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A Computational Model of the Electromagnetic
Heating of Biological Tissue with Application
to Hyperthermic Cancer Therapy

PETER M. VAN DEN BERG, A. T. DE HOOP, A. SEGAL, aND N. PRAAGMAN

Abstract—To investigate the potentialities of hyperthermia as a cancer
therapy, computer simulations have been performed. This simulation
consists of two successive steps. First, the heat generated in a distribu-
tion of biological tissue when irradiated by a source of electromagnetic
radiation is computed. The mathematical tool for determining the dis-
tribution of generated heat is the domain-integral-equation technique.
This technique enables us to determine in a body with arbitrary distri-
bution of permittivity and conductivity the electromagnetic field due
to prescribed sources. The integral equation is solved numerically by
an iterative minimization of the integrated square error. From the
computed distribution of generated heat, the temperature distribution
follows by solving numerically the pertaining heat transfer problem.
The relevant differential equation together with initial and boundary
conditions is solved numerically using a finite-element technique in
space and a finite-difference technique in time. Numerical results
pertaining to the temperature distribution in a model of the human
pelvis are presented.

I. INTRODUCTION

N the investigation of the potentialities of hyperthermia

techniques in cancer therapy [1], the computational model-
ing of the temperature distribution in an inhomogeneous dis-
tribution of tissue that is heated by electromagnetic radiation
is an important tool. Through it, one can gain insight into the
influence that different tissue parameters and organ’s size,
shape, and relative position have on the temperature distribu-
tion at hand, before actual experiments in vivo are carried out.
Although the real problem is three-dimensional in nature, the
handling of three-dimensional structures of realistic size and
degree of complexity is beyond the reach of many of the pres-
ent-day computer systems. In the present paper we have
employed a two-dimensional approximation that applies to
structures that in one direction (the axial direction) vary much
less rapidly than in the plane transverse to it (the transverse
plane). In regions of the human body where such an approxi-
mation roughly holds, the influence of the different organs
and tissue distributions, as well as the positioning of the source
of electromagnetic radiation, can be studied.

In the range of temperatures that are used in hyperthermia,
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the change of the physical parameters such as permittivity,
electrical conductivity, thermal conductivity, volume density
of mass, and specific heat capacity with temperature is neglig-
ible. This implies that the electromagnetic field distribution
problem can be handled separately from the heat transfer
problem. With the electromagnetic field intensities involved,
the electromagnetic problem is a linear one. In the heat trans-
fer problem only the cooling due to blood circulation must
be taken into account in a nonlinear way.

In the present paper, computer simulations are reported.
First, the heat generated in a distribution of tissue irradiated
by a source of electromagnetic radiation is computed. The
mathematical tool for this is the domain-integral-equation
technique. This technique enables us to determine in a body
with arbitrary distribution of permittivity and conductivity
the electromagnetic field due to prescribed sources. Iskander,
Maini, Durney, and Bragg [2], Iskander and Durney [3], and
Iskander, Turner, DuBow, and Kao [4] have performed a
similar technique to calculate the electromagnetic field in a
two-dimensional model of tissue. After discretization they
replaced the integral equation by a linear system of algebraic
equations. In the present paper the problem of excessive
computer time and computer storage required for the direct
numerical solution of the system of equations has been avoided:
the integral equation is solved numerically by an iterative
minimization of the integrated square error [5]. We show
that even a subdivision of the two-dimensional cross section
of the body into some three thousand equally sized squares
can be handled efficiently. From the computed distribution
of generated heat, the temperature distribution follows by
solving numerically the pertaining heat transfer problem. The
relevant partial differential equation is solved numerically
using a standard finite-element technique in space and a finite-
difference method in time. Finally, numerical results pertain-
ing to the temperature distribution in the tissue of a represen-
tative human pelvis are presented. The values of the physical
parameters of tissue that play a role in the electromagnetic
part and in the heat transfer part of the problem are the input
parameters of the developed computer programs. These values
are chosen sufficiently realistic to be used in a computational
model [6]; most of them can be found in the literature [7]-
[16].

II. THE ELECTROMAGNETIC PROBLEM

In this section we investigate the electromagnetic part of the
problem, i.e., the computation of the heat generated by the
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TABLE 1
PHYSICAL QUANTITIES AND CONSTITUTIVE PARAMETERS OCCURRING IN
THE ELECTROMAGNETIC PROBLEM

name symbol SI-unit
electric field intensity E v/m
magnetic field intensity H A/m
permittivity €= gge, F/m
permeability W= HgHy H/m
electric conductivity o S/m
volume density of generated heat power v':h M/m3

€9 (permittivity in vacuo) = 8.8544 x 10'12 F/m

Ty

ug (permeability in vacuo) = 41 x 107 H/m

electromagnetic field. The physical quantities and the con-
stitutive parameters that play a role in this computation are
listed in Table 1. The irradiation of the tissues usually takes
place through an electromagnetic field that varies sinusoidally
in time and hence has a single frequency component. The
complex representation of field quantities is used; they have
the complex time factor exp(-iwt) (i =imaginary unit, w =
angular frequency, ¢ = time) in common. This factor is omit-
ted in the formulas. The location of a point in space is speci-
fied by its coordinates x;, x5, and x3 with respect to a given,
fixed, orthogonal Cartesian reference frame. It is assumed
that in the domain of interest the configuration consisting of
electromagnetic sources and irradiated tissue is independent
of x3 (two-dimensional approximation). We further assume
that ony the x3-component of the electric field is excited (E -
polarization). Therefore, we have

E; =0,E, =0, Es =E. (1)

In view of the organization of the computation, it is further
advantageous to write the electric field intensity as the sum
of the values of the incident field £’ and the scattered field
ES ie.,

E=E'+E* @

where the incident field is the field that would be generated
in the absence of the tissue, and the scattered field accounts
for the reaction of the tissue on the incident field. Now, in
our application (Fig. 1), the incident field emerges from a
cooled ridged waveguide applicator. Experiments have shown
that the aperture field is practically constant over its cross sec-
tion and falls off rapidly near the boundaries, where it reduces
to zero. Therefore, we approximate the electric and magnetic

field by a constant value, the latter being proportional to the

normal derivative of the electric field (Huygens’ source aper-
ture radiation). Neglecting the field on the outer boundary
of the applicator outside the radiating aperture, the incident
field follows from
Ei(x)= [0, G(x - x') E*(x")

aperture

-G(x - x") 9,E%(x")] ds(x") 3)
where x = (x;, x,) is the point of observation in the cross
section, x' = (xj, x5) is a point of the aperture, 9}, is the de-
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Fig. 1. Schematic cross section of the configuration.

rivative with respect to x’ in the direction of the unit normal
v to the aperture plane pointing toward the half space into
which radiation takes place, E? is the aperture field, and G
is the two-dimensional free-space Green’s function, given by

“

where HSI) denotes the Hankel function of the first kind and
order zero, and kg = w(eouo)ll 2 denotes the wavenumber of
the free space (air) surrounding the object. Further |x - x'|
denotes the geometrical distance from a point x' of the aper-
ture to the point of observation x. Through an application of
Helmholtz’s integral formula [17] to the half-space into which
radiation takes place, it can be shown that upon neglecting the
field in the complement of the radiating aperture, (3) can be
replaced by

E'x)=2 f 9,Gx - x') E%(x") ds(x")
aperture

Gx-x)= ﬁ H (ko |x - x'|)

(%)

which is valid in any point of the half-space in front of the
radiator. Once the aperture field has been prescribed, the in-
cident field follows from (5).

In view of the high contrast in electromagnetic properties
between the tissues to be irradiated and the surrounding free
space (air), our computational scheme aims at the direct cal-
culation of the total electric field in the interior of the irra-
diated object. Because of this and since the object itself has
already a detailed structure, the domain-integral-equation is
taken as the point of departure in the computations. The
domain-integral-equation formulation takes into account that
the irradiated object is present in free space, and that it mani-
fests itself through the presence of secondary sources of con-
trast currents that in their turn are related to the contrast in
electromagnetic properties. For two-dimensional E-polarized
fields and for objects (tissue) showing contrast in electric
properties (permittivity and conductivity) only, we have [18]

E(x)=E'(x) +f Gx-x')C(x')dAx"), xeD ©)
D

in which D denotes the domain occupied by the object (tissue),
and where

C(x) =k x(x) E(x) ()

denotes the contrast source density, with the electric contrast
function x given by

Xx)=¢€leg - 1 - afiwe,.

®
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TABLE 11
THE LEAST-SQUARE ITERATIVE SOLUTIONS (STEEPEST-DESCENT METHOD)
OF THE INTEGRAL EQUATION (ASTERISK DENOTES COMPLEX CONJUGATE)

) = elx)
cl@0x) = k8 xtx) €0 x)

starting value

FO00) = fp s0ex) ¢y aniet)
erR(®) = 1 1K) (2 ancx)

¥

¥
M) = FM) - &Sy ere-n AV ) e
Mix) = k8 x(w) M)
alm) = 15 1efM ) 2 aagx)

+ "FE
M) = Mg - fp 6text) < Mix) aa)
p{M = 1 1#M )12 aag)

+
RO PRES SRS

(x) = E(“)()_() + n(") e(n)(g)
P = f(Wgg) - 0 Mgy

ERR(THI) - ERR(n) - n(") a(“)

In the frequencies range (27 MHz) and for configurations
under present investigation the scattered field outside the
human body turns out to have an almost constant value in
amplitude and phase at the position where the radiating aper-
ture is present. The reaction of this scattered field on the
assumed (constant) aperture field can, therefore, be taken
into account by multiplying the latter by a constant which
depends on the irradiated body. In view of the applied nor-
malization of generated heat, only the relative spatial distri-
bution of the aperture field plays -a role and hence absolute
magnitudes are not computed. (In practice, the absolute value
in the actual configuration is adjusted.)

The integral equation (6) will be solved numerically, using
an iterative scheme of the type

E(”“)(x) = E(")(x) + n(”)e(")(x),

x€D,n=0,1,2, - 9)
The integrated square error after the nth iteration becomes

ERR™ = f |F®)|? da(x) (10)

D

in which

F®(x)=E(x) - E®(x)

+ f Gx - x') CM(x" dA(x") (11)
D

while

C™x) = k§ x(x) EP ). (12)

A convergent iterative procedure (ERR®*D < ERR®™) is
arrived at by minimizing (10) as a function of n and choos-
ing e™ in accordance with steepest descent at ™ =0. The
structure of this least-square iterative technique is shown in
Table II; more details can be found elsewhere [5]. As a start-
ing value we have taken E@(x) = Ei(x), x € D.

Fig. 2.
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Fig. 3. Subdivision into squares of size 0.005 m X 0.005 m for the
model cross section of the human pelvis. The symbols inside the
squares refer to the material composition of the tissue (see Table III).

In view of the application to hyperthermia techniques the
quantity to be computed is the volume density of generated
heat power, averaged over a period of the electromagnetic
oscillations. This quantity is [7]

Wh = %0 |EI2

(13)

A. Discretization and Numerical Results

Numerical results are presented for the generated heat power
in a model of the cross section of the human pelvis (Fig. 2),
the latter as constructed from an X-ray computer tomographic
scan [6]. This cross section is subdivided into squares of size
0.005 m X 0.005 m (Fig. 3). The frequency of operation of
the electromagnetic irradiation is taken to be 27 MHz. The
electromagnetic parameters of tissue used in our computer
program are listed in Table III [6]-[15]. In order to reduce
the absorption of the electromagnetic radiation in the bladder,
the latter is, in this model, assumed to be continously flushed
with distilled water.

The incident field is computed from (3). Experiments have
shown that the aperture field is practically constant and falls
off rapidly near the edges, where it reduces to zero. Therefore,
we have approximated £%(x") by a constant value. Since the
actual distances between the points of observation and the
points of the aperture are small compared to the free-space
wavelength, we can replace the Hankel function occurring in
the Green’s function by the first two terms of its power-series
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TABLE III
ELECTROMAGNETIC PARAMETERS (AT 27 MHz) ofF TisSUE - USED IN THE
COMPUTER PROGRAM

name L a (S/m)
blood (B) 118 1.1
bone (b) 7.3 0.028
fat (f) 20 0.047
faeces (F) 113 0.6
1ymph node (L) 200 0.65
marrow (M) 200 0.65
muscle (m) 113 0.61
skin (s) 113 0.61
tumor (T,£) 60 0.8
"urine" flush (U) 72.5 0.002
full bladder (u) 50 1.44
air () 1 0

expansion. The remaining integral over the aperture can then
be calculated analytically.

The total field inside the body is computed with the aid of
the jteration scheme shown in Table II. The integrals over the
domain D occupied by the body are replaced by the summa-
tion of the integrals over the square subdomains (cf. Fig. 3).
Over each square the field functions E®, ™, F™ ¢® angq
™ (cf. Table II) are assumed to have constant values. For
small values of its argument, the Hankel function (in the
Green’s function) occurring in an integral over a square is re-
placed by the first two terms of its power-series expansion.
The relevant integration can then be carried out analytically.
For larger values of its argument, the Hankel function occur-
ring in an integral over a square is simply replaced by its value
at the midpoint of the relevant square subdomain and a sub-
routine for the Hankel function is used. In this way, all inte-
grations in the iteration scheme reduce to simple summations
over values at the centers of each of the squares. It is noted
that the subdivision of the body into identical squares leads to
a substantial reduction in computation time and memory us-
age, since the integrals over the squares containing the Hankel
functions need to be evaluated for the set of actual distances
between the centers of the different squares only.

For deep-seated tumors, as is the case in Fig. 2, it seems
advantageous to irradiate the body from two sides simulta-
neously. To avoid the possibly strong interference phenomena
(standing-wave patterns) that would occur if the two radiators
operate at exactly the same frequency, the radiators are tuned
to slightly different frequencies. In this case, the time-averaged
generated heat power is the sum of the contributions of the
two radiators separately. This procedure, too, has been carried
out numerically. The convergence of the iterative procedure
appears to be very satisfactory (Table IV). We have stopped
the procedure after three iterations. Fig.4 showsthe computer
output of the normalized distribution of the volume density
of generated heat power, i.e., W,/ W, where

W, = f Wi (x) dA(x) (14)
D

denotes the total generated heat power in a unit height (m) of
the body, averaged over a period of the electromagnetic oscil-

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-30, NO. 12, DECEMBER 1983

TABLE IV
NORMALIZED ROOT-MEAN-SQUARE ERROR AS A FUNCTION OF THE NUMBER
OF ITERATIONS (ONLY THE UPPER RADIATOR OF FIG. 4 1s ACTIVE)

number of jterations IZERR(“)/ERR(O)Ji

n=0 100%
n=1 18%
n=2 4%
n=3 3%

0.29 m

% APERTURE RADIATOR %

7777777 55

% APERTURE RADIATOR %

Fig. 4. Computed lines of equal distribution of the volume density of
generated heat power in the tissue model of the cross section of the
human pelvis; |

Wp/Wp =11 m~2
--------- Wn/Wp =33 m~2
.......... Wp/ Wy, = 55 m™2
---------- Wp/Wp =77 m™2,

lations. Since the next step involves the computation of the
temperature distribution taking full account of the diffusion
of heat, the quantity Wy, is the input parameter for this com-
putation rather than the specific absorption rate SAR recom-
mended in [7].°

From the results it follows that the heat generation is higher
in the tumor than in the surrounding tissue, which consists
mainly of fat. Further, very high values of heat generation
occur in the neighborhood of the radiating apertures. Any
unwanted effects of the latter can be negated by superficial
cooling of the skin.

The computed distribution of Wy, serves as the input to the
computer program that yields the temperature distribution in
the tissue as a function of time. This will be discussed in
Section IIL

III. THE HEAT TRANSFER PROBLEM

In this section we investigate the heat transfer part of the
problem, i.e., the computation of the temperature distribution
in the tissue as it results from the heat electromagnetically
generated in it. The physical quantities and the constitutive
parameters that play a role in the computation of the tempera-


















