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1. Introduction

If the variational formulation of scalar diffraction problems [1] is
applied to the diffraction of a plane wave of wavelength 1= 2x/k by a
circular aperture of radius a or an infinite slit of finite width 2b in a plane
screen, the following integrals are encountered

(1.1) R(zt),zv - U(zly).zu = [ uTP(uP—a?)tJ,,(uw) J o (0) dus,
0

in which Re(u+7»)>%, and

o0
(1.2) RE) o+ 1155, = | (WP —a®)7F g, (u) Jp,(u) du,

0
in which Re(u+v)> — 4. According to the diffraction problem considered,
we have aw=rka or a=kb, with «>0. The square root in the integrands
is defined as (u*—a2)¥>0, if u>a and (W2—oa?) = —i(x2—u?)! with
(x® —u?)*> 0, if w < o. The superscripts 1 and 2 refer to the type of boundary
value at the screen (vanishing of the wave function or of its normal
derivative respectively).

The case of diffraction by a circular aperture [2] leads to u=m+ 3/4,
y=n+3/4 in (1.1) and to u=m+1/4, y=n+1/4 in (1.2), with m and »
non-negative integers. The case of diffraction by an infinite slit [3] leads
to u=m, v=mn, with m and n positive integers, and u=m+4%, v=n+4,
with m and » non-negative integers, in (1.1) and to g=m, v=n and
u=m+%, v=n+%, with m and n non-negative integers, in (1.2).

The results derived in the present paper are in the form of series in
powers of «. In the special case that x4 is an integer, these series are
not power series in the strict sense because their coefficients contain log «.

Separating the right-hand sides of (1.1) and (1.2) into the parts that
correspond, for real values of 1 and » (which are of special interest in the
physical problems described above), to the real and imaginary parts of
the integrals, we have

[e.]

(1.3) C RE, = [ urNwr— o) Ty ) T ) du,
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(1.4) IR o, = [ w2 —u?) Jy,(u) o (w) du,
0
(1.5) B2, = [ (ut—o?)=4 Ty, (u) Jy(u) du,
(1.6) 195 = [ (o= )~ Ty () Jo(ar) dc.
0

N 1 (1
2. The expansion of RS e —il5) s

The simplest way to obtain the series expansion of I§) 5, is to substitute
in (1.4) the power series for the product of two Bessel functions of the
first kind [4], viz.

§ (=) Tlr+up+v+3) Dr+p+v41) w22

@1 Jaulw) Julv) =77 2 e R e T Tt 20t 1) T 2aor 1)

Changing the order of summation and integration and evaluating the
resulting Eulerian integral of the first kind [5], we obtain

(2.2) I _§ (—) T4 ptv 1) T(r+ ptv— §) o2r+2utey
| M S AT+ 1) T+ 2u-+1) Tlr+20-+1) Tr+ 2+ 20 +1)

When u+v=gq, where ¢ is a positive integer, we rewrite (2.2), with
p=q-+r, as

03 15,3 (=P~ Tp+3) Tp—3) o>
' BB S AT (p—q+1) I(p—q+2p+1) Tp+g—2u+1) Ip+g+1)’

To derive the expansion of Rf), we use the Mellin integral [6] for
the product of two Bessel functions of the first kind, viz.
, 1 oH0® 7™ I(—s) s+ p+v+3) I(s+ptv+1) utstint

(24)  Jau(w) Jz“(“)zfmc_fm I(s+2u-+1) s+ 2v+1) I'(s +-2u+ 2v +1) ds,

in which Re(u+v)> —%; the path of integration, Re s=¢, lies in the strip
—Re(u+v)—4<Re s<0. Substituting (2.4) in (1.3), changing the order
of integration and evaluating the resulting Eulerian integral of the first
kind, we obtain

2.5 R __1_c+ioo I(—s) Is+pu+v+3) I's+p+v+1) I'(—s—pu—y) o2s+2ut s
“ BT 9 e 4T (s 2u+1) T{s+ 20 +1) Ts+ 2p+ 20 +1) I(—s—pu—v-+3/2)

where Res=c¢ has to satisfy both —J}<Re(s+u-+v)<Re(u+») and
Re(s+pu-+»)<0; the latter condition arises from the integration with
respect to u. The poles of the integrand to the right of Re s=c are located
at s=r and s=—pu—v+7r(r=0,1,2, ...). If u+» is not an integer, in
both sets the poles are of the first order. Closing the contour towards
the right, we learn from Jordan’s lemma that the contribution of the large
semicircle vanishes if its radius tends to infinity. Application of the
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theorem of residues gives

RO _ % (=) Dr+p+v+3) Ir+ptv—3) cos (u+v) m o2 2+
BB e AT +1) Tr 4 2u+1) D(r+ 20 +1) (e + 2u+ 2v +1) sin (u+v) =

2.6
(26 _ § (=)' Tr+3) I'(r—§) o®
= dr—p—r+1) I'r+p—v+1) I'r—pu+v+1) I'r+pu+v+1) sin (u4-v) x
If, however, y+v=gq, where ¢ is a positive integer, the poles at s= —g+p

(p=0,1,2,...,¢g—1) are of the first order and the polesat s=7 (r=0,1,2, ...)
are of the second order. Application of the theorem of residues now leads
to an expansion in powers of «, the coefficients of which contain log «.
Evaluating the residues, we find

IR(ZL)ZQ~9;L:_iqil il p+a) I1(p+%> F(p—%)a% +
e 4 ;=0 F(p—q+2u+1) I'p+g—2p+1) I'p+q+1)
1 % (=) LOr+g+4) I(r4g—4) o?F2 .
< I(r-+1) I(r+2u-F1) I'(r+ 29 — 2u+1) I(r 429 +1)
[2log o+ p(r+q+3) + plr+g—3) —pr+1) +
\ —p(r+2u+1) —p(r+20—2u+1) — p(r4-29+1)],

where y(z) denotes the logarithmic derivative of I'(z). With p=¢+7r in
the second summation in the right-hand side of (2.7), the expression
for RY) oq_2. can be written as
_iqil —p+9) I'p+3) I(p—3}) o™
47 ;70 q+2u+l) Ip+q—2u+1) Ip+q+1)
_{_ E (=) I(p+4§) I'(p—3) o™ )
T p=q T0—q+1) Ilp—q+2p+1) Ip+g—2u+1) I'p+g+1)
[2log o +y(p+3) +wlp—1) —wlp—g+1) +
—p(p—g+2u+l) —p(p+g—2u+1) —p(p+g+ 1)1
Combining (2.2) with (2.6) and (2.3) with (2.8), we obtain as final results
R(zlu) 20 T ’l'Iz/.c 2 =
\ E: (=Y Trt+utv+ ) T+ p+v—3) exp [—i(utv) m] o2+
(2.9) | L, 4T +1) T+ 2u+1) Tr+20+1) T+ 2u+ 2 +1) sin (u+2) =
B 3 (=) I(r+3) D(r—-4) o*
WAl —p—v+1) T+ p—v+1) Dr—p+v-+1) e+ p-+v+1) sin (u+v) w°

R

24, 2q—2u —

+

which holds if Re(u+»)>% and u+» is not an integer, while

ey LS I—p+q) Tp+3) T(p—3) o 4

B20 2 R B dn ;S I(p—q+2u+1) Ip+g—2u+1) Nip+-g-+1)
(2.10) 1 § (=PI (p+3) I'(p—3%) & .
dn =, I'lp—q+1) I'p—q+2u+1) I'(p+q—2p+1) I'(p+9¢+1)

[2log o — i - w(p+3) +p(p—3%) —wlp—g+1) +
—p(Pp—q+2u+1) —p(p+q—2u+1) — p(p+q+1)],

which holds if ¢ is a positive integer.
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3. The expansion of Re.s+il5 s

To derive the expansion of I%),, we substitute (2.1) in (1.6). Changing
the order of summation and integration, evaluating the resulting Eulerian
integral of the first kind, we are led to

61 Ip, = § VTt d) T k) o
' BB Sy 2D (r+1) I(r+2u4-1) Tlr+4-2v+1) I'(r+ 26+ 20 4+-1)

r=0

When u-+v=gq, where ¢ is a non-negative integer, we rewrite (3.1), with
p=q+r, so as to obtain

52) 19 % (=P I(p+4) Ip+4) o™
. 2u, 2020 ~ 2I'(p—q+1) Ip—q+2u+1) Tp+q—2u+1) Np+q+1)°

To obtain the Mellin integral for R%,, 2, we substitute (2.4) in (1.5), change
the order of integration and evaluate the resulting Hulerian integral of
the first kind. This procedure leads to

1 etieo [(—s) Is+p+v+3) Ds+ptv+1) M—s—p—v) o2 +2ts

2718 | e 2T(s+2u+1) D(s+2v+1) T(s+2u+2v+1) T(—s—p—v+3) ds,

where Re s=c¢ lies in the common part of the strip —i<Re(s+pu+v)<

<Re(u+v) and the half-plane Re(s+u+») <0; the latter condition arises

from the integration with respect to u. The poles of the integrand to

the right of Re s=c are located at s=r and at s= —u—v+r (r=0,1,2, ...).

If u-+v is not an integer, in both sets the poles are of the first order.

Upon closing the contour towards the right, the contribution of the large

semicircle vanishes in virtue of Jordan’s lemma. Application of the
theorem of residues gives

pE § (=) T+t v-+ ) T+ v+ §) c0s (u-tv) 7 a2r H2t2
e S0 21(r+1) I'(r 4 2p+1) I(r+20+1) T(r+ 20+ 2v+1) sin (u+v)
2 (=) I'(r+3%) I(r+1%) o™

+T§0 2I(r—pu—v+1) I'r+p—v+1) Do —p+v+1) Fe+p+v+1) sin (u+v)n”

(3.4)

If, however, u+v=¢q, where ¢ is a non-negative integer, the poles at
s=—q+p (p=0,1,2, ...,9—1) are of the first order and the poles at
s=r (r=0,1,2,...) are of the second order. Application of the theorem
of residues now leads to

_]“_qi —p+q) I'(p+13) I'(p+13) o™ N
2m 5= TP — 9+2#+1) Ip+q—2p—+1) N'p+q+1)
(3.5) 1 % (=Y I'r4+q-+3%) I'r+q+1) a2rvia |
27 Sy T(r+1) D(r 4 2u+1) I(r+ 29— 2u+1) T'(r+2¢ +1)
[21og o + 2p(r+-g+ 1) — p(r+ 1) — p(r+2u+1) +
| = p(r+2g—2u+1) — plr+2g+ 1)].

Ry 0n =

20,2024
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With p=g¢+7 in the second summation in the right-hand side of (3.5),
the expression for R 54—2u can be rewritten as

R{

qil I(—p+q) I'(p+3) Dp+ %) o

o —g+2u+1) I'p+9—2p+1) I'p+g-+1)
(=P eI'(p+%) Dip+3) o™ .

 To—q+1) I'p—q+2u+1) I'p+q—2u+1) I'(p+q+1)

-[210gzx+2w(p+2) p(p—q+1) —plp—g+2u+1) +

—p(p+q—2u+1) —p(p+g+1)].

+

2u, 20— 2u =

M8

(3.6)

Combining (3.1) with (3.4) and (3.2) with (3.6), we obtain as final results

RS 5 + I(Z,} =
_ z (=) D(r+u+v+3) T+ ptv+3) exp [—i(u+v)a] o®t2et2 n
(3.7) - 7o 2l(r+1) I(r+2p+1) I'(r+ 2v+1) Ir+2u+2v4+1)sin (p+v) 7

(=) Tr+3) To+3) o

’ +T§02r(¢—u—v+1) T(rd+pu—v+1) Fe—p+v+1) Tr+pu+v+1) sin (u+v) o
which holds if Re(u+v)>—% and u+v is not an integer, while

el IN—p+q) I'p+1) I'ip+3) «*°

R®
To—aqt2utl) Fpta—2ntD) FptatD)

1
:T(2) -
S, 2q—2p T 7’I2y,2q—2,u =

1 § (=P~ I(p+3}) I(p+3) o _
27 =, Ip—q+1) Ip—q+2p+1) I'p+q9—2u+1) I'(p+q+1)
[2log o — @i + 2p(p+3) — p(p—q+1) — p@—g+2u-+1) +
—p(p+g—2u+l) —pp+g+1)],

(3.8) —

which holds if ¢ is a non-negative integer. Equation (3.7) has been obtained
by Bouwxramp [7].

4. Concluding remarks

Finally, it may be remarked that the integrals (1.1) and (1.2) are
analytic functions of x4 and » in the domain of convergence. Hence, the
results (2.10) and (3.8) follow from (2.9) and (3.7) respectively by analytic
continuation. This procedure is most easily carried out by differentiating
(2.9) and (3.7) with respect to u+», after having multiplied both sides
of these equations with sin (u+w»)w. Taking the limit for u+v=gq, where
g is an integer in the domain of convergence of the integrals, we obtain
the desired results.

Delft, May 17, 1955.

Laboratorium voor Hlectrotechniek der
Technische Hogeschool, Delft, Netherlands.
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