IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 12, DECEMBER 1994

2261

New Reciprocal Circuit Model for
Lossy Waveguide Structures Based on
the Orthogonality of the Eigenmodes

Frank Olyslager, Member, IEEE, Daniél De Zutter, Member, IEEE, and Adrianus T. de Hoop

Abstract— In this contribution, we present a new consistent
equivalent transmission line model to describe the propagation
along lossy hybrid waveguide structures. All existing consistent
transmission line models are based on the assumption that the
power propagated by the modes considered in the waveguide
is the same as the power propagated in the model. In a lossy
reciprocal waveguide, this leads to a nonreciprocal transmission
line model because the modes are not power orthogonal. We
start from the Lorentz orthogonality condition to construct a
reciprocal transmission line model, even for lossy waveguides.
For multiconductor wavegunides, we will discuss what we call RI-
and RV-models, in analogy with the existing PI- and PV-models.
We will also present a generalisation of these RI- and RV-models
to general waveguide structures. The theory is illustrated with a
comparison of an RI- and PI-model for a lossy thick microstrip
structure.

1. INTRODUCTION

HE representation of the fundamental modes of a non-
hybrid multiconductor waveguide, such as the coaxial
line, by a set of transmission lines is a direct result of
Maxwell’s equations because these modes are purely TEM.
This representation is also natural and unambiguous for the
fundamental modes of lossless hybrid, i.e., inhomogeneous,
multiconductor waveguides in the quasi-TEM limit [1], [2]. At
higher frequencies, or for higher order modes, the transmission
line models are no longer unambiguous because currents and
voltages can no longer be defined in a unique way due to the
presence of nonnegligible longitudinal field components. In the
past this problem has been tackled by different approaches.
In [3], a consistent transmission line model for a single mode
in a lossy hybrid waveguide interconnection was constructed.
This model was based on the power equivalence between the
model and the waveguide. A model for coupled multiconductor
waveguides was introduced in [4]. However, in [5], [6] it was
shown that this model is correct only in the quasi-TEM limit
because of the special choice of the partial powers (i.e., power
per conductor and per mode) propagated in the structure. In
[71, it was shown that the model of [4] does not yield a
reciprocal model, even for lossless structures. In [5], [6], a con-
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sistent definition of the partial powers resulted in a new circuit
model that is now reciprocal in the lossless case but not in the
lossy one. This model was further generalised to anisotropic
waveguides in [8]. The above is only a brief review of the
extensive literature on the subject, for more references see [6].

When constructing a circuit model for lossless multicon-
ductor waveguide structures, one generally takes only the
fundamental modes into account. It is assumed that higher or-
der modes are either below cut-off, or that they are not excited
at the generator and load of the waveguide. Consequently, only
the fundamental modes will propagate power and it is justified
to demand that the power propagated by the fundamental
modes in the waveguide is the same as the one propagated
in the circuit model. For lossy structures, the higher order
modes, even if they do not propagate, will dissipate power
due to the losses. This means that the power demand looses
its justification in the lossy case. As already mentioned above,
it was shown in [6] that, in the lossy case, the power demand
results in a nonreciprocal transmission line model. This results
from the fact that the modes are not power orthogonal in
lossy waveguides. This absence of reciprocity and the Lorentz
orthogonality of the modes have led us to the construction of a
new circuit model based on a reciprocity demand. This model
is reciprocal for lossy structures and reduces to the classical
power model for lossless structures.

Neither the power, nor the reciprocity demand, fully deter-
mines all the parameters in the transmission line model. One
has to include extra information on how the hybrid waveguide
is connected to and excited by the generator and the load. This
has led to power-current (PI) models and power-voltage (PV)
models [3], [5], [6]. When the reciprocity demand is used,
we call the corresponding models the RI- and RV-models.
In the RI-model, the currents on the lines are taken to be
equal to the currents on the conductors of the waveguide.
In the RV-model, the voltages on the lines are taken to be
equal to line integrals of the electric field along well-chosen
paths in the cross-section of the waveguide. These RI- and RV-
models are only suitable for multiconductor waveguides and
they are only approximations of reality. We will present a more
general model that takes the three-dimensional electromagnetic
interactions at the generator and at the load into account. The
RI- and RV-models are special cases of this more general
model. The drawback of this general model is that it is not
independent of the load and generator and, as such, is more
difficult to implement in a general purpose circuit simulator.
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We will construct the transmission line model for lossy
waveguide structures consisting of reciprocal material that
is anisotropic in the cross-section. These waveguides are of
course reciprocal, but also bi-directional [9]. This means that
corresponding modes propagating in opposite directions have
the same complex wave number. Reciprocal waveguides that
are not bi-directional cannot be represented by a classical
transmission line model because such a model is inherently
bi-directional. In [8], a more general transmission line model
for nonbi-directional chiral waveguides was discussed based
on the power demand.

II. MODES IN A WAVEGUIDE STRUCTURE

Consider a lossy anisotropic waveguide structure that is
invariant in the z-direction. An electromagnetic field that prop-
agates along this structure can be decomposed in contributions
from the different eigenmodes of the structure. For a general
open waveguide, the set of eigenmodes consists of a discrete
and a continuous part. In the representation of the final circuit
model, we will take only C discrete modes into account. We
will come back to the choice of C later on. Hence, we write
an arbitrary field E(z,y,2), H(z,y, z) which propagates in
the positive z-direction as

C
E(.’L‘, Y, Z) = Z ef(za Y, Z)Kw,f
f=1

C
H(z,y,2) = > _hs(z,y,2)Ku s )
f=1

es(z,y,2) and hg(z,y,2) (f =1,2,...,C) are the properly
normalised field patterns of the eigenmodes. K, s is an
excitation coefficient that determines the contribution of mode
f to the total field E(z,y, z), H(z,y, 2).

The z-dependence of the fields ef(z,y, z), hf(z,y,z) of
mode f is characterised by the complex wave number By, 5,
such that

es(z,y,2) = Ef(x,y) exp(—§Bu,f2)
hf(xayVZ) - Hf(.’E,y) eXp(—j,BwJZ). (2)

Substitution of (2) in (1) yields

E(z,y,2) = E"(z,y) exp(—jbeta,z)K,,

H(z,y,2) = H (z,y) exp(—jbeta,z) K. 3

where beta,, is a diagonal matrix with the C' complex wave
numbers on its diagonal. In (3), Ky, 5, E¢(z,y) and Hf(z,y)
are collected in the column vectors K, E(z,y) and H(z, y)
respectively. 7' is the transposition operator.

It is assumed that the material in the waveguide consists of
lossy reciprocal anisotropic material characterised by eps and
mu tensors of the following form:

z,Y)
(o) = <mun0(x,y) uz(g ,y)) @
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with eps,, = (eps,)” and mu;, = (muy,)’. eps,,, mu,
e, and p, can take arbitrary complex values. With these
assumptions, the waveguide is bi-directional [9]. In Appendix
A it is shown that the following normalisation relation holds
when we have materials of type (4):

3/ /S{Ef(z’y)ng(l',y)}.uzdS — b5,

fy.q:]~12',""c'V (5)
g is the Kronecker symbol and S is the cross-section of the
waveguide. Equation (5) normalises the modal field patterns.

III. MODES IN A SET OF COUPLED TRANSMISSION LINES

Suppose we have a set of C' coupled transmission lines, with
propagation along the z-direction. In the frequency domain,
this set of transmission lines is described by the following
system of equations:

d ZZ(Z) +Z1(z)=0
%(Zi) +Y V(z) = 0. )

I(z) and V(z) are column matrices with elements I;(z)
and V;(2) (j = 1,2,...,C), representing respectively the
current and voltage on transmission line j. Z, and Y are the
circuit impedance and circuit admittance matrices respectively.
These matrices are usually rewritten in terms of their real and
imaginary parts as follows:

Z=jwL+R
Y=jwC+G. 0]

The circuit quantities Z, Y, C, G, L and R are frequency
dependent. In a lossless situation for low frequencies in the
quasi-TEM limit C and L take their classical static frequency
independend values as capacitance and inductance matrix ([1]
and [2]). We assume that Z and Y are nonsingular matrices.

The general solution of the differential equations (6) is given
by

I(z) = 1. exp(—jbeta.z)K.
V(z) = V exp(—jbeta.z)K, (8)

where beta, is a diagonal matrix with diagonal elements
given by the square root of minus the eigenvalues of the matrix
YZ. The columns of the matrix I.(V,) are the eigenvectors
of YZ(ZY). In (8), the current I(z) and the voltage V(z) are
expanded in the contributions of the C different eigenmodes of
the set of transmission lines. For this reason we call I.(V ) the
circuit-mode current (voltage) matrix and beta, the complex
wave number matrix. K. y(f = 1,2,...,C) is an excitation
coefficient that gives the contribution of mode f to the current
I(z) and to the voltage V(z). In (8), we only took modes
propagating in the positive z-direction into account. The
complex wave number matrix for modes propagating in the
negative z-direction is —beta. because a set of transmission
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lines described by (6) is always bi-directional. From (6) and
(8), the relation between V. and I. is the following:

V. = j(Y) 1L, beta,
I. = j(Z)"'V. beta.. 9)

Now we assume that the set of transmission lines is recip-
rocal, in other words we assume that Y and Z are symmetric.
Reciprocity states that the transmission lines satisfy the Tel-
legen circuit law or the Kirchoff laws. This means that the
following normality relation holds between the eigenmodes:

1

QVZIC =U.

(10)
We have used this orthogonality property to normalise the
eigenmodes such that U is the C by C unit matrix. (10) can
be found by applying the law of Tellegen or, directly from (9)
by demanding Y and Z to be symmetric.

Using (9) and (10), one can construct the following impor-
tant relations:

Y = %chetaclf

Z = 25(I1F)"'beta.(I.) L. an
These relations immediately show that Y and Z are symmetric.

Another important quantity describing a set of coupled
transmission lines is the characteristic impedance matrix Zpa;.
Znar gives the relation between a voltage and a current wave
V(z) and I(z) which propagate in the positive direction. Zcpa;
is the input impedance matrix of the set of transmission lines.
It follows that Z.p,, is given by:

Zchar = 2(1,5)_1(16)_1- (12)

Equation (12) shows that Z,; is also symmetrical.

IV. IDENTIFICATION OF THE WAVEGUIDE
AND THE SET OF TRANSMISSION LINES

In this section, we construct a circuit model for the C
modes propagating in the waveguide of Section II. In other
words, we want to determine the circuit parameters Y- and
Z in (6) in such a way that the propagation of the C' modes
in the waveguide is an “as good as possible” representation
of the wave propagation in the set of transmission lines. The
meaning of “as good as possible” will become clear from the
sequel.

First, we demand the complex wave numbers of the modes
in the waveguide to be identical to the complex wave numbers
of the modes in the set of transmission lines

beta. = beta,,. 13)

Secondly, we demand the normalised modes in the set of
transmission lines to be excited by the same amount as the
normalised modes in the waveguide structure. In other words,
we demand that:

K. =K. (14
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In a lossless waveguide, (14) combined with the normalisations
(5) and (10), imply that the power propagated by the C' modes
in the waveguide is the same as the power propagated in the
set of transmission lines.

Equations (13) and (14) allow us to omit the subscripts “¢”
and “w” in beta., beta,,, K. and K,,. The conditions (13)
and (14) do not fully specify Y and Z, since there are still
C? degrees of freedom left. In (11) we still have to determine
the circuit-mode current matrix I. (or equivalently V.). The
determination of I. depends on how the waveguide is excited
or, more precisely, upon the interconnection of the waveguide
with external circuits or other waveguides. We will discuss
various cases in the next section. Equation (12) shows that
determining I. is equivalent to determining the “impedance
level” of the set of transmission lines.

The circuit model developed in [S], [6], [8] demands the
power propagated by C modes in the lossy waveguide and
the set of coupled transmission lines to be the same. In that
case, and when we take K. = K, it is easy to show that the
reciprocity relation (10) should be replaced by

1

virr=p
2 (4 C

(15)

where P is the modal cross-power matrix defined by

Py = %/L{Ef(w,:u) x Hy(z,y)}-u.dS

fig=1,2,....C. (16)
The matrix P is not a diagonal matrix because, in a lossy
waveguide, the eigenmodes are not power orthogonal. If (15)
replaces (10) then (11) should be replaced by

Y = %cheta(PT)—ll’{*

Z = 2j(I7) ' PTbeta(L.) . an
In [6] it is shown that these relations imply that Y and Z
are not symmetric or, that the set of transmission lines is not
reciprocal. We conclude that, if one uses a circuit model based
on the power demand and not on the reciprocity demand, a
reciprocal lossy waveguide is represented by a nonreciprocal
set of transmission lines. When the structure is lossless, there
is no difference between a model based on the reciprocity
demand and a model based on the power demand. We remark
that, in (17), there are again C? degrees of freedom left
because I. is still unknown.

V. DETERMINATION OF THE CIRCUIT-MODE CURRENT MATRIX

In this section we will determine I. in various cases. We
will start with the junction of two general waveguides. Then,
we will look at the excitation of a waveguide by a lumped
element generator. Finally, we will construct the RI- and RV-
models for multiconductor waveguides and we will show that
they are special cases of the excitation by a lumped element
generator.
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Fig. 1. Geometry of the junction of two waveguides.

A. Interconnection of Two Waveguides

Consider the situation of Fig. 1 where two general wave-
guide structures are interconnected. The junction is not nec-
essary abrupt but can extend over a finite length in the =2-
direction. We take C' modes in both waveguides into account.
We want to represent the structure of Fig. 1 by the junction
of two sets of C coupled transmission lines. In the model,
the junction is represented by an abrupt junction at z = 0.
The finite length junction between the real waveguides will
be replaced by a lumped element circuit as discussed below.
We assume that we know the impedance level Zcpar, or the
circuit-mode current matrix I, ; of the transmission line model
of the left waveguide. Now we will determine Zcpa; 2 or I o
of the transmission line model of the right waveguide.

Suppose C incoming modes in the left waveguide, with
excitation coefficients K, incident on the junction. They
will excite transmitted modes, with excitation coefficients K7,
propagating in the positive z-direction in the right waveguide
and reflected modes, with excitation coefficients K, propa-
gating in the negative z-direction in the left waveguide. From
a three dimensional electromagnetic full-wave analysis of the
junction, we know by what amount incoming modes in the left
waveguide excite transmitted modes in the right waveguide
and reflected modes in the left waveguide. In other words, we
know the reflection and transmission matrices S1; and Sg
which describe the relation between K, K3, and K7

K} =SnK{ Ki =SuKi. (18)

In an analogous way, we write the relation between K7, K3
and K3 when there are incoming waves in the right waveguide

K; =S1K;, Ki =S»K;. (19)

We assume that the junction is reciprocal, i.e., that 812 = Sa;.
This reciprocity demand places some restrictions on the type
of materials used in the junction. The matrices S;;(%,j = 1,2)
take into account all the effects inside the junction, including
wave propagating effects, when the junction is not abrupt. The
matrices S;;(4,7 = 1,2) build up the scattering matrix of the
junction.

Fig. 2 shows the equivalent circuit of the structure of Fig. 1.
Between the two sets of transmission lines, we introduce a
series impedance matrix Zg and a parallel admittance matrix
Y. These matrices take into account the excitation of higher
order modes, losses or propagation effects inside the junction.
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Fig. 2. Circuit model for the structure of Fig. 1 consisting of two coupled
sets of transmission lines connected by a (Zo, Yo)-circuit.

The current and voltage waves in both transmission lines due
to an excitation K{ can be written as

Ii(2) = 1.1 exp(—jbeta; 2)K{ — 1. exp(jbeta; z)KT
Vi(z) = 2(I7;)"! exp(—jbeta; 2)K{

+ 2(IF;)7" exp(sjbeta;2)K;
I(2) = L2 exp(—jbetasz)K7
Va(z) = 2(I7,) 7" exp(—jbetazz)K3 (20)
and those due to an excitation K5 as

1,(z) = =11 exp(jbeta; 2)K|
Vi(z) = 2(131,1)_1 exp(jbeta; 2)K7

I(z) = I.2 exp(—jbetazz)K$ — I.» exp(jbetasz)K;
Vi(z) = 2(I7,) 7" exp(—jbetasz)Kj

+ 2(I7,) 7" exp(jbetaz2)Kj . (21
In (20) and (21) we used the relation (10). The circuit formed
by Zo and Y, imposes the following relations at z = 0

1,(0) = I5(0) 4+ Yo V2(0)

V1(0) ~ ZoI1 (0) = V3(0). (22)

If (20)-(22) hold for arbitrary excitations K;r and K, then
one obtains the following expressions for I.. 2, Z¢ and Y

1
L2= §Ic.,1[(U —811)(S12) (U + Sa) + S12]

1
Yo = §[Ic,1(U - 511)(512)—1 - 16)21122
Zo = 2[(I7,) 7 (U + 811) — (I7,)7*812)

X (U—Sll)fl(lc,l)_l. (23)

Once I is known, one can determine Zga, 2 using (12).
Equation (23) indicates that one can only omit Zy and Yy
when there are special relations between S;1, S92 and S;4. For
C = 1, these relations are S;; = —Sg3 and (S11)%2 +(S12)% =
1. In the lossless case this relation means that the sum of the
power in the transmitted and reflected mode is equal to the
power in the incoming mode.

The via-hole is an important special junction between two
single line multiconductor waveguides. In practice, such a via-
hole is characterised by its capacitance Cj [10] and inductance
Lo [11]. In a circuit model, these are represented by a series
impedance Zy = jwLg and a parallel admittance Y, = jwCy,
in accordance with the model of Fig. 2.
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Fig. 3. Geometry of the interconnection of a waveguide with a lumped
element generator.

When the junction is abrupt, it is possible to express the
matrices S;;(,j = 1,2) as a function of the projection of
the modes of one waveguide onto the modes of the other
waveguide. This is done by imposing the continuity of the
transverse field components at the junction as shown in
Appendix B.

Instead of inserting a two-element circuit, consisting of Zg
and Y, between the two waveguides, one can insert a 7 or
T-circuit with three unknown elements. In this case, one can
determine these three unknown elements and the characteristic
impedance of the left waveguide can be chosen arbitrarily.

B. Excitation by a Lumped Element Generator

Fig. 3 shows a general configuration of a waveguide excited
by a coupled Thevenin generator. This Thevenin generator can
be a circuit model for the three-dimensional electromagnetic
excitation of the waveguide or a real lumped element source
as is often the case for a multiconductor waveguide. Again,
we will assume C' modes in the waveguide and hence, we
will assume a C-dimensional coupled Thevenin generator,
characterised by an impedance matrix Z¢. For a multiconduc-
tor waveguide, C' is generally taken equal to the number of
conductors (exclusive the ground conductor). In this case the
C modes correspond to the dominant modes in the waveguide.
In the lossless situation, these C' modes are the fundamental
modes and the other modes are assumed to be below cut-off.

From elementary circuit theory, it is known that the voltage
vector Vg across the coupled Thevenin generator and the
current vector I through the coupled Thevenin generator can
be decomposed into an incoming and a reflected part

I =I.gK{ - L cKg
Ve =V Kt + V. cKg 24
with

1

Vigla=U

5 V.c =%Zcl.c.

(25)
Kg and Kz are the excitation coefficients of the incoming
and reflected modes of the generator respectively. Remark the
resemblance between (24) and the first two equations of (20).

We can now proceed as in the previous case. Suppose that
we know the relation between the amplitudes K, Kj; of the
modes in the waveguide and an excitation Kg These relations
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Fig. 4. Circuit model for the structure of Fig. 3 consisting of a cou-
pled Thevenin generator and a set of transmission lines connected by a
(Za, Yo)-circuit.

follow from a three dimensional electromagnetic analysis of
the generator and are represented by

K =8SaKE  Kg=SuKg. (26)
The relation between K, K3}, and an excitation Ky, is given

by

K; =S12Ky;,  Kj = SwKy,. 7
We assume a reciprocal interconnection with Sy = Sia.
We represent the structure of Fig. 3 by the circuit model of
Fig. 4 where again a coupled series impedance Z¢ and parallel
admittance Y is introduced. The circuit-mode current matrix
I.w,Zo and Y, are determined in the same way as in (23)
with the subscripts “1” and “2” replaced respectively by “G”
and “W”

1
Lw= §Ic,G[(U — 811)(S12) 71U + S22) + S12]
1
YO - §[IC,G(U - 811)(812)_1 — ICY‘V]IZ‘V
ZO = 2[(IZ:G)71(U + Sll) - (IZ:H/)ilslz]

x (U=-811) ' (1.q) . (28)

C. RI- and RV-Models for Multiconductor Waveguides

In the models based on the power demand [3], [5]. [6], {8],
the matrix I. for multiconductor waveguides was determined
using the so-called PI or PV formulation. These models can
also be introduced in combination with the reciprocity demand.
In such a case, we suppose that we have a multiconductor
waveguide with C conductors and that we take the C dominant
modes into account.

In the RI-model, the currents on the conductors in the wave-
guide should be the same as the currents on the transmission
lines in the equivalent transmission line model. We define a
waveguide-mode current matrix I, as

Iw,jfszﬂf(x,y).dl Lf=1,2...,C. (9

c; is the boundary curve around conductor j. Element I, ;¢
is the current on conductor j for mode f. In the RI-model the
I. matrix of the model is defined by

I. =1L, (30)



{ mm 1 mm 0.5 mm
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'0,635 mm 5 =98
Z 7,

Fig. 5. Geometry of an asymmetrical coupled microstrip line with a lossy
substrate.

Contrary to (28), this definition has the advantage to be
independent from the generator. It does not, however, take the
detailed three-dimensional electromagnetic interaction with a
generator into account. It is easy to see that (30) is a special
case of the previous, more general model (28). Inverting the
relations (28), using (30) and Zy = Y, = 0, yields the
S11,S12, and Sy» matrices associated with the RI-model.

The RV-model associates the voltages on the multiconductor
lines with line integrals of the electric field along suitable paths
[;(7 =1,2,...,C) between the ground plane and conductors
in the waveguide. In analogy with (29), a waveguide-mode
voltage matrix V,, is defined

Vu.jf = / Ef(.’ﬂ,y).dl nf=12,...,C.
l.

)

@b

If we demand that V., = V, and use (10), then L. is given by

I.=2(vD)™. (32)

The difference between the RI- and RV-model (or equiva-
lently PI- and PV-model) dissapears when w — 0 because, in
both models, the equivalent currents and voltages become the
true currents and voltages [6].

For a discussion about when to use models based on current,
i.e., RI- or PI-models, and when to use models based on
voltage, i.e., RV- or PV-models, refer to [6].

VI. INTEGRAL REPRESENTATIONS
FOR C, L, R, AND G MATRICES

It is possible to express Y and Z, and consequently,
C,L,R, and G, as integrals of the modal field distributions
over the cross-section of the structure. We start from the
Maxwell curl equations

vtr X Etr - “jWMszllz
Vtr X Ezuz - j,@uz X Etr = _jwmutrHtr
Vi X Hy = jwe B u,

Vi X Hyu, — jfu, x He, = jweps, E, (33)

where we have split the equations into transverse and longitu-
dinal parts. Upon eliminating Ey; ¢ in (5), with the aid of the
second equation of (33) one obtains

1 .
5 [[ i B ) ey
JJSS
+ (Vt, X Eszuz).ng}dS Zjﬁftng. (34)
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Fig. 6. Complex normalised wave numbers of the ¢- and p-mode for the
structure of Fig. 5.

Using Gauss’ theorem, Sommerfeld’s radiation condition and
the third equation of (33), leads to the following expression:

EI2J_//S{(I'.ﬂutrI’Itr,f)-I‘Icr,g‘|’£€zEszEz’y}dS — ﬁf(sfg~ (35)

Using the first and last equation of (33) a dual expression can
be found

g//;{(epsuEtr.f)'Etr,g +pH, pH, g }dS = Bfbsg.
(36)
Upon substituting the integral expressions (35) or (36) for
B in (11), one obtains the integral expressions for Y and
Z. Remark that the matrix I., appearing in (11), is defined
in function of the fields for the RI- and RV-models, with
(29)-(32).

VII. EXAMPLE

In this example, we will examine the difference between
the PI- and RI-model for the two dominant modes in an
asymmetric coupled lossy microstrip line shown in Fig. 5. The
substrate of the line has a thickness of 0.635 mm and consists
of lossy material with relative dielectric constant &, = 9.8
and loss tangent tan§ = 0.005. The strips have a thickness
of 0.3 mm and respective widths of 1 mm and 0.5 mm. The
strips are perfectly conducting and the distance between the
strips is 1.0 mm.

This structure was analysed by a rigorous full-wave eigen-
mode analysis that takes both the losses and the thickness
of the strips into account without approximations [12], [13].
With this analysis, we determine the modal complex wave
numbers and the integrals of modal field components over the
cross-section of the waveguide.

Fig. 6 shows the normalised complex wave numbers of
the two dominant modes in the structure as a function of
frequency. For a symmetric configuration, the c-mode corre-
sponds to the even mode and the 7-mode to the odd mode. As
a result of the fact that the fields are pulled inside the substrate,
the attenuation increases when the frequency increases.

Figs. 7 and 8 show, respectively, the elements of the capac-
itance C and inductance L matrix as a function of frequency
for the PI- and RI-model. The scale of the figure shows no
difference between the results of the PI- or RI-model. This
is also the case between C1o and Ca;, and between Ljo and
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Fig. 7. Elements of the capacitance matrix C for the PI- and RI-model for
the structure of Fig. 5.

L (nH/m) 1600
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Fig. 8. Elements of the inductance matrix L for the PI- and RI-model for
the structure of Fig. 5.
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Fig. 9. Elements of the conductance matrix G for the PI-model for the
structure of Fig. §.

Ly1. To get an idea of the differences between both models,
we give the C and L matrices at 50 GHz for the PI-model

c=(13ms wzsor PEm

L= (3??533 $§£§§)nn/m (37
and for the RI-model

o= (102 120 )PP/

O T
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Fig. 10. Elements of the conductance matrixG for the RIl-model for the
structure of Fig. 5.

R (/m) 140
1204
100
80
60
40
204
04
=204
-404 R
-60 T T T
0 20 40 60 80 100
Frequency (GHz)

Fig. 11. Elements of the resistance matrix R for the Pl-model for the
structure of Fig. 5.

R (Q/m) 3000

2500
2000
1500
1000

500

Frequency (GHz)

Fig. 12. Elements of the resistance matrix R for the RI-model for the
structure of Fig. 5.

Figs. 9 and 10 show the conductance matrix G for the PI-
and RI-model respectively. The nonreciprocity in the PI-model
for the G-matrix is clearly visible in Fig. 9. Note the quite
substantial differences between (G1; and (G in both models
for the higher frequencies. Finally, Figs. 11 and 12 show the
resistance matrix R for the PI- and RI-model respectively.
First, we note that the losses inside the substrate also result
in an R-matrix. However, the elements of R remain small
when compared to wL. Note also that the PI-model results
in a strong nonreciprocal R-matrix. Remark further that the
values of G are larger in the RI-model and that the values
of R are larger in the PI-model. Finally, it must be said that
the current hypothesis in both the RI- and PI-model becomes
questionable at higher frequencies because the currents flowing
inside the lossy substrate become more significant.
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VIII. CONCLUSION

We have proposed a mew consistent reciprocal transmis-
sion line model for hybrid anisotropic lossy waveguides.
This model is based on reciprocity requirements instead of
power requirements. We also studied the determination of the
impedance level of the transmission lines in various configu-
rations. We have generalised the classical voltage or current
related models for multiconductor waveguides to more gen-
eral models for general waveguide structures. The difference
between a power related and reciprocity related transmission
line model was illustrated in an example.

APPENDIX A

In this appendix we will give a short proof of the orthogo-
nality relation (5). If (E,, H,) and (E;, H;) are solutions of
the Maxwell equations for different sources then the following
reciprocity relation [14] holds for reciprocal materials (i.e.,
eps” = eps and mu? = mu) :

‘# {E, xHp -~ Ep x Hy}.u,,dS =0 (A1)
Stct

where St is a closed surface bounding a source free region
and uy, is the unit normal on the surface. Now, we apply
this relation to a section of a waveguide of length L, ie,
0 < z < L, for two modes propagating in the positive
z-direction. Upon inserting

H, = Hy(z,y) exp(—j0;2)
H, = Hy(z,y) exp(~78,2)
(A2)

E, = Ef((t, y) eXp(—j)@fz)
E, = Eg(z’ y) exP(‘jﬂgz)

in (A.1), one obtains
exp[—7(Br + By)L] //S( 1’){Ef x Hg — Eg x Hy}u.dS
—// {(Ef xHy; —E; xHf}u,dS=0 (A3)
S(2=0)

where S(z = 0) and S(z = L) are, respectively, the cross-
sectional planes of the waveguide at the positions z = 0 and
z = L. The contribution of the surface at infinity is zero.
Because the modal field patterns (E¢, Hy) and (Ey, Hy) are
z-independent, (A.3) yields

// {Ef xHy —E; x Hf} 1, dS =0 (A4)

s

where S is an arbitrary cross-section of the waveguide. Next,
we change the direction of mode g in the waveguide. When the
material parameters are of the form (4) the field corresponding
to this mode is given by

By = Eo(z,9) exp(jfB,2) Hy = —Hy(z,y) exp(5By2).
(A5)
This can be checked easily with (33). When using (A.5), (A.4)
should be replaced by, provided 8; # 3,

//{—Ef X Hg - Eg X Hf}.uzdS =0. (A.6)
S
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Combining (A.4) and (A.6) results into the orthogonality
relation (5). We emphasise that (5) is only valid for waveg-
uides with material parameters of the form (4). More general
materials such as chiral materials are either not reciprocal,
not bi-directional or do not satisfy (A.5). Exceptions are
waveguides with special symmetries in their cross-section [9].

APPENDIX B

In this appendix we express the scattering matrices S;;
(i,7 = 1,2) with respect to the modal field profiles, for
an abrupt junction of two waveguides. Assume that a mode
f(f=1,2,...,C) in waveguide 1 is incident on the junction
at z = 0. Now we express the continuity of the transverse
field components at the junction between this incident mode
and the reflected and transmitted modes in both waveguides

Eu15(z.9)KT + Y Buiglz,v)K7,
g9

=Y Eua4(z.9)K7,

9

He o j(2,9)Ki p = ) Hun (2, 9) KT,
g

= Z Htr,‘z,g(-’lf: '.U)K;:g-
g
(B.1)

The summations run over the full set of modes (discrete and
continuous spectrum) in both waveguides. If the first (second)
equation of (B.1) is vector multiplied by Hi; 1, (B¢ 1)
and integrated over the cross-section one finds, using the
normalisation relations (5) and the definitions (18)

C

5thfjf + 511,thfff = ZAhgslz,ngff
g=1
c
SnsKi; — S1nsKi; = BrgSiagsKip (B2)
g=1

We have limited the number of modes to ¢’ and made the
assumption that the other modes can be neglected, which is
of course an approximation. The matrices A and B in (B.2)
contain the projections of the modes in one waveguide onto
the modes in the other waveguide

1
g =5 [[{Bagla) x Hunte.p) s
1
Brg = 5 [ [ {Brs(o.) x Haglo.y) pu.ds. @3

If (B.2) has to be valid for all K’ 1+ 7 one finds in matrix notation

(U+811)=ASn2

(U-811) =B 8Sya. (B.4)
Vector multiplication of the first equation of (B.1) by Hy, 25,
and integration over the cross-section shows by comparison
with the first equation of (B.4) that A = (BT)‘I. Finally from
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(B.4) we can determine Si; and S;o

S12 = 2[(AT) ™ + A]

Si = [A—(AT)[(AT)"! + AJ. (B.5)

By considering modes incident on the junction from the right
waveguide one shows that Sy, = 813 and Sy = [(AT)™! —
Al[(AT)"! + A]
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