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The time Laplace-transform domain convolution-type reciprocity relation for acoustic waves
in a fluid/solid configuration is derived. Arbitrary inhomogeneity, anisotropy, and loss
mechanisms are taken into account. Reciprocity between transmitting and receiving
transducers located in either the fluid or the solid parts of the configuration is established. It is
shown how the reciprocity relation leads to the source-type wave field integral representations
for direct source problems and to the integral-equation formulation of inverse source, and
direct and inverse scattering problems through the associated contrast source representations.
Since neither a fluid inclusion in a solid nor a solid inclusion in a fiuid leads to a regular
perturbation problem in the integral-equation formulation, the embedding must be adapted to
the location of the contrast sources as far as the type of medium (fluid or solid) is concerned.

Applications to acoustic emission, and to acoustic imaging and profile inversion are briefly

indicated.

PACS numbers: 43.20.Tb, 43.30.Jx, 43.30.Ky

INTRODUCTION

Reciprocity relations for wave fields can be regarded as
lying at the root of the construction of algorithms for solving
direct as well as inverse source and scattering problems. For
acoustic wave fields present in either fluid or solid configura-
tions some general aspects in this respect have recently been
discussed in publications by the present author." In these
papers some historical background on acoustic reciprocity
theorems can be found. An additional early reference to ap-
plying reciprocity to the inverse source problem of recon-
structing earthquake mechanisms from observed seismo-
grams is a paper by Burridge and Knopoff.? In the present
paper the reciprocity relations pertaining to acoustic wave
fields present in configurations that contain both fluids and
solids (such as the ones that occur in underwater sound,
ocean acoustics, and borehole acoustics in geophysical ex-
ploration) are addressed. These relations belong to a more
difficult category, especially when inverse source and in-
verse scattering problems are analyzed with the aid of them,
since neither in the case of a solid inclusion in a fluid nor in
the case of a fluid inclusion in a solid can the constitutive
parameters of the inclusion be regarded as regular perturba-
tions of the ones of the embedding. As a result, the contrast
source representations that usually serve as a point of depar-
ture for constructing algorithms to solve these kinds of prob-
lems are not immediately obvious. The derivation of these
representations is the central part of the present paper. Ap-
plications of the resulting relations to problems of acoustic
emission, acoustic scattering by objects, and acoustic imag-
ing and object reconstruction are briefly indicated. Also, the
reciprocity properties of transmitting and receiving trans-
ducers in fluid/solid configurations are discussed.

The present investigation deals with the acoustic reci-
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procity theorem of the time-convolution type in a time-in-
variant fluid/solid configuration that is linear, locally react-
ing, and passive in its acoustic behavior. Since in the
reciprocity theorems of the time-convolution type causality
is preserved (see de Hoop'?), the reciprocity theorem for
the fluid/solid configuration will be presented in the time
Laplace-transform domain. In this domain, the condition of
causality of the wave field quantities in space-time is re-
placed by the condition of boundedness of their Laplace-
transform counterparts in all space, which condition must
hold for all values of the time Laplace-transform variable sin
the right half Re(s) > 0 of the complex s plane. From the s-
domain results the time-domain counterparts easily follow
upon using some standard rules of the one-sided Laplace
transformation, while the results for sinusoidally in time
varying acoustic field quantities are obtained by replacing s
by jw, where j is the imaginary unit and » the angular fre-
quency, on the condition that imaginary values of s are ap-
proached via the right half of the complex s plane. Arbitrary
inhomogeneity, anisotropy, and loss mechanisms are taken
into account.

. THE ACOUSTIC WAVE FIELD IN THE FLUID/SOLID
CONFIGURATION

The configuration in which the acoustic wave field is
present consists of either a fluid inclusion of bounded extent
in a solid embedding or a solid inclusion of bounded extent in
a fluid embedding. In either case the embedding is, outside
some sphere of finite radius, assumed to be homogeneous,
isotropic, and lossless in its acoustic properties. The domain
occupied by the fluid is denoted by D/ and the domain occu-
pied by the solid by D°; both D/ and D* may consist of a
finite number of unconnected subdomains.

The position of observation in the configuration is speci-
fied by the coordinates {x,,x,,x;} with respect to a fixed,
orthogonal, Cartesian reference frame with origin O and the
three mutually perpendicular base vectors {i,i,,i;} of unit
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length each, In the indicated order, the base vectors form a
right-handed system. The subscript notation for Cartesian
vectors and tensors is used and the summation convention
applies. The corresponding lowercase Latin subscripts are to
be assigned the values {1,2,3}. Whenever appropriate, the
position vector will be denoted by x = x,,,i,,, . The time coor-
dinate is denoted by ¢. Partial differentiation is denoted by d;
d,, denotes differentiation with respect to x,,; d, is a re-
served symbol for differentiation with respect to ¢.

For any causal space-time function ¥ = u(x,¢) the one-
sided Laplace transform is introduced as

n(x,s) = fw exp( — st)u(x,t)dt, N
t=0

where the instant ¢ = 0 marks the onset of the events. Obvi-
ously, for bounded |u(x,#)|, #(x,s) is an analytic function of
the complex transform parameter s in the right half
Re(s) >0 of the complex s plane. For ease of notation the
caret over a symbol denoting its s-domain counterpart will
be omitted in the remainder of the paper. The acoustic wave
motion is started from a configuration at rest; then, under
the one-sided Laplace transformation the operator J, is re-
placed by an algebraic factor s.

In each subdomain of D/ where the fluid’s acoustic
properties vary continuously with position, the acoustic
wave field quantities are continuously differentiable and sat-
isfy the s-domain equations

— ko +sp i,rwr =f’1: s

dw, —sko=gq,

(2)
(3)

in which o is the scalar acoustic traction (opposite of the
acoustic pressure) in the fluid, w, is the fluid particle veloc-
ity, pj,;, is the fluid volume density of mass, « is the fluid
compressibility, /% is the fluid volume source density of
force, and g is the fluid volume source density of injection
rate. Anisotropy in the inertia properties of the fluid is taken
into account. (This kind of anisotropy shows up in the effec-
tive-medium theory of finely layered fluids.*) For lossy
fluids (i.e., fluids with relaxation), p’,’(y, and « are s-depen-
dent, subject to the condition of causality which entails ana-
Iyticity in Re(s) >0. Across interfaces between different
kinds of fluids in D/, o and v, w, are continuous, where v,
denotes the unit vector along the normal to such an inter-
face.

In each subdomain of D’ where the solid’s acoustic
properties vary continuously with position, the acoustic
wave field quantities are continuously differentiable and sat-
isfy the s-domain equations

- Ak,m,p,q am Tp,q + Spi,rvr =f;\ ’ \ (4)
Aijimr Oy — Sy higs (5)

ijn,r C?m vr Lip,q Tpxq =

in which 7, , is the solid stress, v, is the solid particle veloc-
ity, py,, is the solid volume density of mass, S;; , , is the solid
compliance, /7, is the solid volume source density of force,
and 4, is the solid volume source density of rate of deforma-
tion. Full anisotropy in the inertia and (visco)elastic proper-
ties of the solid is taken into account. For lossy solids (i.e.,
solids with relaxation), p; , and S, ,, are s-dependent, sub-
ject to the condition of causality which entails analyticity in
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Re(s) > 0. Across interfaces between different kinds of sol-
ids in D* (which are assumed to be in rigid contact), v, and
A npg, Vin Tpg ATE€ cONtinuous, where v, is the unit vector to
the normal along such an interface. The symmetrical unit
tensor of rank four

Ak,m,p.q =3 (Sk,p‘sm,q + 5k,q6m,P) ’ (6)

where 8, , is the symmetrical unit tensor of rank two (Kron-
ecker tensor), is characteristic for elastodynamics and auto-
matically selects from any tensor of rank two with which it is
contracted the symmetrical part.

Across an interface between a fluid part and a solid part,

the continuity conditions v, w, =wv,v, and
0=V D mpaVmTyse apply, together with the explicit
boundary condition (8y, — ViV, )A, 1 pqVimTpe =0, in

which the tensor &, , — v, v, selects from any tensor with
which it is contracted the tangential part to the surface to
which v, is the local unit vector along the normal.

Both in the fluid and the solid subdomains, acoustically
impenetrable objects may be present. Their presence is ac-
counted for by explicit boundary conditions that hold upon
approaching the boundary surface of the object from the
outside. For an object located in th _.uid these are either
o-0 (void) or v,w, —»0 (immovable rigid object). For an
object located in the solid these are either A ,,, , v, 7, ,—0
(void) or v, —»0 (immovable rigid object).

The provisions that have been made for the media at
“infinity” ensure that outside some sphere of finite radius
and center at the origin of the chosen reference frame the
farfield representations for the quantities associated with
outgoing acoustic waves in a fluid or a solid apply (see de
Hoop™*®). In these representations, too, causality plays an
essential role.

il. THE LOCAL AND GLOBAL RECIPROCITY
RELATIONS

A general wave field reciprocity theorem interrelates, in
a specific manner, the quantities that characterize two differ-
ent physical states that could occur in one and the same
domain in space-time. For time-invariant configurations the
application of the one-sided Laplace transformation of Eq.
(1) to the convolution-type reciprocity theorem leads to an
equivalent s-domain result. For this to be applicable to the
fluid/solid configuration under investigation, the fluids in
the two states should be present in one and the same time-
invariant domain D/ and the solids in the two states should
be present in one and the same time-invariant domain D°.
The two states will be distinguished by the superscripts 4

_and B, respectively. First, the local reciprocity theorems will
be derived; they apply to the subdomains D/ and D sepa-
rately. From them, the global reciprocity theorem for the
entire fluid/solid configuration will be obtained.

The local reciprocity relation in the fluid follows upon
considering the interaction quantity J, (o “wf — o®wy)
and evaluating this quantity with the use of Egs. (2) and (3)
for the states 4 and B, respectively. The result is

(o we — o wl)
st — p At — s — K)o o

—fiwi + Pl 4 qPot — o . N
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The local reciprocity relation in the solid follows upon
considering the interaction quantity A, . d, (7a,U%
— 75,V%) and evaluating this quantity with the use of Egs.
(4) and (5) for the states 4 and B, respectively. The result is

B A
Ak,m,p,qam (T;,qvk - 7-1?,qvk)

=5( Pi[i —piﬁf)vaf - S(Sg/lp,q - Sﬁq,i.j)r;q’r?\i
— SR ST R T — R (®)

Equation (7) holds at any point of D/ in the neighborhood
of which the properties of the fluids in the states 4 and B vary
continuously with position. Equation (8) holds at any point
of D’ in the neighborhood of which the properties of the
solids in the states 4 and B vary continuously with position.
As far as the right-hand sides of Eqgs. (7) and (8) are con-
cerned, the terms fall into two categories. In the first set of
terms, the medium properties of the fluids and solids in the
states 4 and B occur. In the fluid, these terms vanish if

1

A4,,.B B, A B
Jj Vi (0w — o “wi)dA + Akm@gvm(7ﬁqvk
apNp/ apnp*

i =pl¥andx? = «®. If these properties hold, the fluid in
state B is denoted as the adjoint of the fluid present in state 4.
In case these properties hold for one and the same fluid, this
fluid is denoted as self-adjoint, or reciprocal. In the solid the
relevant terms vanish if p§4 =p7 and S¢,,, =S2 .. If

these properties hold, the solid in state B is denoted as the
adjoint of the solid present in state 4. In case these properties

hold for one and the same solid, this solid is denoted as self- -

adjoint or reciprocal. The second set of terms at the right-
hand sides is associated with the source distributions in the
states 4 and B. Obviously, these terms vanish in a source-free
subdomain.

The global reciprocity relation that holds for some do-
main D in the fluid/solid configuration is obtained by inte-
grating Eq. (7) over the domain DN D that D and D have
in common, integrating Eq. (8) over the domain DN D" that
D and D¥ have in common, adding the two results, and ap-
plying Gauss’ divergence theorem to the resulting left-hand
side. With this, the following relation is obtained:

—1h,8)dA

= [sCpit —pthwing —s(k* — kYo ‘o ® — fLAwg + fFPwl + ¢°c 4 — q'o P |dV

pnp/

Lipa

+ | [sCpir = piviE — 5(S T — S pais) ThaTh —

DND*

where the contributions from interfaces have canceled in
view of the pertaining boundary conditions of the continuity
type, while the contributions from the boundary surfaces of
impenetrable objects have vanished in view of the pertaining
boundary conditions of the explicit type. Equation (9) is the
global reciprocity relation that will be used in the consider-
ations that follow. In it, D is the boundary surface of the
domain D and v,,, is the unit vector along its normal, point-
ing away from D, dDN D is the part of D that is located in
the fluid, and DD’ is the part of D that is located in the
solid.

In some of the applications, D will be the entire three-
dimensional space. To address this situation, Eq. (9) is first
applied to the domain interior to the sphere S, of radius A
and with center at the origin of the chosen reference frame,
after which the limit A — oo is taken. From some A onward,
S, will be entirely situated in either a homogeneous, isotrop-
ic, ideal fluid (in the case of a fluid embedding), or a homo-
geneous, isotropic, perfectly elastic solid (in the case of a
solid embedding). In both cases, the corresponding farfield
representations for the acoustic wave field quantities can, for
sufficiently large values of A, be used on .S, , from which the
contribution from S, can be Jhown to vanish in the limit
A— o (cf. de Hoop™®).

II. RECIPROCITY PROPERTIES OF TRANSMITTING
AND RECEIVING TRANSDUCERS

A first set of corollaries of the global reciprocity relation
are the reciprocity properties of transmitting and receiving
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{

transducers. First, the case is considered where the action of
the transducers is represented by equivalent volume source
densities, distributed over the domains occupied by the
transducers. Let transducer 1 occupy the bounded domain
T, and transducer 2 occupy the bounded domain 7,. Let
state 4 be identified with the state where transducer 1 is
transmitting and transducer 2 is receiving, and state B with
the state where transducer 2 is transmitting and transducer 1
is receiving. Then, the application of Eq. (9) to the entire
fluid/solid configuration leads to

f [+ gl Pydv
T,ND

+ (f¥E+hir?)dv
T7,ND"*
= (SPPwl+ qPoHdV

.ND/

+f (F3%i b P v, (10)
T.ND*

Equation (10) covers all four possible cases as far as the
location of the two transducers (either of them in the fluid or
the solid) is concerned. In deriving Eq. (10) it has been
assumed that the fluid and the solid present in the configura-
tion are self-adjoint. Note that for the applicability of the
description of the action of the transducers by equivalent
volume source distributions, either of them must be com-
pletely immersed in the fluid part or completely immersed in
the solid part of the configuration and hence one term at the
left-hand side and one term at the right-hand side are always
missing.
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Second, the case is considered where the action of the
transducers is represented by equivalent surface source den-
sities, distributed over the boundary surfaces 47, and 9T, of
the respective domains occupied by the transducers. Let,
further, the states 4 and B be defined as before. Then, appli-
cation of Eq. (9) to the entire fluid/solid configuration as far
as this is located outside the domains occupied by the trans-
ducers leads to

LT mevk(UAwf — o fwl)ydA

B
+ Ak,m,p,qu (Tzqvk

aT,N D’

— 1o,V )dA
’ :J vi (o Pwl — o w?)dA
aT,ND S

A
+ Ak,m,p,q Vin (Tﬁq Uk

3TN D’

— T UR)dA . (11)
Equation (11) covers all possible cases as far as the location
of the two transducers is concerned; either of them may even
partly be located in the fluid and partly in the solid. To com-
ply with the conditions of the uniqueness of the acoustic
radiation problem, the description of the action of the trans-
ducers by equivalent surface sources is restricted to prescrib-
ing on that part of their boundary surfaces that is located in
the fluid the value of either the scalar traction o or the nor-
mal component of the particle velocity v, w,, and on that
part of their boundary surfaces that is located in the solid the
value of either the traction A, ,,, , ,v,,7,, Of the particle ve-
locity v, . How these boundary values are related to the actu-
al response of the transducers is discussed in a paper by
Kino.”

Equations (10) and (11) are also useful as tests on the
consistency and (sometimes) accuracy of computer codes
that serve to calculate numerically the values of the acoustic
wave field quantities in fluid/solid configurations such as
arise in ocean acoustics and borehole acoustics. In such an
application, the fluid and solid constituents need not be self-
adjoint in their acoustic properties, provided that, for the
check to be carried out, the medium properties in the compu-
tational state B are taken mathematically to be the adjoints
of the medium properties applying to the actual physical
state 4.

IV. DIRECT AND INVERSE SOURCE PROBLEMS

The reciprocity relation of Eq. (9) can be used to ad-
dress acoustic direct and inverse source problems. In the first
category, sources with known volume or surface distribu-
tions emit acoustic radiation into a known embedding; in the
second category the embedding is still known, but the source
distributions are not. Important applications of these phe-
nomena in fluid/solid configurations are found in explora-
tion geophysics (borehole acoustics and borehole seismics),
underwater sound and ocean acoustics, where examples of
the inverse source problem are acoustic emission and micro-
seismic activity. In such applications the sources, known or
unknown, emit acoustic radiation into a known embedding.
Assume that the causal acoustic wave field (Green’s state)
at position x radiated by a point source located at position x’
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in the embedding can be determined and let these acoustic
Green’s states be collectively denoted by the superscript G.
Assume, further, that the source occupies the bounded do-
main DT and denote the acoustic quantities of the wave field
radiated by it by the superscript 7. Then, the observed
acoustic quantities associated with the emission can be ex-
pressed as an interaction between the source distribution and
an appropriate Green’s state. Depending on where the obser-
vation is carried out (in the fluid or in the solid), and which
quantity is observed (the scalar traction and the particle ve-
locity in the fluid, or the stress and the particle velocity in the
solid), different Green’s states have to be used. These states
will be specified below.

If the observed quantity is the scalar traction in the flu-
id, the Green’s state should be the one corresponding to a
nonvanishing point source of the type

¢°=08(x—x'), withx'eD”. (12)

If the observed quantity is the particle velocity in the fluid,
the Green’s state should be the one corresponding to a non-
vanishing point source of the type

i =FI{8(x —x'), withx'eD”. (13)

If the observed quantity is the particle velocity in the solid,
the Green’s state should be the one corresponding to a non-
vanishing point source of the type

fi;GZFi‘S(X_ x'), withxeD*. (14)

If the observed quantity is the stress in the solid, the Green’s
state should be the one corresponding to a nonvanishing
point source of the type

hg,=H, 8(x—x'), withx'eD". (15)

In all these cases the point-source solutions to the acoustic
wave equations should be calculated in a fluid/solid configu-
ration with acoustic properties that are adjoint to the one of
the actual embedding. In Egs. (12)—(15), the factors multi-
plying the three-dimensional Dirac delta functions are con-
stants; they will be used to indicate which of the four acoustic
Green'’s states applies in a particular case.

One way to address the direct and inverse acoustic
source problems is to model the emitting sources as equiva-
lent volume source distributions occupying the domain D7,
In the direct source problem the location of this domain is
known. In the inverse source problem the location of this
domain is usually estimated from travel time measurements.
Then, upon identifying state 4 in Eq. (9) with the acoustic
emission state T"and state B with one of the Green’s states G,
application of Eq. (9) to the entire fluid/solid configuration
yields [see also Eq. (10)]

J oy [ AT xwi (xx) +¢" (x)o “(x,x) |dV(x)
pTnD

+ [ FETx)og(xx") + A L(x) 78 (x,x") |dV(x)

DTmD.V
=1{Q0" (x") FIwl (x) }y,, (X))
+ {F sl () H,, iy (X)) Iy (X))

In these expressions, y,, (x') denotes the characteristic func-

(16)
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tion of the set D, i.e.,
Xbp (xl) = {1’%70}’ for x'e{D,&'D,D l} 3 (17)

where dD is the boundary surface of the set D and D' is the
complement of DUJD in three-dimensional space R°>.
Hence, the first two results in the right-hand side of Eq. (16)
apply to observation in the fluid, and the second two results
to observation in the solid. Which Green’s function is to be
used in the left-hand side to yield a particular observation
result in the right-hand side, follows implicitly from the per-
taining nonvanishing constant that multiplies that result.

In a number of cases it is, however, either known or
likely that the acoustic emission is due to a source whose
action can better be modeled by the presence of equivalent
surface sources rather than by equivalent volume sources.
For example, this is the case when the acoustic emission is
due to the formation of (micro)cracks. In such cases, a rela-
tion different from Eq. (16) is needed to model the direct as
well as the inverse source problem. Let D7 be the (estimat-
ed) domain occupied by the emitting source and let v,, de-
note the unit vector along the normal to the boundary sur-
face DT of D” (for example, the surface of the crack),
oriented away from D?. Then, application of Eq. (9) to the
entire fluid/solid configuration as far as it is located outside
dDT yields

f V(X)) [0 T wg(x,x") —w] (x)o “(x,x') |d4(x)
3D Tnp/

+ f -~ A/<,m,p,q1/m (X) [T;q (X)UE(X,X’)
apTrnp*

—vp(x)79, (x,x") |dA(x)
={Qo "G Fw (N, (x)

+ {F‘iv,T(X’),H,,,qTZq(X’)}xDmDT,(x’) . (18)
The first two results in the right-hand side of Eq. (18) apply
to observation in the fluid as far as the latter is located out-
side DT and the second two results to observation in the
solid as far as the latter is located outside dD”. Which
Green’s function is to be used in the left-hand side to yield a
particular observation result in the right-hand side, follows
implicitly from the pertaining nonvanishing constant that
multiplies that resulit.

To use Egs. (16) and (18) in a practical inverse source
situation, the emitted acoustic wave field quantities are re-
corded at a number of positions and for a number of values of
the time Laplace transform parameter s. Let M be the total
number of measured data. Then, first, the location of D7 or
dD" is estimated from the observed travel times of the acous-
tic waves. Next, the nature of the source is reconsttucted by
parametrizing the relevant source distributions (of the vol-
ume or the surface type); this is usually done by expanding
them in terms of an appropriate sequence of spatial expan-
sion functions that form a discrete base in the function space
to which the volume source densities belong. The coeffi-
cients in this expansion will in general depend on the time
Laplace transform parameter s. The expansion coeflicients
satisfy the system of equations that results from evaluating
the left-hand sides of Eqgs. (16) or (18) for a number of
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values of s and requiring equality with the measured data.
Assume that P is the total number of parameters. Then, the
system of linear algebraic equations to be satisfied is of the
size P X M. Finally, the system is solved either exactly (for
P = M) or by minimizing (for P< M) a given error (for
example, the accumulated square error) in the satisfaction
of the equality signs in the equations.

Note that it is essential that the action of the sources as
far as they are located in the fluid part of the embedding is
modeled by fluid volume or surface sources, while the action
of the sources as far as they are located in the solid part of the
embedding is modeled by solid volume or surface sources.

V. DIRECT AND INVERSE SCATTERING PROBLEMS

In this section the problem of the acoustic scattering by
a penetrable object is addressed. Assume that the object oc-
cupies the bounded domain Q. The object may partly consist
of a fluid, partly of a solid; these two parts are, in general,
disjoint. Let Q7 be the domain occupied by the fluid part of
the object and )* the domain occupied by its solid part. The
presence of the object will be accounted for by expressing its
contrast with a known embedding. The latter consists, as
before, of a fluid part D/ and a solid part D* . For the contrast
description to be valid, it is essential that 7 is a subdomain
(not necessarily a proper one) of D’/ and Q° is a subdomain
(not necessarily a proper one) of D*. Note in this respect
that in each case the type of embedding must be adjusted to
the type of scattering object as far as the nature of its spatial
support is concerned. Once the embedding has been selected,
it is assumed that the four Green’s states corresponding to a
fluid/solid configuration with acoustic properties adjoint to
the ones of the actual embedding (see Sec. IV) can be calcu-
lated.

The total acoustic wave field in the configuration
{ow,}in D/, {7, 0, } in D’ is written as

{ow,} ={d" + 0w+ w} inD/, (19)
{r, 0 ={r, + 70 + 5} in D, (20)

where {o™,w"} in D /,{7},,vi"} in D* is the incident acoustic
wave field (i.e., the acoustic wave field that would be present
in the configuration if the scattering object showed no con-
trast with the embedding) and {o*,w;} in D /{73, v} in
D’ is the scattered acoustic wave field. The constitutive pa-
rameters of the object are denoted by { p 47,4} in Q7 and
{P féf},S t%',p,q} inQ°.

Now, the incident wave field is, by its nature, generated
by sources that are located outside (). These sources also
generate the total wave field, and hence the scattered wave
field is source-free outside ). By using in the interior of £} the
systems of acoustic wave equations (2)—(5) pertaining to
the total and the incident wave fields, and subtracting the
corresponding equations in these systems, one arrives at the
contrast source equations of the scattered wave field. In the
fluid part of the embedding these are

— 8,0+ sph W = [, forxeD/, (21)
AW — sko* = ¢, for xeD”, (22)
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in which
fie= —s(pf?—plw,, forxeQ/, (23)
7 =5k —k)o, forxeQ’, (24)

are the fluid part contrast volume source densities of the
scattering object, while in the solid part of the embedding
they are

— Ak,m,p,qam Tpg + spr Uy =f7¢, forxeD®, (25)
B imrOnVy — 58,0 Tng =hi;, forxeD?®, (26)
in which
fE= —s(pis —pi,)v,, forxeQ’, 7
B =587 0 —Sipa)Tpgs forxe’, (28)

are the solid part contrast volume source densities of the
scattering object. The contrast volume source densities van-
ish outside the scattering object. Then, upon identifying in
Eq. (9) state 4 with the scattered state to be denoted by the
superscript sc and state B with one of the Green’s states
defined through Eqgs. (12)—(15), application of Eq. (9) to
the entire fluid/solid configuration yields [see also Eq.
(16)1]

[ FEexw(xx) + ¢<(x)o%(x,x) |dV(x)
o

+ f [ fEexwg(x,x') + A5 (x) 78 (x,x) [dV(x)
o

={Qo*(x'),FLw(x') Yy r(X')
+A{Fsve(x),H,, 75, (x) Yy (X)) (29)

Equation (29), together with Egs. (19), (20), (23), (24),
(27), and (28), forms the basis for the further treatment of
both the direct and the inverse scattering problems.

A. The direct scattering problem

In the direct (or forward) scattering problem the loca-
tion of the scattering object and its acoustic properties are
known. Now, upon taking successively x'e O/ and x’e (}* in
Eq. (29), and combining the results with Egs. (19), (20},
(23), (24), (27), and (28), a system of integral equations is
obtained in which {ow,} for x'€ Q/ and {r,,v,} for
x € )F are the unknowns. The integral equations are of the
second kind and have usually to be solved with the aid of
numerical discretization methods. After the unknown
acoustic wave field quantities in the interior of the scattering
object have been evaluated, the contrast volume source den-
sities are known and the contrast source representations of
the scattered wave field can be reused to calculate this wave
field everywhere in the configuration. Since the incident
wave field was already known, this brings the solution of the
direct scattering problem to an end.

B. The inverse scattering problem

In the inverse scattering problem both the location of
the scattering object and its acoustic properties are un-
known. The object is irradiated by some known incident
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acoustic wave field and the response of the object, i.e., its
scattered acoustic wave field, is measured at a number of
locations and for a number of values of the time Laplace-
transform parameter s. The next step is to consider the in-
verse scattering problem as an inverse source problem for the
determination of the contrast volume source densities (see
Sec. IV). Once these have been determined, the contrast
source representations for the scattered acoustic wave field
are used to evaluate the total acoustic wave field in the interi-
or of the scattering object. Subsequent use of Egs. (23) and
(24) and Egs. (27) and (28) then leads to the distribution of
the constitutive parameters in the fluid and the solid parts of
the object, respectively.

In an actual application of this method the first thing to
do will be to determine the fluid/solid interfaces that sepa-
rate the inclusions from the embedding. Only after that has
been accomplished, one can introduce contrast volume
source densities to model the presence of the scattering ob-
ject.

VI. CONCLUSION

The time Laplace-transform domain convolution-type
reciprocity relation for acoustic waves in a fluid/solid con-
figuration with arbitrary inhomogeneity, anisotropy, and
loss mechanisms has been derived. First, reciprocity proper-
ties of transmitting and receiving transducers located in ei-
ther the fluid or the solid parts of the configuration have been
established. Second, it is shown how the recipocity relation
leads to the integral-equation formulation of inverse source,
and direct and inverse scattering problems through the in-
troduction of the appropriate contrast source representa-
tions. Since neither the presence of a fluid inclusion in a solid
nor the presence of a solid inclusion in a fluid leads to a
regular perturbation problem in the integral-equation for-
mulation, the embedding must be adapted to the location of
the contrast sources as far as the type of medium (fluid or
solid) is concerned. Applications to acoustic emission and to
acoustic imaging and object reconstruction are briefly indi-
cated.
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