /vg)cos(8+6g)], 2m-0p<0K21),
PS s s S
(12.106)
where
cos(8s+0p)
Rpp = - CO_——__—S(Qs-gp) (12, 107)
and
RPS— ‘m (12. 108)

are the amplitudes of the reflected P- and S-wave respectively,
when a plane P-wave is incident upon a perfectly rigid plane
boundary. i

The values 0=0p, 6=2m-8g and 0=2n-9p require a special in-
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vestigation. At these values the geometrical solution is taken as
one half of the sum of the limiting values at either side of the ray
under consideration. Further, the diffracted waves are taken as
the values which are obtained by first substituting the relevant
value of 0 and afterwards approaching the lower limits of integra-
tion from above. With the expressions thus generalized, the total
wave motion is everywhere the superposition of the geometrical
solution and the diffracted waves,

From the results it is clear that in the first place the diffracted
waves consist of a cylindrical compressional wave and a cylin-
drical shear wave both originating at the edge of the screen.
Moreover, in the regions 0<8<arc cos(vs/ve) and 2n-arc cos(vs/vp)<
<B§2m there is a diffracted wave whose wave front is a plane trav-
elling with the velocity w. The wave front of the latter wave can
be considered as the envelope of the cylindrical shear waves
emitted by secondary sources at the screen which have been ex-
cited by the diffracted compressional wave. It is the two-dimen-
sional analogue of Cagniard's ""onde conique'';inthe German liter-
ature it is known as the "Kopfwelle'". The wave fronts are shown
in Fig. 7.

I = incident P- wave
I = reflected P-wave
I = reflected S- wave
v
Y

H

= diffracted P-wave
= diffracted S-wave
MI = diffracted PS-wave

Fig.7. Wave fronts for diffraction of a plane P-wave by a perfectly rigid half-plane.
13. FACTORIZATION OF THE KERNEL FUNCTION K(p)

The function K(p), introduced in Section 12, eq. (12.26), and
given by

K(p) =—
Vg +VP

= [p2+ v, () D) ], (13.1)
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is nowhere zero or real and negative. Furthermore,

K(p) = 1+0O(p) as |p|-0e (13.2)
Application of Cauchy's theorem yields
' 1 dw
log K(p) = o7 1., log K(w) 2%, (13.3)

where C is a closed contour in the w-plane, surrounding the pole
w=p. In accordance with the choice of sign .of the square roots in
Section 12, the integrand is made single-valued by introducing
branch cuts at Im w=0, 1/% <|Re w|<1 /v and taking the principal
value of the logarithm. For the moment, it is assumed that pis
not a real number such that 1/vp< pl<1/vs. By virtue of the
asymptotic behaviour as |w|-soce, the contour C may be deformed
into the loops C* and C~ around the branch cuts (Fig.8). The
factorization is then carried out by writing

log K(p) = log K*(p) + log K™(p), (13.4)
where

log K*(p) = 2%1 j.c+1og K(w) v%"p— (13. 5)
and

log K (p) = %1— “C' log K(w) % . (13.6)

The right-hand side of (13.5) can be transformed into the real
integral

1 1
log K*(p) = - 1 gl s arc tan (w1 /ve)* (1/vs=wh*) aw 13.7)
g P b1 "l/vp ’ w? Wtp” (13.

c W-plane

R,

ct c-
—— ) (zrey —

-1 -1 1 1
Vg Vp Vp Vg

Fig.8. Contours of integration for factorization of the kernel functions K(p) and L(p).
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Further, K (p) follows from the relation K™ (p) = K*(-p).

When p is a number just above or just below the real axis such
that -1 /vg<Re p<-1/vp, we have

2-1 /ved)i(1 /vsz—pz)%] ]

log K'Y (p) = £ i arc tan ,l:(p

p2
1/v W2-1 /vp2) (1 Jv 2-wd)E
__1_P( S arc tan ( /P)(z/s )] d:v} (13.8)
T .l/VP w W+p

where the upper sign applies when p is just above the real axis
and the lower sign when p is justbelow the real axis, The integral
on the right-hand side of (13.8) has to be taken in the sense of a
Cauchy's principal value, which is indicated by the "P' in front
of the integral sign. In the same way as before, K (p) follows
from the relation K™ (p)=K*(-p).

Finally, we remark that for numerical computation it may be
useful to introduce the new variable of integration « through

W2=l<,_1,+_1..> -}_<_1_——1§> cos a, (13.9)
2 \v? v/ 2\v? v

where 0€agn. The result of this substitution is easily obtained and
will not be given here,

14, DIFFRACTION OF A PLANE P-PULSE BY A
PERFECTLY WEAK HALF-PLANE

Consider the two-dimensional problem of the diffraction of a
plane compressional pulse by a perfectly weak half-plane coin-
ciding with z=0, 0<x<e, The incident wave is represented by

ul(x,2,t) = cos G f[t-(x/vp)cos 8p ~(z /vp)sin 8 ], (14. 1)
u,i(x,z,t) = sin 8p f[t-(x/vp)cos Op -(z /vp)sin 8 ], (14.2)

where 6 is the angle of incidence (067 /2) and f(t)=0 when t<O0.
In terms of the Laplace transforms with respect to time we have

Uxi (x,2;8) = F(s)cos 6 exp [-(s/vp)(x cos 8p+ z sin 6p) ],(14. 3)

U,' (x,2;8) = F(s)sin 8p exp[-(s/vp)(x cos 8p + z sin 6p)] , (14. 4)
where '
[£]
F(s) = “’0 exp(-st)f(t)dt. (14.5)

From (7.23) we obtain an expression for the Laplace trans-
forms of the components of the scattered wave;the different terms
in this expression can be arranged in the following form
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v.2

U > [DDK( R/vp) [, It
s X,2;8)= ~—— SR /v B -
x ) ns? 3x23z 10 P

_ Xsi <i _3_2_>L§MKO(SR/VP)[UZ ]T &g -

'T[Sz 42V52 BXZ 3x "0
2 2 2 o0
Vs 5 Ei ) 3 +
-—=l -3 ) —| KdsR/vw)|U,J_ d&+
T\ZS2<2VSZ 32 /) 3z .[0 dsR/vs)[ U, I”
vs2 23 00 N
el K{sR /vg) [U }_ dg, (14.6)
ns?  x2z? .‘0 d S z

2 33 00
U (x,zi8) = - — [ Ko(sR v U, ] az -

ns? %972 ‘0

_vs® (f_z_ _o? > 2 ‘[OMKO(SR vy (01T e +

2 2
vg©. s 9 9 (o +
+S—< ———) ——[ K{sR/vs)[U, ] dE -
2VS2 ax?/ 3x 0

2 ‘33 [os]
BN ( Ko(sR/vs)[Uz]fdi, (14.7)
ns? 3x%3z Y0

where [U, JF = U@, +0;9)-U (€, -0;5), [U,]F = U,(E,+0;8)-1, (E, -0;5)
and

R = {(x-E)*+z%}2 ) 0. (14. 8)

Again, it is anticipated that the diffraction problem under con-
sideration will be solved with the aid of two-sided Laplace trans-
forms with respect to x. To this aim we introduce the functions

(Omexpvspa)[ux )7 ag = - E8 c(p), (-1 /vp)cos 8xcRe p),

00 (14.9)
50 exp(-spg) [U, ] dg = - —F—S(—Sl D(p), (-(1/vp)cos 6,<Re p).
(14.10)

The indicated domain of regularity of C(p) and D(p) follows from
the asymptotic behaviour of [Ux ]“_L and | U, [0 as §-wq The physical
assumption that the scattered wave predictedfrom the geometrical
solution of the diffraction problem is predominant leads to [UX ]4_' ~
O[exp{—(sé;/vP)cos Opig Jand [U; It ~ O [exp {-(sE /vp)cos GP}] as
€-00 Multiplication o (14.6) and (14.7) by exp(-spx) and integra-
tion over all x leads, with the aid of (9.8) and the convolution
theorem, to
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(o ¢] s
( exp(-spx)Ux (X, z;s)dx =
-00

¥

(s) — <o -

B Fss Vs’ [3 T pYpC(p) + (1/2vg*-pPp D(p)g ?_E(._Y_;SLLZI)_+

exp(-sys|z|)
s,

+3F (1/2%2-) v5 C) - o 1)} (14.11)

[ * exp(—spx)UzS (x,z;8)dx =
o

exp(-sYpjz|)
————

B ﬂsEl vs? [3 pYp?C(p) ¥ (1/2vg%p?) yp D(p)s -
T -s
¥ 3'“/2%2‘102)10 Cp) ¥ P g D(p)% e_x%s'lﬂ] ,

where Yp(p) and Yg(p) are given by (12.18) and (12.17). The upper
sign in (14.11) and (14, 12) applies when z>0 and the lower sign
when z<0.

From the stress-strain relation we determine Ty (x,2z;s) and
T, (%,z;s). For their two-sided Laplace transforms with respect
to x we obtain

(14.12)

{ = exp(-spx)T,,’ (X, z;s)dx =
= 297 F(E) JE1" CO) T (1/22 e D(p) ——————-e"p(;PSYP'Z' ),
+ ;(1/2V52-p2)2 C(p) + (1/2vg2-p?)pys D(p)i eXP(____;_jﬁEl_)_]’
(14.13)

o
[ exp(-spx) Ty’ (x,2z;8)dx = 2uvs’ F(s).
o0

exp(-syplz|) .
p
" Xpt -
+3 + (1/2vs?-ppYs C(p)+p2Yst(p)€ g_p%:_Y_S_IZI_)] (14.14)

where the upper sign applies when z>0 and the lower sign when
2z<0. In the limit z=0 these equations reduce to

D? (1/2vs*-pApY, C(p) + (1/2v6*-p*Y D(p)%

ha s .
‘r exp(-spx)T,, (x, 0;s)dx =
*=Do

= 2uvs® F(s) [(1/2vs%-p?? + P2, v 9%’1, (14.15)
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>
{ exp(-spx)T,’* (x, 0;s)dx =
o

= 2ws? F(s)  [(1/2v5p%? + Py, v, XX ‘—’ip—’. (14.16)
By v1rtue of the boundary condltlons we have T, 5(x,0;s) =
= -Ty, (%,0;8) and T,°(x, 0; ;8) = = (X, 0;8) when 0<x<s; hence,
oo U sin 20p F(s)
(0 exp(-spx) Ty, (%, 0;8)dx = “Vepop)

(-(1/vp)cos 6 < Re p),(14.17)
(AMr2pcos 265 F(s)

Vp(P-Do) ’
(-(1/vp)cos G<Re p), (14.18)

[>]
.{0 exp(-spx)T,° (x, 0;s)dx=

where p, = -(1/vp)cos 8p and 65 follows from Snell's law
(1/vp)cos 8p = (1 /vg)cos 85, (0<arc cos(vs/vp)K 0L /2). (14.19)

Further, we introduce the functions

[
La exp(-spx)Ty, (%, 0;s)dx = F(s) A(p), (Re p<l/vy), (14.20)

]
{ exp(-spx)T,, (x, 0;s)dx = F(s) B(p), (Re p(l/vp). (14.21)

The indicated domain of regularity follows from the asymptotic
behaviour of Ty, (x, 0;s) and T,’(x,0;s) as x—-; this behaviour
can be determined from (14.6) and (14.7) by substituting the
asymptotic expansion of K, and using the stress-strain relation.
Substitution of (14.17), (14.18), (14.20) and (14.21) in (14. 15) and
(14. 18) leads to

b sin 26, LoV N e S
Alp) + vop-py PV <Vs VP2,><VR2 p> L(p) ok

(-(1/vp)cos @<Re p<1/vp), (14.22)

_(M2hecos 28 o, 1 1N/ 1 D(p)
o) vp(P-P,) " Hs <;?—;1>T>< R > ()Y (®’

(-(1/vp)cos §,<Re pP<1/vp), (14.23)
where p=1/vy denotes the real and positive root of

(1/2v52-p?P+p? Y4(p) Ys(p) = O; (14. 24)
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vg is called the Rayleigh wave velocity and is associated with
surface waves along the free boundary of an elastic half-space.
The kernel function L(p) is given by

2 (1/2v%-pH)*+Fy (p)1s(p)
-vp-2 (1/vg*p?

The only singularities of L(p) are branch points at p= +1 /vp and
p =+ 1/vs. Its behaviour at infinity is found to be

L(p) = i (14. 25)
S

L(p) = 1 + O(p-3 as |p|—oa (14. 26)

Eqgs. (14.22) and (14.23) hold in the indicated strip of regularity
common to all transforms involved.

In order to apply the Wiener-Hopf technique, L(p) is written in
the form

L(p) = L¥(p)L."(p), (14.27)

where L*(p) and its reciprocal are regular in the right half-plane
-1/vp<Re p and L"(p) and its reciprocal are regular in the left
half-plane Re p<l1/vp. Furthermore, we make this factorization
unique by requiring

LY(p) = 1 + O(p!) as [p| —oe (14. 28)
and
L7(p) = 1 + O(p-!) as |p| —<. (14.29)

Explicit expressions for L™(p) and L™ (p) are derived in Section 15,
Similarly, we write

Y (P) = (P 1, (P), (14. 30)

where Yp T(p) and yp (p) are given by (12.32) and (12, 33) respec-
tively; a similar factorization holds for yg(p).
Eqgs. (14.22) and (14.23) are now rewritten as

_A(P) ¥s (p) . Wsin 26 ( Ys (@) Y¥s (Ro)_ >=
(1/vg=p)L"(p) % (P-Po) \(1/vpP)L7(P) (1/vg-p,)L (P

cuve (Lo 1N L* C(p) __ b sin 26p Y5 (Po)
Hs <v52 Ve Yt epIL ) YsH®) VPPl Na-pIL: 1py)
(14.31)
B(p) ¥ (p) . (A+2u)cos 26g < (P . Yp(Pa) >=
(1 /vg-p)L"(p) Vp(P-Po) (1/vg-P)L7(p) (1 /vg-PJL (P,)

= pvg? (._1_. - ;i—2-> (1 /vR+p)L+(p

) D(p) , (A+2pjcos 265 e (po)
Vg2 )

(P vp(P-p )1 /Vpp )L (R,)
(14. 32)




Sec. 14 ' 67

The usual reasoning leads to the solution

C - P YS+(p) YS-(pO)Sin 291’ 14.33
®) vp2-vg? (P-P)(1 /vatp) (1 /vg P )L (P)L"(py) ( )

2 + -
D - . vp Ye' (P) Yp (pPs)cos 28¢ .. (14,34
(®) vs? vp2-vg? (P-PJ(L /VptP) (1 /vp )L (P)L " (p,) ( )

Through these expressions the functions C(p) and D(p) are, in
principle, determined. Next we turn our attention to the transient
solution of the problem. In accordance with (14, 11) and (14, 12),
we write the Laplace transforms of the cartesian components of
the scattered wave in the form of the following Mellin inversion
integrals

] v’F(s) (c+ico exp[spx-sy,(p) |zl]
U (x, 258) =~ | ‘

2ni Joise Yp(P)

- T Pyp(p)C(p) + (1 /2v*-p?)pD(p)} dp +

LV 2F(s gc+ioo exp [spx-sys(p) |2/ ]
2mi ‘c-ico Ys(p) ’
AT (1/2vg2-P)y5(p)C(P) - P Ys¥(P)D(p)]}dp, (14.35)
U, (x,2;8) = ‘-’S—ZEEL (CHOO exp[spx-sy(p) |z|]

ni - Je-ioo Yp (P)

{PYe? (P)C(P) ¥ (1/2v¢*-P),(P)D(p) } dp +
’VSZF(S) (Cfi"" exp[ spx-sys (p) |z ]
+ —
2ni 'C"iOO YS(p)

. § -(1/2vg?-pApC(p) * PYs(p)D(P) } dp, (14.36)

where -(1/wp)cos Op<c<l/vp. The integrands are made single -
valued by introducing branch cuts at Im p=0, 1/vp<|Re p|<oo and
at Im p=0, 1/vs<|Re p|<e0 and choosing Re yp(p)>0 and Re ys(p)»0
everywhere in the cut p-plane (Fig.9).

The diffracted wave is introduced in exactly the same way
as outlined in Section 12. The final representation of its polar
components in the form of a composition product is obtained by
transformations identical to the ones given in Section 12. There-
fore, we only give the results and leave the details of the calcu-
lations to the reader. In terms of the polar coordinates r and
(0r<ee, 0€B<27) we have

ud(r,0,1) =

t
=3\ tt-1)p Fr, 0,0) + 4, F)r, 0,7))ar{ Hit-r fup) +
'I'/VP
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. p-plane
P=ws A
p=wp
P=Wpg\ Po ¢
, AL AL
B Ry § 1 11
Wi/ % vp Vs VR

Fig.9. Paths of integration for diffraction of a plane P-wave by a perfectly weak
half-plane.

(PS)

. % gmin(t, r [vg) f(t-T)[cp,

r,0,7) + ¢r(PS)(r,9,T)]dT%H(t—tP§+
“tps
t
+ %‘ tt-1) (9, B r, 0,7) + 4, Oz, 0, 'r)]d't‘%H(t—r/vs),
‘r/v
s (14.37)

ugd(r, 0,1) =

;;gt/

v [vp
3 min(t, r /vg)
+

tt-0) g Hir,0,7) + q)e(P)(r,Q,I):ld“l:sH(t-r/VP) +
t(t-7)[ 9o T (r,0,7) + ¢9(PS)(r,9,r)]d¢€H(t-tP5
“tps

¢
" “ £(t-1) [ 9o, 8,7) + 4. (x, 8,7)] d-ciH(t—r/vs),
Vs (14. 38)

where
2
2. F(r,0,0) = - == (1-r2/v2tHRe{ (1 /2vs>pdD(wp)} H(t-r /vp),

9eF)(r,0,1) = "7521; Tm {(1/2vE-wp3D(wp)] H(t:r [vp), (14. 39)



Sec. 14 69

(P) v 2 21 :
G (r,0,8) = = (1-r2/vp%??Re{ wpyp(wp) C wp)] H(t-T /vp),

4ol P)(r, 6,1) = - B2 Im{wrlp(on) Cp  H(E-r /vp), (14. 40)
2

9, (r,0,1) = = Im{wpgysweg Dlwps) J[Ht-tps) - H(t-r/v5)],

2 1
e TV (r,0,) = - <5 (r%/v@tP- 17 Him | wpgrs (0pg D)} [ H(t-tpg) -H(t-x /v5) ],

(14. 41)
2

6P (r,0,6) = = Tm{ (1/2v5 s )Clups)} [Hlt-tpg) - H(t-T/v5)],

2 1
b PD(r,0,6) = - 25 (r2/vs22-174 Im{ (1/2% -wp)Clups) | [H(t-tpg -H(t-T [v5)] -
(14. 42)
2

() Vs ]
%@r (r,0,1) = = Im{uyys(s)Diws)} Hit-T /v,
2 1
205 (r,0,6) =~ (1-r® 3’ € ) *Ref wsys( 9Dws)  H(E-T fvg),  (14.43)

2
gd»,(s)(r,e,t) = 5 Im{ (1 /2v5?-wsHCs) H(t-r /),

o Sr, 0,1 = :;—S: (1-72/vg2?)Re] (1 /2vs2-ws)C(wg)] H(t-T /vg) (14.44)
and
wp(r,0,1) = -(t/r)cos 0 + i(t?/r2-1/vpdisin 6, (14. 45)
wps (r,0,8) = ~(t/r)cos 8 + (1/vet?/r*Fsin 0 + i, (6-0), (14.46)
wg(r, 8,t) = -(t/r)cos 8 + i(t2/r2-1/vsAPsin 0, (14.47)
tps = (r /vp)cos B + (r /vs)(1-vs? fvpdsin 6, (14. 48)

with 0<8¢n. The second term on the right-hand sides of (14.37)
and (14. 38) is only present in the region 0¢6<arc cos(vg /ve). In
the region n<6<2n the results follow from the appropriate sym-
metry relations. The functions ¢(r, 8,t) have been chosen such
that they represent waves that are symmetrical with respect to
z=0; consequently, ¢, (r,6,t) = ¢, (r,2n-0,t), Pe(r,0,t) = -pe(r,2m-6,t).
The functions ¢(r, 8,t) have been chosen such that they represent
waves that are antisymmetrical with respect toz=0; consequently,
qu(I', e :t) =y (I" 2n-9,1), (l)g(r, 9, t) = q)Q(r’ 2n-9, t).

The geomeltrical solution of the diffraction problem is ob~
tained by superimposing the incident wave upon the contribution
from the pole p=p,. The cartesian components of the relevant
displacement are given by
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u 8™ (r 0,t) =
0, (0<6<6p),
cos Bp f[t-(r /vp)cos(8-0p) ], (6p< 8<27-8g),

cos Bp f[t-(r /vp)cos(8-8p) ]+ Rpg sin 0 £ t-(r /vs)cos(8+6g)],
(21 - 05< 8<21-0p),

cos 6pf[t-(r /Vp)cos(G—Qp)]+ Rpp cos 6p f[t-(r/vP)cos(9+9P)]+
+ Rpg sin 85 f[t-(r /vg)cos(0+8)], (2n -8p<0¢2m),

(14. 49)

u.8eem (r 9 t) =
0, | (0<6<8y),
sin 6p f[t-(r /vp)cos(8-6,)], (8<8<2T-0y),

sin Op f[t-(r /vp)cos(0-8p)]+ Rps cos 85  f[t-(r /vs)cos(8+6s)],
(21 - 05< 0<27 - Bp),

sin 6 f [t—(r /VP)COS(Q-QP)] - Rpp sin Bp f[t—(r/vP)cos(9+9p)] +
|+ Rpg cos O . f[t-(r /vg)cos(6+65)], (21 -6p<6<2m),

(14.50)

cos?26g - (vg/vp)*sin 26, sin 26
" cos?26g + (vg/vp)sin 26p sin 26

(14.51)

and

2(vg/vp) sin 26, cos 264
Rps = - 5 > X (14,52)
c0s°20g + (Vs /vp) sin 26p sin 26¢

are the amplitudes of the reflected P- and S-wave respectively,
when a plane P-wave is incident upon a perfectly weak plane
boundary.

At the values 6=8,, 9=2n-95 and 0=27m-06p a special investigation
is required. At these values the geometrical solution is taken as
the arithmetical mean of the limiting values at either side of the
ray under consideration. Further, the diffracted waves are taken
as the limiting values which are obtained by first substituting the
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relevant value of @ and afterwards approaching the lower limits
of integration from above. With the expressions thus generalized,
the total wave motion is everywhere the superposition of the geo-
metrical solution and the diffracted waves.

From the results it is clear that in the first place the diffracted
waves consist of a cylindrical compressional and a cylindrical
shear wave, both originating at the edge of the screen. Moreover,
in the regions 0<6<arc cos(vg/vp) and 2m-arc cos(vs/vp) <62,
there appears a PS-conversion wave whose wave front is a plane,
travelling with the velocity vs. Further, due to the presence of
the pole p= -1/vg, there is a singularity in the displacement on
both sides of the screen;this singularity travels with the Rayleigh
wave velocity vg. The wave fronts are shown in Fig. 10,

incident P-wave

= reflected P~ wave
= reflected S- wave

diffracted P- wave

= diffracted S- wave

= diffracted PS-wave

I
I
I
Y =
b4
o

Fig.10. Wave fronts for diffraction of a plane P.wave by a perfectly weak hali-plane.

15, FACTORIZATION OF THE KERNEL FUNCTION L(p)

The function L(p) introduced in Section 14, eq. (14.25), and
given by

2 (1/2ve"ppd gohs(p)
1/vge-1 [vp? (1 /vg%p?)

(15.1)
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is nowhere zero or real and negative. Furthermore,

L(p) = 1 + O(p-9 as |p|—=. (15. 2)
Application of Cauchy's theorem yields
. L dw_
log L(p) = 507 §C log L(W) o, (15. 3)

where C is a closed contour in the w-plane, surrounding the pole
w=p. In accordance with the choice of sign of the square roots,
the integrand is made single-valued by introducing branch cuts at
Im w=0, 1/vp<|Re w|< 1/vg and taking the principalvalue of the
logarithm. For the moment it is assumed that p is not a real num-
ber such that 1/vp<|p|<1/vs. By virtue of the asymptotic behav-
iour as|wj—s, the contour C may be deformed into the loops ct
and C~ around the branch cuts (Fig.8, Section 13). The factoriza-
tion is then carried out by writing

log L(p) = log L¥(p) + log L™(p), (15. 4)
where
1 d
log L*(p) = 51 _§C+ log L(w) VT“; (15. 5)
and
- 1 d
log L'(p) = g SC' log Lw) ;0. (15. 6)

The right-hand side of (15.5) can be transformed into the real
integral

1/ W2 (w21 [vpR)E(1 Jvg2-wi)E| d
1ogL+(P)='§lc_‘5 N e A W)J -

arc tan
[ (1/2v2-w?)? w+p

. (15.7)
vp

Further, L~(p) follows from the relation L™ (p)=L¥(-p).
When p is a number just above or just below the real axis such
that -1/vs<Re p<-1/vp, we have
p2(p2-1/vAR(1 /VSZ'PZ)%:’ _
(1/2vg?-p??

log LY(p) = £ i arc tan [

22 23 2 w2y
wi(w2-1 [vp2)(1 [vg W)J W 15.8)

(1 /ZVSZ—WZ)Z W+p

1/vg
1/vp

1 P g arc tanl:
T J

where the upper sign applies when p is just above the real axis
and the lower sign when p is justbelow the real axis. The integral
on the right-hand side of (15.8) has to be taken in the sense of a
Cauchy's principal value, which is indicated by a "'P'" in front of
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the integral sign. In the same way as before, L7 (p) follows from
the relation L~(p)=L*(-p).

For numerical computation itis useful to introduce in this case,
too, the variable of integration a through

W2=l<_LA+L.>_l<L-._1__.>cosa, (15.9)
2 \vg? w2 2\ v? vyl

where 0€agn. The result of this substitution is easily obtained and
will not be given here,

16, DIFFRACTION OF A PLANE P-PULSE BY A
HALF-PLANE AS A SALTUS PROBLEM

The present section deals with some examples of the saltus
problem formulation of the diffraction of a plane compressional
wave by a half-plane coinciding with z=0, 0<{x<{s. The incident
wave is given by

cos 6p f[t-(x /vp)cos Bp -(z /vp)sin 6p], (16.1)

uxi(x., z,t)

1

u,! (x,2z,t) = sin 6p f[t-(x/vp)cos 6 -(z /vp)sin 6;], (16.2)
where 6p is the angle of incidence (0¢68xKn /2) and f(t)=0 when
t<0. The amounts by which the traction and the displacement
jump across the screen are expressed in terms of their Laplace
transforms with respect to time. The procedure by means of
which the geometrical solution and the diffracted waves are ob-
tained is the same as the one outlined in Section 12 and Section 14.
Accordingly, we introduce the following functions

Xmexp(—Spf,) [t 1" 4t = F(s)A(p), (16.3)

{Omexp( spe) [T, ' dE = F(s)B(p), (186. 4)

( exp(-spg) [U, " g = - T c(p), (16.5)

EO exp(-spp)[ U, ]" @& = - ZE p(p), (16. 6)
where

F(s) = ﬁexp(-st)f(t)dt. (16.7)

In the first place the amounts by which the traction and the dis-
placement jump across the screen are taken as if the geometrical
solution of the diffraction by a perfectly rigid half-plane were the
exact solution. This leads to
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[T 1" = -pvg RpsUsF(s)expl -(s /vp)E cos 8p) (16. 8)

[T, 1" = p% (1+Rpe ™) sF (s)exp[-(s /v,)E cos 8] (16.9)

[u ]l =0, (16. 10)

(5,17 =0, (16. 11)
where

Ry = - %%, (16.12)

sin 20

RpsD = - m . (16. 13)
Consequently,

Al ) = -pvsts(I) /(P-Py), (16. 14)

BY@) = pve(1+Re™) /(p-p0), (16. 15)

cDpy = o, (16. 16)

pDp) = o, (16.17)

where pg=-(1/vp)cos 8p. It can be verified that in this case the
geometrical solution is identical with the geometrical solution of
the diffraction of a plane P-pulse by a perfectly rigid half-plane,
which is given by (12. 105) and (12. 106).

In the second place the amounts by which the traction and the
displacement jump across the screen are taken as if the geo-
metrical solution of the diffraction by a perfectly weak screen
were the exact solution. This leads to

[T.] =0, / (16. 18)
[T,]" =0, (16. 19)
[ul? -
= -—[(1+RPP(H))cos 6p - RPS(H)sin BS]F(s)exp [—(s/vP)E_ cos QP],
(16, 20)
[v]!-
= -[(I—RPP(H))sinGp +Rps(H)cos 6 ]F(s)exp [—(S/VP)F, cos GP],
(16. 21)

where
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(11) cos?28g - (vs/vp)?sin 26p sin 26g
PP =

R , '
cos®0g + (vg/vp)Psin 20p sin 265 (16.22)
(1) _ 2(vg/vp)sin 26p cos 265
R = -
N cos220g + (vs/vp)?sin 20p sin 26 (16.23)
Consequently,
Ay = o, (16.24)
cpy = [(1+R PP(II))Cos 0p + RPS(H)Sin 6s 1/(p-Po), (16. 26)
D(II)(p) = [(I—RPP(H))sin 0p + RPS(II)COS 05 1/(p-Po)- (16.27)

In this case the geometrical solution is identical with the geo-
metrical solution of the diffraction of a plane P-pulse by a per-
fectly weak half-plane, which is given by (14.49) and (14.50). The
wave fronts for these two examples are shown in Fig. 11.

I

incident P- wave

reflected P-wave
reflected S—wave
diffracted P_wave
= diffracted S-wave

I
I
m
v
)4

Fig.11. Wave fronts for saltus problem diffraction of a plane P-wave by a half.plane.

As a final example the amounts by which the traction and the
displacement jump across the screen are taken numerically equal
to the corresponding values of the incident wave at the screen
(Kirchhoff's assumptions). This leads to

[T 1" = 0(vs®/vp)sin 26p sF(s)exp[-(s /vp)E cos Op],  (16.28)
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[To]" = -pvp cos 205 sF(s)exp[ -(s /vp)E cos 0p), (16. 29)
(U7 = -cos 6 F(s)exp[-(s /vp)E cos 0p), (16. 30)
[U, 1" = -sin & F(s)exp[ -(s /w)E cos 6p). (16. 31)
Consequently,
AR (p) = o (v?/vp)sin 26,/(p-p), (16. 32)
5K (p) = -pvp cos 285 /(p-p,), (16. 33)
c®)(p) = cos 6p/(p-pa, (16. 34)
D) (p) = sin p/(p-po). (16. 35)

In this case the geometrical solution is given by

(K), geom 0, (0€6<8p),
W 0.0 2 ) o6s 0p £[t-(r fvp)cos(0-0p ], (B< 8¢ 2r), (16. 36)
0 (05 6<8p),

K)  geom =17
By eom (r,0,1) '§sin 0p flt-(r /vp)cos(0-6p)], (B 6K 21). (16.37)

The structure of this solution explains why the Kirchhoff assump-
tions can be assumed to solve the diffraction by a perfectly ab-
sorbing screen (in optical terms a black screen). The wave fronts
for this example are shown in Fig, 12,

I
I = incident P-wave
I = diffracted P-wave

II = diffracted S-wave

Fig.12. Wave fronts for Kirchhoff diffraction of a plane P-wave by a half-plane.
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In each of the aforementioned cases the diffracted waves are
obtained from (12.38), (12.39), (14.35) and (14. 36) in the way
outlined in Section 12 and Section 14. The result is
u(r, 6,1) =

t
=3t p P, 0,1,
'I‘/VP

+3gt

‘r/v

(P)r, 0, 7)]dr %H(t—r/vP) +
16000, r, 8,090, (r, 8, v]arlHr vy,
s (16. 38)

ued(r: 8,t) =
. ,
- M tt-1)[ 9 Fir, 0,7)44 P, 6, 'r)]dT%H(t-r/vP) +
r VP

t
+ % ( £(¢-7) o) (r, 0,7 )44, (r, 6, 1)) de %H(t—r Ivg)s
T fvs (16. 39)
where

CP,-(P)(I" 6,t) = nl_? (l-rz/vpzt?-)-% .

. Reglrp wpA(wp) - Vsz(l/2Vsz'wp2)D@P)€H(t‘r/VP)»

9ol )(r, 0,1) =
- L Im‘%- Zl_p wpAp) v52(1/2V52-u)p2)D(wP)€H(t-r /vp), 16. 40)

4 Bl 0,1) = 1 (1-r2pvgyt,

. Re 3- ‘%BYP@\P)B(“)P) + vy wPYP(wP)C(wP)%H(t_r /%),

- L m 3-21—pyp(mp)B(wp) - VSZwaP(wP)C(wP)gH(t*r/vp), (16. 41)
$.5r, 0,1) =

= 'nlf Iy 321—;) Ys(ffﬁs)A(‘Ds) + Vs2wgy g (wg YDl )g H(t-r [vg),
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%) (r, 0,1) = & (1-r2fvt)t

 Re § 5o Y 09 AWg) + v gYglg)DWg)] Hit-r /), (16. 42)

¢ BN, 0,1 =

- L m 3 35 WsBls) + vs¥(1/2vg?-w A Clug) gﬂ(t r /),
oo™ (r, 8,1) = Lyt
. Reg 55 wsBs) + ve¥(1 /2v -wsz)C(ws)?H(t -r vg), (16. 43)
in which
wp(r, 8,1) = -(t/r)cos O + i(t?/r?-1 /v Atsin o, (16. 44)
we(r, 8,1) = ~(t/r)cos 0 + i(t2/r2-1/vsdisin 0, (16. 45)

with O¢6gn. In the region n<6¢2n the results follow from the sym-
metry relations ¢, (r, 6,t)=¢,(r, 2n-6,t), @g(r,9, t)=-@g(r, 2r-8,1) ;
T, 8,t)=-¢,(r,2n-0 t), bg(r, 0,1t)= ng(r 21-0 t). At 1ine values
6=0p, 6=21-05 and 0= o - -8p the expressions are taken in the usu-
al sense.

From the expressions given above it is clear that the diffracted
wave consists of a cylindrical P-wave and a cylindrical S-wave
both originating at the edge of the screen. A striking feature is
that there is no PS-conversion wave.



79

SUMMARY

The purpose of the present thesis is to give a mathematical
treatment of elastodynamic diffraction problems. The method we
give has been inspired by recent developments in acoustic and
electromagnetic diffraction theory. Further, several problems
concerning the diffraction of a plane pulse by a half-plane are
solved and worked out in detail.

Chapter I gives a general introduction and a review of the liter-
ature.

In Chapter II we derive a representation theorem for the dis-
placement vector in a homogeneous, isotropic, elastic solid. This
representation theorem expresses the displacement at a point
inside a closed surface in terms of the traction and the displace-
ment atthe surface. We derive both the two- and the three-dimen-
sional form of the representation theorem; the result is valid for
arbitrary time dependence.

With the aid of the representation theorem we formulate in
Chapter III the problem of the diffraction by an obstacle of vanish-
ing thickness, called a "'screen'' (a discussion on the correspond-
ing electromagnetic problem is to be found in Section 6). Two
classes of diffraction problems are considered, viz. boundary
value problems and saltus problems. In the class of boundary
value problems the screens are assumed to be either perfectly
rigid (the displacement vanishes at the screen) or perfectly weak
(the traction vanishes at the screen). These problems are reduced
to solving certain (differential-)integral equations. In the class of
saltus problems the amounts by which the traction and the dis-
placement jump across the screen are prescribed. In this case
the representation theorem directly leads to the solution.

Chapter IV deals with the two-dimensional diffraction of a plane
SH-pulse by a half-plane. Solutions are given for the diffraction
by a perfectly rigid and a perfectly weak half-plane. Moreover,
several examples of the saltus problem formulation (including the
Kirchhoff diffraction) are given.

Chapter V deals with the two-dimensional diffraction of a plane
P-pulse by a half-plane. Solutions are given for the diffraction by
a perfectly rigid and a perfectly weak half-plane. Moreover, sev-
eral examples of the saltus problem formulation (including the
Kirchhoff diffraction) are given.

The (differential-)integral equations occurring in Chapter IV
and Chapter V are of the Wiener -Hopf type and are solved with
the aid of the Wiener-Hopf technique. The transient solution to
the problems discussed in Chapter IV and Chapter V is obtained
by a modification of a technique originally developed by Cagniard.
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SAMENVATTING

Dit proefschrift heeft tot onderwerp de wiskundige behandeling
van elastodynamische diffraktieproblemen. De opzet is ontleend
aan recente ontwikkelingen op het gebied van de akoestische en de
elektromagnetische diffraktietheorie. Tevens worden enkele ge-
vallen van de diffraktie van een vlakke golf aan een obstakel in de
vorm van een halfvlak uitvoerig behandeld.

Hoofdstuk I geeft een algemene inleiding en een literatuurover-
zicht,

In Hoofdstuk Il wordt een representatietheorema voor de ver-
plaatsingsvector in een homogeen, isotroop, elastisch medium
afgeleid. Dit representatietheorema drukt de verplaatsingsvector
in een punt binnen een gesloten oppervlak uit in de spannings-
vector en de verplaatsingsvector op genoemd oppervlak. Zowel
de tweedimensionale als de driedimensionale vorm wvan het re-
presentatietheorema worden afgeleid; het resultaat is geldig voor
willekeurig met de tijd veranderende grootheden,

Met behulpvan het representatietheorema wordt in Hoofdstuk II1
het vraagstuk van de diffraktie aan een oneindig dun obstakel,
een ,scherm', wiskundig geformuleerd (een bespreking van het
overeenkomstige elektromagnetische vraagstuk vindt men in Pa-
ragraaf 6). BEr worden twee klassen van diffraktieproblemen on-
derscheiden, nl., randwaardeproblemen en sprongwaardeproble -
men, In de klasse van de randwaardeproblemen wordt ondersteld
dat de schermen of volkomen star zijn (de verplaatsingsvector is
nul op het scherm) of een scheur voorstellen (de spanningsvector
is nul op het scherm). Deze vraagstukken worden gereduceerd tot
het oplossen van (differentiaal-)integraalvergelijkingen. In de
klasse van de sprongwaardeproblemen worden de sprongen in de
spanningsvector en de verplaatsingsvector bij doorgang door het
scherm bekend ondersteld. In dit geval leidt het representatie-
theorema direkt tot de oplossing.

In Hoofdstuk IV wordt de tweedimensionale diffraktie van een
vlakke SH-golf aan een halfviak beschouwd. Behalve de beide
randwaardeproblemen worden ook enkele voorbeelden van de for-
mulering als sprongwaardeprobleem (o.a. de diffraktie volgens
Kirchhoff) behandeld.

In Hoofdstuk V wordt de tweedimensionale diffraktie van een
vlakke P=~golf aan een halfvlak beschouwd. Behalve de beide rand-
waardeproblemen worden ook enkele voorbeelden van de formule -
ring als sprongwaardeprobleem (o. a. de diffraktie volgens Kirch-
hoff) behandeld.

De (differentiaal-)integraalvergelijkingen die in Hoofdstuk IV
en Hoofdstuk V aan de orde komen zijn van het type van Wiener
en Hopf en worden ofgelost met behulp van de Wiener-Hopf tech-
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niek. De overgangsverschijnseleh worden berekend door gebruik
te maken van een methode die afkomstig is van Cagniard en die in
dit proefschrift verder is ontwikkeld.
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