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Abstract. Boundary integral equations for the computational modeling of three-dimensional groundwater flow problems
are derived. They follow from appropriate volume and surface source-type integral representations for the pressure and the
flow velocity. The numerical handling of the integral equations is discussed in some detail, especially as far as the evaluation
of singular integrals is concerned. Arbitrary anisotropy in the resistivity of the fluid-saturated soil is taken into account.

1 Introduction

In this paper we discuss the computational modeling of three-dimensional, steady, groundwater
flow problems in piecewise homogeneous, and arbitrarily anisotropic fluid-saturated subsoils with
the aid of the boundary-integral-equation method. To locate position in the configuration, we
employ the coordinates { x;,x,,x;} with respect to an orthogonal Cartesian reference frame with
origin O and three mutually perpendicular base vectors {ij, i, 3} of unit length each. Partial
differentiation is denoted by 0. The subscript notation for vectors and tensors is used and the
summation convention applies. Occasionally, a direct notation will be used to denote vectors; for
example, x = x; i, denotes the position vector.

The flow state of groundwater is characterized by the pressure p and the flow velocity v;. These
quantities satisfy the continuity equation (e. g., Bear 1972)

aivi =q, (1)
and Darcy’s law (e. g., Bear 1972)
O;p + Ryv;=0gi + fis 2

where ¢ is the volume source density of volume injection rate, f; the volume source density of external
force other than gravity, R;; the tensorial (symmetric and positive definite) resistivity of the fluid-
saturated porous medium, ¢ the volume density of fluid mass, and g; the local acceleration of free
fall (assumed to be constant). Equations (1) and (2) can be derived from the creeping motion
equations which describe the flow under the condition of a low Reynolds number (e. g., Slattery
1969; Whitaker 1969). Across an interface of discontinuity in resistivity and/or volume density of
fluid mass, the pressure and the normal component of the flow velocity are to be continuous, while
on each part of the outer surface bounding the flow configuration of interest either the pressure
(e.g., at a freatic plane where it equals the atmospheric pressure), the normal component of the flow
velocity (e. g., at an impervious base where it equals zero), or a linear combination of these quantities
(e.g., at a relatively thin permeable layer at which the normal flow across the layer is related to the
pressure difference across it) is prescribed. It is noted that upon successively integrating (1) over a
bounded domain &, occupied by the flow configuration at hand, and upon applying Gauss’ theorem,
(1) entails the corresponding compatibility relation:

j V,‘UidA B jqu, (3)
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in which 02 denotes the closed boundary surface of & and v, the unit vector along the direction of
the outward normal to 02. In (3), contributions from possible interfaces present in & have cancelled
in view of the continuity requirements for the normal component of the flow velocity.

2 The reciprocity theorem for steady groundwater flow

Our derivation of the desired volume and surface source representations that hold in some bounded
domain & is based on a reciprocity theorem that interrelates, in a specific way, the flow quantities
of two admissible, but non-identical, ground-water flow states { p4,v4} and {p?,v?} that can occur
in one and the same domain 9. To this end, we consider the following interaction quantity between
the two states: 9;(p4v? — pPod). Taking into account that the basic equations pertaining to both
states are of the form (1)-(2) and working out the interaction quantity, we are led to

0;(p"of — pPvf!) = (RE — Rp)vi' v} + (o”of — 0" vi) g,

+fio? —fPoit — g p® + 4% p?, (4)

which is the local form of the reciprocity theorem. Integration of (4) over a bounded domain &, the
boundary of which is the closed surface 02, and utilization of Gauss’ theorem lead to the global
form, for the domain 2, of the reciprocity theorem:

af@(pAv?—vaf)vidA =;(R§—Rﬁ)vﬁude
+ [[(e*vf — o®vi) g+ fAvF — fPof — ¢ pB+ ¢ p]dV, Q)
2

where v, is the unit vector in the direction of the outward normal to 0. Note that on account of
the continuity requirements for the pressure and the normal component of the velocity, in State 4
as well as in State B, we can extend the validity of (5) to regions in which the field quantities, together
with their first-order derivatives, are only piecewise continuous. The first term on the right-hand
sides of (4) and (5) is characteristic for the difference in resistivity of the media present in the States
A and B, and vanishes at those points where R} = RE. The remaining part represents the interaction
between the sources and the accompanying fluid-flow states. The reciprocity theorem (5) is now
utilized to construct source-type integral representations for p and v,.

3 Source-type integral representations for the pressure and the flow velocity

To arrive at the soufce-type integral representations for the pressure we take in (5): {p4, vi} =
{p, v;}, where p and v; apply to the actual flow state. Further, we take {p?, v} = {p9, v¥4},
where p©? and v§¥? apply to a volume injection Green’s state, i.e., they satisfy

0081 =ad (x — x'), (6)
aiqu + le U]'Gq - O s (7)
where a is an arbitrary constant, é (x — x”) the three-dimensional spatial unit pulse (Dirac function)
. operative at x = x’, and R;; is the transpose of the resistivity R;; of the actual configuration (in our
case, we have R;; = R;,). In (6) — (7) no explicit boundary conditions are imposed on the Green’s
flow state. The quantities p©? and v%¢ are linearly related to the constant a; we express this by writing
{p%,vf?} (x,x") = a{ G, — I'"} (x’, x), where G?and I'{ are the injection-source Green’s functions.
Using (1), (2), (6), (7) and the properties of the Dirac function, (5) leads to

- J@(quivz + I'fvip)dA4 + ;[qu + (e g + A1V = 1o (x)p (x), ®)
where ¥, is the characteristic function of the set 2, defined as y, (x) = {1,1/2,0} when x € {2,

09, 9'%}, in which 2’ denotes the complement of 9 U0Z in #°. For x'€39, (8) holds at points
where 02 has a unique tangent plane, provided that the surface integral is interpreted as its Cauchy
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principal value. Equation (8) is the desired source-type integral relation for the pressure field; when
x’ e 9 it expresses the value of the pressure at the point x = x” as the sum of contributions from the
volume sources present in & and equivalent surface sources present on 02.

To arrive at the source-type integral representations for the flow velocity, we take State 4 as
before, while now: {p?, vF} = {p, v¥/}, where p%/ and v¥/ apply to a force source (compensating
gravity) Green’s state and satisfy
0,/ =0, )
aipr‘l— R],U]GfZ blé (x — x/), (10)
where b;is an arbitrary constant vector and where no explicit boundary conditions are imposed on
this Green’s flow state either. The quantities p® and v% are linearly related to b;; we express this by
writing {p%, v} (x, x') = b{ —I',, G/;} (x', x), where I'[ and Gf; are the force-source Green’s
functions. Using (1) and (2), the properties of the Dirac function, and (9) and (10), (5) yields:

- a; (Ifvv; 4+ GLv;pydd + ;[F{q + GLi(0g + HAV = yo(x) v;(x). (11)

Equation (11) is the desired source-type integral relation for the velocity field; when x’ € 2 it expresses
the value of the velocity at the point x = x” as the sum of contributions from the volume sources
present in & and equivalent surface sources present on 09.

At this stage in the analysis it is emphasized that the construction of the different Green’s tensor
functions is, in general, complicated for inhomogeneous media, but is fairly straightforward for
homogeneous media. In Sect. 5, G¥, I't, I/ and G/;, are evaluated for a homogeneous and aniso-
tropic, but reciprocal, medium of infinite extent.

4 The boundary-integral-equation method

To formulate the flow problem of groundwater in a piecewise homogeneous configuration, occupying
the domain &, in terms of boundary-integral equations, we assume that & is the union of N
homogeneous subdomains {Z,;; n =1, ..., N}, the boundary surface of &, is denoted by 02,. We
now apply (8) and (11) to each homogeneous subdomain &, In this, the Green’s functions pertaining
to each subdomain are taken to be the “infinite medium” ones (Sect. 5). Then, by taking successively
x'€09,foreachn=1,..., N, (8) leads to a number of boundary-integral relations that are of the
first kind in v;v; and of the second kind in p, while (11) leads to boundary-integral relations that are
of the first kind in p and of the second kind in v;v;. At the interfaces between adjacent subdomains,
the continuity of the pressure and the normal component of the velocity is used to introduce these
quantities as unique unknowns in the resulting integral equations. At the outer boundary of & either
the pressure, the normal component of the flow velocity, and/or a linear combinations of these are
prescribed. The non-prescribed values at this outer boundary then are left as unknowns in the
integral equations. In this way, we end up with a system of boundary-integral relations. Since the
resulting number of equations equals at least twice the number of unknowns, there is a freedom in
choice of equations to be employed in the actual calculations. In the literature (e.g., Liggett and
Liu 1983), the boundary-integral-equation formulation is usually based on (8); this leads to integral
equations of the first kind in v;v; and of the second kind in p. However, since we here use (11) as
well, complete systems of the second kind as well as of the first kind in both p and v;v; can be
constructed.

5 The Green’s flow states in an unbounded homogeneous domain

To evaluate the injection-source Green’s flow states pertaining to a homogeneous medium of infinite
extent we first multiply (7) on both sides by the, symmetric and positive definite, inverse K;; of R;;.
We then have

[{l.j ﬁij‘I + Uqu =0, (12)
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Now, upon applying to both sides of (12) the operator 9; and using (6), if follows that
I(,]alaij‘1= _aé (x—X/). (13)

To determine the solution of (13) we subject x; — x; to an orthogonal transformation such that the
first term on the left-hand side is transformed on to its principal axes. Let

Vp = Opg(Xg — Xg) (14)

be the relevant transformation, then the columns of the matrix («,,) are the normalized right
eigenvectors of (K;;) corresponding to the p-th eigenvalue () of (K;;). We then have [cf. (13)]

Kij ai aijq = t(p)ayp aypqu, (15)

where 9, denotes differentiation with respect to y,. Since (a,,) is orthogonal we have det (a,,) = 1
and, hence [cf. (13)]

dx—x)=6(y). (16)
Next, we introduce the variables z, through

z,= W)~y (17
then [cf. (15)]

"0, 9, p¥i = 0,,9.,0%, (18)
and [cf. (16)]

6 (y) = [tV 1D 3]125(2) = [det (R; )]'25 (2). ’ (19)
With the aid of (14)-(19), (13) transforms into

0,,0,,p% = — a[det(R;)]'24(z). (20)

Equation (20) is nothing but Poisson’s equation for a point source with strength a[det R;)]'2 (e. g.,
Kellogg 1954) and its solution that is regular at infinity, i.e., vanishes as | z| —» oo, uniformly in all
directions, is given by

qu =aG, 21
where G is given by

G =[det(R;]'?/(4x|z]). (22)
However, p%4 is needed in terms of the original coordinates. Now, using (17) and (14), we obtain
2] = Loy, (1) =1 (e — x7) (o — X)) 312 (23)

Taking into account that (#®))~! are the eigenvalues of (Ry), we have a,, R, a,, = (#®)~1§,,, and
hence [cf. (23)]

0y 0 () L = a0t (1P) LG ) = 00,100, Ry 00y 00 (24)

- Using in the right-hand side of (24) the orthogonality of (a,,) and employing the result in (23), it
readily follows that [cf. (21) and (22)]

P9 =aG(x — x') = a[det(R;)]'?/(4n D) (25)
in which D is defined as \
D= [Rz'j(xi —X{) (xj - x})]l/za (26)

and can be regarded as the geodetical distance from x to x’ with the resistivity as metric tensor.
From (12) it further follows that

89 =—akK;.;0,G(x—x). 27

17 =]
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The Green’s functions G and I'f immediately follow from (25) and (27) as

GI=G(x —x) (28)
and
I'i=K; 6jG(x—x”). (29)

To arrive at the force-source Green’s flow state pertaining to a homogeneous medium of infinite
extent, we apply K;; to both sides of (10) and obtain

K0 p% + 0P = K;;b; 6 (x — x). (30)

L]
Next, we apply the operator 0, to both sides of this equation. Taking (9) into account, it then follows
that

=

In view of the fact that K;;0;0,G = — 6 (x — x) [cf. (13) and (25)], p®/ can be expressed in terms of
G through

P =—K;b0,G(x—x). (32)
Finally, from (30) and (32) the expression for v¢/ follows as

v =Ky b, K,;0,0, G (x —x) + K;; ;6 (x = x). (33)
From (32) and (33) the Green’s functions I/ and GY; directly result as

If=K,8,G (x—x) | (34)
and

Gfy= K;,K,;9,0,G (x — x') + K8 (x — x°). (35)

6 Numerical aspects in solving the boundary-integral equations

To discretize any of the systems of boundary-integral equations, we first subdivide each of the
boundary surfaces into planar, triangular surface elements. Let {Sy(n); n =1, ..., NT} denote this
collection. The vertices of Sr(n) have the position vectors {x;(n,q), ¢ = 1, 2, 3} for later simplicity
we take x;(n,q + 3) = x;(n, q). Each two adjacent triangles have an edge in common; their orientation
is such that the direction of circulation forms a right-handed system with the (constant) normal
v;(n) to Sr(n). Next, in each triangle, the surface source distributions are linearly interpolated
between their values at the vertices. Let L;(n, ) denote the vector along the normal to the g-th edge
Cr(n,q) in the plane of S;(n), having the length of this edge as its magnitude. Then, the linear
function K (x, n, g) that equals unity when x = x(n,q) and is zero in the remaining two vertices can
be written as

K(x,n,q)=1/3 — [x; — b;(m)]1 Li(n,q)/2A(n)  when xe S, (n), (36)

where b;(n) is the position vector of the barycenter of S7(n) and 4 (n) is the area of Sy (n). The local
expansions of the pressure and the normal component of the flow velocity are then

3

{P>Vivi} (x)= ZI{P(an)s V(”:Q)}K(xanaQ) WheanST(n): (37)

q= i\
where P(n,q) and V (n,q) denote the values of the pressure and the normal component of the flow
velocity at the g-th vertex of triangle S7(n). These expansion coefficients are now taken as the global
unknowns over the discretized interfaces and the outer boundary surface. In correspondence to
these global unknowns we now apply at the nodal points, i.e., the points where the vertices of
different triangles meet, the method of collocation (point matching) to the integral expressions for

the pressure and the normal component of the flow velocity. In this procedure we shall always
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encounter nodal points at which the unit normal vectors are not uniquely defined. This happens at
nodal points where vertices of triangles in different planes meet. The relevant nodal points are
considered as multiple vertices each with its own unit normal. This has the important advantage that
all unit normals are uniquely defined and, hence, no ambiguities, with corresponding differences in
numerical results, occur in defining normal vectors at the above “cumbersome” nodal points. Finally,
we select from the resulting systems of linear, algebraic equations a proper square system from
which the unknowns are solved.

In the matrix of coefficients and in the known right-hand sides of these systems of equations,
surface integrals of the following types occur:

{IanIFqslrifalGlf} (naq: x’) = J‘ Q{) (x,n,q) {anviriqbrifaij{}} (x/a x)dA = { (3839 b, C, d)}a
xe8.(n)

where x’is a collocation point. The integrals (38 a, b, ¢, d) are evaluated analytically in the appendix.
The contributions resulting from ¢ and £; in (8) and (11) can be evaluated once the sources have
been specified. The remaining integrals associated with the gravity term gg; are evaluated upon
successively taking into account that gg; has a constant value in each homogeneous subdomain,
using the relations [cf. (28)-(29)] I'¥=K;;9;G? and [cf. (34)-(35)] G{=K;, 0,17 +
K;;0(x —x’), and employing Gauss’ theorem. This leads to integrals of the types /G and I I'f,in
which ¢ is replaced by unity; these can be evaluated analytically as well.

7 Numerical results

A Fortran 77 program has been written that handles the computations associated with our formula-
tion. In order to test it we have first applied it to the given test flow p = — 37 12(x; + x5 + X3) +
x;+ 32 —1 and v = 3712 (i; + i, + i3) in the source-free unit cube 2: 0 < x; < 1,0 < x, <1 and
0 < x; <1, where g = — 104;, and with the homogeneous and isotropic medium ¢ =1 and R =1.
The boundary surface of 9 is denoted by 09 = 09, U0%,, where p is prescribed on 0%, and v;v;
on 8%,. Each face of the unit cube is divided into sixteen isosceles rectangular triangles, four triangles
occupying a square region of dimension 0.5 x 0.5. Three cases were considered: (i) 0%, = {x, =0,
0<x <1, 0<x3<1}, (i) 09, ={x=0,0<x,<1, 0<x3<1}U{0<x; <1, x,=0,
0<x3<1}U{0<x,<L,0<x,<1l,x=1}and (ili))02,={05<x<1,05<x,<1,x3=0}.
Each nodal point was treated as a multiple vertex. Collocation in the discretized versions of the
integral relations resulting from both (8) and (11) was applied in interior points located in the
immediate vicinity of the vertices. The values of the relevant flow field quantities at these points
have been taken to be ones that follow from the linear interpolation scheme (37). The resulting
systems of linear, algebraic equations were solved by a direct method. For all three cases, the
absolute errors in the computed values of the quantities in the collocation points are of the order
of 1011, i.e., within the computational accuracy employed. Obviously, this is due to the fact that
the employed expansion functions exactly comply with the structure of the test flow field.
Furthermore, we have tested the code on the given flow field p = —3712(x;R;; + X; Ry +

3 3
X;Rp3) + x5+ 3712 ZZRU—l and v=3"12(@; +i,+1i) in the source-free domain 2, where

!

g = — 104;, and with jthe homogeneous and anisotropic medium ¢=1 and R;; =4, Ry, =5,
" Ry3=06, Rj;=Ry; =1, Rj3=R;; =2 and R,3 = R3, = 3. Again, the linear interpolation scheme
(37) was used in the discretization of the integral equations resulting from both (8) and (11), and
collocation was applied in a similar manner as in the isotropic case. The three cases (i), (ii) and (jii)
were considered and again results were obtained that were exact within the computational accuracy
employed.

The performance of our computer code applied to more complicated (isotropic and anisotropic)
test flows is still under development.

All computations have been performed on an IBM PC/AT. The CPU time for each test case was
about 35 min,

In an earlier paper (Van der Weiden and De Hoop 1988), we have investigated the performance
of the method for the isotropic test flow given above when taking piecewise constant values of p
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and v;v; at each triangle and applying collocation at the barycenters of the triangles. Naturally, the
errors in the results are of the same order as the geometrical discretization error.

Appendix

Evaluation of surface integrals occurring in the discretized integral equations (isotropic case)

In this appendix, we show how (38) is evaluated analytically for the case of an isotropic medium,
i.e., R;;= R [cf. (2)]. From (36), (38a) and the assumed isotropy it follows that IG7 has the shape:

1G(n,q,x") = (R/47) [S1 (n,x)[3 — S1Q(n,q,x")/2A ()], (Al
where
Sl x)= | |x—x/|"1d4, (A2)
xeS,.(n)
S10(m.q, x)= | [x;—b;@]Li(n qg)lx —x'|7'd4. (A3)
xeS.(n)

To calculate S1, we first decompose x; — x;into a part normal to Sy() and a part parallel to S7(n),
ie., s

X;—xi={vi(m)+y; whenxeSr(n), (Ad)
where ( is a constant given by |
{=vi(n) (x; — x7). (A5)

Since y is a vector in the plane of S(n), we can represent this vector with respect to some local two-
dimensional orthogonal Cartesian reference frame in this plane. Let y, with « = 1,2 denote the
Cartesian coordinates in this reference frame, then [cf. (A2)]

SIQO= [ ((P+yp)~12d4, (A6)

yeS_ ()

where the summation convention to Greek subscripts applies to the range « = 1,2. Assume { to be
unequal to zero, i.e., ¥’ is not in the plane of S(n). We now differentiate (A6) on both sides twice
with respect to { and apply in the resulting right-hand side the relation:

— (P Hyay) TP+ 3P+ 3y P =0, F yyyp) AL (A7)

Then, upon successively using the two-dimensional form of Gauss’ theorem and rewriting the result
with respect to the original reference frame, we end up with

RS = 3 g | w2+ pp)-ds, (A8)

g=1 yeC.(nq)

where v{ (1, g) is the outwardly directed unit vector along the normal to the edge Cy(n,q) lying in
the plane of S7(n). To solve S1({) from (A8) we simply integrate (A8) on both sides twice with
respect to { and evaluate the remaining line integrals afterwards. After some tedious but elementary
calculations the final result is obtained as

ST(n, x') = {sgn({) i sgn [V (n,9) ¢i(n, ¢ + 1, x")]{ arctan (01 (n, g, x"))
1

q=

+ (sgn({))~'arctan (62 (n, g, x)) } + i vi(mg)e(mq+1,x)A(n,q, x), (A9)

g=1
where

C = Vi(n)Qi(nn L x/)a (AIO)
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0i(n,q, x) = x;(n, q) — xi, ' (A1)
] c . Nia 5. .y 5.
(g, x) = ICCHV, (n,q) 0i(n.q + ! ) [aJ(;’t: q) Q,(ni q+2) aJA(n, q) Qjﬁ(n, g+ 1)] ’ (A12)
v, @) 0i(n,q + DI +1{124:(n,q) 6:(n, q + 1) &;(n, ) 8;(n, q + 2)
e . 1 7.(n , D — a4 R 2
2nq, ) = I\,C(n,q)Qz(n,qu )lga](n:q)g,(n,qu ) af(n,q)@,(n,ﬁ J (A13)
|vi (na q)Qi(naq + 1)| + ai(nsq)Qi(n,q + 1)aj(n> Q)QJ(’%Q + 2)

&, q)o(n,g+2) +o(mg+ 2)} (A14)
a;(nq)0i(n,g+ D +omg+1)]’

in which g;(n, q) denotes the ¢-th vectorial edge of S(n), i.e.,

A(n,q, x) = ln[

a(n.q) = %(mg+ ) = x,(ug+1)  withge{1,2,3}, (A15)
a;(n,q) and §;(n,q + 1) are normalized vectorial quantities defined as

4;(n,q) = a;(n,q)}a(n,q), (A16)
0i(n,q+ 1) =g;(n,q + /e (n,q + 1), (A17)

and a(n,q) and ¢ (n,q + 1) are the lengths of a;(n,q) and g;(n,q + 1), respectively. For simplicity in
writing we have omitted in ¢; and g in the right-hand sides of (A12) — (A14) and (A17) the position
vector x” of the collocation point [cf. (A11)]. Next, to evaluate S1Q, we first observe that [cf. (A4)]

x;—b;(n)=x; —b;(n) +y,+{v;(n) whenxeSr(n), (A18)

and, hence, S1Q leads directly to [cf. (A2) and (A3)]

S1Q(1,q, x') = S101, ¥) [, — b L)+ [ 3,Li(m,q) (2 + 3,7~ 12dA, (A19)
yes.(m)

where we have taken into account that v;(») and L;(n,¢q) are mutually perpendicular. To evaluate
the surface integral on the right-hand side of (A19), we first rewrite it with respect to the local, two-
dimensional reference frame in the plane of S(n). In this, we take into account that

Ya Lo (1,q) (C2+ ypyp) ™12 =0, [L,(n, @) (C*+ ypyp) 4, (A20)

and subsequently use in the resulting integral the two-dimensional form of Gauss’ theorem. Upon
rewriting the result with respect to the original reference system, we then thave

3
| BLing) @+ yp) A= 3 Lna ) [ @y P (A21)
yes {n) r= yeC (nr)

The remaining line integrals can be easily reduced to elementary scalar integrals. This completes the
evaluation of S1Q, and, hence, of /G [cf. (Al)].

The surface integrals 117, ITY, and I1G/ follow from the expressions for IG? by carrying out the
necessary differentiations after these have been written as acting on the point of observation. With
this, the Green’s functions integrals for the isotropic case have been covered.

To handle the corresponding integrals for the case of an anisotropic medium, we first subject
the relevant expressions to the coordinate transformations discussed in Sect. 5 [cf. (14) and (17)],
use the results for the isotropic case in the {z,,z,,2;} coordinate system, and transform the results
back to the original { x,, x,, x5} coordinate system. This procedure has been followed in the computer
program. ,

Integrals of the type IG? applying to the isotropic case, have also been evaluated analytically,
in slightly different manners, by Waldvogel (1979) and Wilton et al. (1984).
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