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Abstract

The initial-value problems for acoustic waves in fluids, elastic waves in solids and electromagnetic waves are discussed.
The governing systems of first-order partial differential equations pertaining to arbitrarily inhomogenous and anisotropic
media are taken as point of departure and, correspondingly, the initial values of the pertaining two state quantities (i.e.
the two quantities whose product specifies the area density of power flow in each of the wave motions) are prescribed.
The initial-value problem thus posed is thought to be more physical (and turns out to be more complicated) than the
conventional one associated with the second-order wave equation in one of the two state quantities, where the inital values
of this state quantity and its first-order time derivative are prescribed. For the cases of homogeneous, isotropic media, the
initial-value problems are solved with the aid of a time Laplace and spatial Fourier transform method that bears resemblance
to the modified Cagniard method for solving transient wave propagation problems in layered media.

1, Introduction

The initial-value problems in acoustics, elastodynamics and electromagnetics are customarily formulated (and
solved) as initial-value problems associated with a second-order partial differential equation that contains one
of the relevant state variables as the wave quantity and solutions are obtained for the time evolution of waves
in homogeneous, isotropic media. For acoustic waves in fluids the relevant wave quantity is standardly taken
to be the acoustic pressure and the classical Poisson solution of the initial-value problem associated with the
scalar wave equation with constant wavespeed provides the solution (see, Baker and Copson [1], Lamb [2]).
For elastic waves in solids the wave quantity is standardly taken to be the particle velocity and the solution
has been constructed by Love [3]. For electromagnetic waves the vector wave equation for the electric or the
magnetic field strength is usually taken as the point of departure and the Poisson solution is applied to each
of the Cartesian components (see Jones [4], who also considers the initial-value problem associated with a
slightly more general vector wave equation). In each of the three cases, the initial values of the relevant state
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quantity and of its first-order time derivative are taken to specify the further time evolution of the wavefield.
Recent developments in this respect for the case of elastic waves in homogeneous, arbitrarily anisotropic solids
are covered in an extensive paper by Smit and M.V. de Hoop [5].

From a physical as well as from a mathematical point of view, however, the initial-value problems associated
with the coupled first-order systems of partial differential equations pertaining to the three kinds of wave motion
seem more fundamental. In them, the initial values of the two state quantities whose product is representative
for the area density of power flow (Poynting vector) in the wave motion are to be the prescribed quantities
that determine the time evolution of the wavefield. For acoustic waves in fluids the relevant two state quantities
are the acoustic pressure and the particle velocity, for elastic waves in solids the particle velocity and the
dynamic stress, and for electromagnetic waves the electric field strength and the magnetic field strength. In
the present paper, first the general aspects of the initial-value problems thus formulated are disussed for the
case of arbitrarily inhomogenous and anisotropic, but linear, time-invariant, instantaneously and locally reacting,
media. Here, the time Laplace transformed equations indicate that equivalent volume source densities account
for the presence of non-zero initial values. Next, for the case of homogeous media a subsequent spatial Fourier
transformation reduces the problem to solving a system of linear, algebraic equations. Finally, the case of
homogeneous, isotropic media is worked out in detail with a method that bears some resemblance to the
modified Cagniard method for calculating the transient wave motion generated by a source in a layered medium
as developed earlier by the present author (see, Cagniard [6], De Hoop [7-9], Achenbach [10], Miklowitz
[11], Aki and Richards [12]). An interesting alternative to the latter technique is provided by Wang and
Achenbach [13].

To introduce the method, the classical Poisson solution to the initial-value problem associated with the scalar
wave equation is rederived in Section 3. Section 4 deals with the initial-value problem associated with acoustic
waves in fluids, Section 5 with the one associated with elastic waves in solids and Section 6 with the one
associated with electromagnetic waves. '

2. The time Laplace and spatial Fourier transforms

The wave motions considered are present in three-dimensional Euclidean space R3. The position of observa-
tion is specified by the coordinates {x1, x2, x3} with respect to a Cartesian reference frame with the origin O
and the three mutually perpendicular base vectors {i1, i2,i3} of unit length each. In the indicated order, the base
vectors form a right-handed system. The position vector is x = x1i; + X212 + x3i3. The time coordinate is ¢. The
subscript notation for Cartesian vectors and tensors is employed; lower-case latin subscripts are used for this
purpose. The summation convention applies. Partial differentiation with respect to x,, is denoted by dy; d; is a
reserved symbol for differentiation with respect to ¢. The initial values are prescribed at the instant ¢ = £y and
in all space x € R>. The time evolution of the wavefields is to be determined in the interval {t € R;t > to}.
The media in which the waves propagate are assumed to be linear, time invariant, instantaneously and locally
reacting. In the general part of the analysis, they may be arbitrarily inhomogeneous and anisotropic. The case
of homogeneous, isotropic media is next worked out in detail. The configuration space is unbounded.

Let u = u(x,t) denote any of the wave quantities. The time invariance of the configuration and the causality
of the wave motion enable the use of the one-sided Laplace transformation (over the time interval of interest)

o0
u(x,s) = /exp(—st)u(x,t) dt, (1)
1=ty -
where s is the complex frequency. In view of Lerch’s theorem of the time Laplace transformation (Widder

[141), u = u(x,t) is for t > #; uniquely determined by the sequence of equidistant values {i(x, s,);50 €
R,50>0,he R,h>0,5,=50+nh,n=0,1,2,.. .} on the positive real s-axis. Hence, we can without loss
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of generality take s in Eq. (1) real and positive. For the Laplace transform of the time derivative we obtain
through an integration by parts

[e o]

/eXP(~st)r9:u(x, t) dt = —exp(—sto)u(x, to) + si(x,s), (2)

=ty

where we have assumed that u(x,t) is of less than exponential growth as ¢ — oo.

For the case of homogeneous (not necessarily isotropic) media, the spatial Fourier transform provides a
useful tool to carry out the further analytical handling of the problem. This transform (over all space) is taken
as

u(jk,s) = / exp(jhkmxm)u(x,s) dV
xeR3
for k € R, (3)

where j is the imaginary unit and k is the angular wavevector. For the Fourier transform of the spatial derivative
we obtain through an application of Gauss’ integral theorem (spatial integration by parts)

/ exp (jkmxm) Onti(x, s) AV = —jknu(jk, s), (4)
xeR3

where it has been assumed that # is continuous and that #(x,s) = O(|x|™?), with p > 3, as |x| — oo, which
is certainly the case since # shows in fact an exponential decay as |x| — oo as long as Re(s) > 0. The
transformation inverse to Eq. (3) is given by

3
u(x,s)= (—1—) / exp(—jkmxm)u(k,s) dV

21
kEeR3
for x € R. (5)

Just as in the (modified) Cagniard method, the transformation inverse to Eq. (1) will be carried out by
inspection.

3. The initial-value problem for the scalar wave equation

As an introduction to the analytical methods employed we discuss in the present section the initial-value
problem associated with the three-dimensional scalar wave equation with a constant wavespeed c¢. The wave
function u = u(x,t) that is representative for the wave motion satisfies the second-order partial differential

' equation
20Oy — 32u=0 forx € R* and >ty (6)
and has the (classical) assumed initial values
u(x,t) =up(x) and Au(x,to) =ip(x) forx € R, (7
Taking the time Laplace transform of Eq. (6) and applying Eq. (2) twice, we obtain

("Zﬂmami2 — s = ‘—qu, (8)
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where the equivalent volume source density g™ is given by

g = [ug(x) + sug(x)] exp(—stp). )
Taking the spatial Fourier transform of Eq. (8) and applying Eq. (4) twice, we obtain

(Phmkn + s7)i = G4 (10)

The solution of this equation is given by

7 =Gy, (11)
in which
~ 1

- Ckakm + 52 (12)

is the spectral-domain Green’s function of the scalar wave equation. Substituting the expression at the right-
hand side of Eq. (12) in the spatial Fourier inversion integral Eq. (5), introducing in k-space spherical polar
coordinates with x as polar axis and carrying out the resulting integrations (see Appendix A), it is found that

G(x,s) = ?%%IFJ#). for |x| # 0. (13)

Using the property that the product of two Fourier spatial transforms yields upon inversion the convolution in
configuration space, Eq. (9) and Egs. (11)-(13) lead to

(x,5) = / oxpL=s(x — xl/e 1)) 1y () 1 qug(x')] aV (14)
4arct|x — x|
x'E€R3

Introducing in the right-hand side the variables of integration 7 and 8, defined through
x'=x+c(r—1)0, (15)

with {r € R;7 > to} and 0 € Q, where Q = {6 € R*;6,0,, = 1} denotes the sphere of unit radius, Eq. (14)
can be rewritten as

oo

Uu(x,s)= / exp(—s7) (7 — to) (o (x") ) sx,c(r—10)1 47
T=lo
oo
ts / exp(—57) (7 — 10) (1o (¥')) Stxsetr—iey1 47 (16)
7=ty
in which
1
({0, 10} (¥))stxctr-1 = 3 / (0, uo} [ x + c(7 — 10)8] 42 (17)

(=Y

is the spherical mean over the sphere S[x,c(7 — #o)] with center at x and radius c(T — tp). Using Lerch’s
uniqueness theorem of the one-sided time Laplace transformation, Eq. (16) leads through inversion by inspection

to
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u(x,t) = (t — to) (to(x"))sx.c(t—10)1
+3,[(t — t0) (uo(x"))Sx,c(t—10)1]
fort >ty and x € R>. (18)

Eq. (18) is the classical Poisson solution to the initial-value problem associated with the scalar wave equation.

4. The initial-value problem for acoustic waves in fluids

In this section the initial-value problem associated with acoustic waves in fluids is discussed. The state
quantities p = p(x,t) (= acoustic pressure) and v, = v,(x,t) (= particle velocity) of such a wave, present
in a fluid with inertial volume density of mass pi, = pr(x) and compressibility x = «(x) and excited by
sources with volume density of force fi = fr(x,¢) and volume density of volume injection rate g = g(x,¢),
satisfy the system of first-order partial differential equations

axp + Pk,ratvr':fk’ (19)
dvr + KIp =4¢, (20)
for x € R? and ¢ > tg,

and have the assumed initial values
p(x,t0) and o0.(x,fp) forx € R>. (21)

Taking ’t'he time Laplace transform of Egs. (19) and (20) and applying Eq. (2), we obtain

P + SPrrDr = fr + pior(¥)v,(%, t0) exp(—sto), (22)
3,0, + skp=q + k(x)p(x,t0) exp(—sto), (23)
for x € R>.

As the right-hand sides of these equations show, the incorporation of non-zero initial values of the state
quantities at ¢ = fo is equivalent to a change of the volume densities of the actual sources as active for t > #g
into their related equivalent values given by

= i+ prr(x)0,(x, to) exp(—sho), (24)
§l=g+ r(x)p(x,to) exp(—sto). (25)

In the time domain these equivalent source densities are

3= fi + prr(X)ve(x,10)8(2 — to), (26)
¢ l=q+ k(x)p(x,t)8(t — 1), (27)

where 8(t — to) is the Dirac delta distribution operative at ¢ = to. In view of the superposition principle, the
total wave motion is thus the superposition of the one excited by the source distributions as they are active for
t > to and a contribution from the initial values of the state quantities at ¢ = fo. With the aid of the Green’s
functions that express the state quantities at position x and instant ¢ in terms of the source distributions at
position x” and instant #, the total wave motion can therefore be represented as
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o0
plx,t) = / de’ / [GP(x,x',t —t)g(x',t")
=ty x'€Ds

+GP (x, %t — 1) (¥, ) 1AV

+ / [GPU(x,x' t — t)k(x ) p(x', t0)
xeR3
+G (2, %t — 10) prer (2" )0 (¥, 10) 1 AV, (28)
o0
u,(x,t)=/dt’ / [GY(x,x',t —t")q(x', 1)
t'=ty x'eDs

+GhCx,x! 1 — 1) fiu(x', 1)1 dV

+ / [GY(x,x',t —to)k(x")p(x', 1)

x'eR?
+G (%, %'t — 10) pryr (x'Yor (', 10)1 AV (29)
for x € R? and t > 1,

where D*® is the spatial support of the source distributions and the superscripts on the symbol G for the Green’s
functions indicate which mapping from source to field quantity is meant.

In those cases where the Green’s functions can be determined analytically, a further reduction of the field
representations can be obtained. In particular, this applies to homogeneous media where, owing to the shift
invariance in space, the Fourier transformation offers itself as a useful tool. With the aid of Eq. (4) and the
property that the acoustic pressure and the particle velocity are, under the present circumstance, continuous
functions of position, the Fourier transform of Eqs. (22) and (23) is, omitting the argument jk, obtained as

~ikiP + 5ps0r = i + pirDr(10) €xp(—sto), (30)
—jk, 0y + skp =g + kp (to) exp(~—sto). (31)

Once this system of linear algebraic equations has been solved, the inversion to the space-time domain can
be carried out with the aid of the modified Cagniard method or any related technique. The simplest case in
this category occurs when the medium is isotropic as well as homogeneous. This case is discussed below. In

particular, the pure initial-value problem is addressed, i.e. the case where no volume sources are assumed to be
active for ¢ > 1.

4.1. Time evolution of an acoustic wavefield in a homogeneous, isotropic medium

For a homogeneous, isotropic fluid we have py, = pdi,, where 8, is the Kronecker tensor (symmetrical
unit tensor of rank two: 8;j =1 fori=j, §j=0for i # j). From Egs. (30) and (31) we then obtain, putting
fr=0and g=0,

—jkiD + spvi = pv(to) exp(—sto), (32)
—jk, 0y + skp =kp (to) exp(—stp). (33)

Solving Uy from Eq. (32) as
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Ui = 5~ Ti(to) exp(—sto) + (sp) ™ kiP
and substituting this expression in Eq. (33), the following equation for p is obtained:
(ko + s2) P = sP(to) exp(—sto) + jkrk ™0y (f0) exp(—sto),
where
¢ = (pr)~1/?
is the acoustic wavespeed. From this equation p follows as
P =s®P + k™ jk, DY,
in which
o7 =GP (jk, 10) exp(—sto),
@ = G, (jk, to) exp(—sto),
with
L
Clpky + 52

Upon using the rules for the inverse spatial Fourier transformation, p is from Eq. (37) obtained as

G =

p= sDP — K—la@ﬁ,
in which

- —s(|x —x'|/c+
D7 (x,5) = / expl Zﬂ:ﬂxx—';{;l 0)]P(x',to)d‘{

x'eR3

~, expl —s(|x — x| /c + t9)]
(Dr(xys)'_" / p[ 4,(77l.cllx_lil| 0) Ur(x'9t0)dv

X' €R3
Proceeding as in Section 3, the inversion to the time domain yields the result
p=0,07 — k~19,®"
for t > to,
in which
OF (x,1) = (t — t0){p(x', 10)) S[x.c(t—10)1 >

(D;l(x’ t) = (t - tO) <Ur(xlx tO))S[x,c(t—to)]a
for t > 1.

Spatial and temporal inversion of Eq. (32) finally yields
vr=0,(x,0) — p~ Iid,p
=v,(x,tp) — p“a,qﬂ’ + cZI,c9r(9k<1>’,’c

for t > to,

127

(34)

(35)

(36)

(37)

(38)
(39)

(40)

(41)

(42)

(43)

(44)

(45)
(46)

(47)
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where I, denotes time integration from f onward. Egs. (44)-(47) constitute the solution to the acoustic initial-
value problem and govern the pure time evolution of an acoustic wavefield in a homogeneous, isotropic, ideal
fluid.

5. The initial-value problem for elastic waves in solids

In this section the initial-value problem associated with elastic waves in solids is discussed. The state
quantities v, = v,(x,t) (= particle velocity) and 7,4 = 7p4(X,1) (= dynamic stress) of such a wave, present
in a medium with inertial volume density of mass px, = pkr(*) and compliance S; j, 4 = S jp,q(%) and excited
by sources with volume density of force fr = fi(x,¢) and volume density of impressed deformation rate
hij = hij(x,t), satisfy the system of first-order partial differential equations

~A} mp.aOnToq T Prdivr = fi (48)
A;',_j,n,ré'nvr — 8i.jp.q0tTp.q = Nijs (49)

for x € R? and ¢ > 1o,
and have the assumed initial values
ve(x,t0) and T,4(x,10) forx € R>. (50)
In Eqs. (48) and (49),
Afipg = 3 (Bipdiq + 81081p) (51)

is the symmetrical unit tensor of rank four.
Taking the time Laplace transform of Egs. (48) and (49) and applying Eq. (2), we obtain

A} piaPnTra  SPisDr = FieF prr(¥)0:(%, 10) exp(—sto), (52)
.A?,_j,n,ran,v\r - SSi,j,p,q/'T\p,q =/ﬁi,j — Sijpg(X)Tpg(x, t0) exp(—sto), (53)
for x € R%.

As the right-hand sides of these equations show, the incorporation of non-zero initial values of the state
quantities at ¢ = fo is equivalent to a change of the volume densities of the actual sources as they are active for
t > tg into their related equivalent values given by

7= fe + prr(x)v,(x, 10) exp(—sto), (54)
B8 =i — Sijpa(%)Tpq(¥,t0) exp(—sto). (55)

ihj =

In the time domain these equivalent source densities are

F=Fi+ per(0)ve(x,10)8(t — t0), (56)
hi‘} = hi,j - Si,j,p,q(x)Tp,q(x9 t9)6(t — o). (57)
In view of the superposition principle, the total wave motion is thus the superposition of the one excited by the
source distributions as they are active for ¢ > o and a contribution from the initial values of the state quantities
at t = to. With the aid of the Green’s functions that express the state quantities at position x and instant ¢ in
terms of the source distributions at position x’ and instant #', the total wave motion can therefore be represented

as
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—Tp,q(x,t)=/ dr / (G w(x, %"t = 1) fu(x', 1)

t'=ty x'eDs

+GTE (X = (X', 1) ] dV

+ / (G, (.5, = 10) prr (3 )0, 10)
x'€R3

—G (%, %t = 10) S jprg (X)) Tprg (¥, 80) 1AV, (58)
o

vr(x,t)=/ dr’ / (G (x,x',t — 1) fu(x', 1)
=ty x'€Ds

+G (2, %'t — )R (X', F)1dV

ri,j

+ [ 1G5t = )i (o (0

xeR?
~Goh (%, %", t = 10)S1jp.g (X ) Tpe(x' s 80) 1 dY (59)
for x € R3 and t > 1o,

where D* is the spatial support of the source distributions and the superscripts on the symbol G for the Green’s
functions indicate which mapping from source to field quantity is meant, and where the minus sign in the
left-hand side of Eq. (58) accounts for the fact that the elastodynamic Poynting vector is the opposite of the
product of the dynamic stress and the particle velocity.

In those cases where the Green’s functions can be determined analytically, a further reduction of the field
representations can be obtained. In particular, this applies to homogeneous media where, owing to the shift
invariance in space, the Fourier transformation offers itself as a useful tool. With the aid of Eq. (4) and
the property that the particle velocity and the dynamic stress are, under the present circumstance, continuous
functions of position, the Fourier transform of Eqs. (52) and (53) is, omitting the argument jk, obtained as

A mpalknToq + 5PkrDr = Fic + prrbr(10) exp(—sto), (60)
—AH ke — 5Sii0.4T0g =Thij — SijpaTra(to) exp(—sto). (61)

Once this system of linear algebraic equations has been solved, the inversion to the space-time domain can
be carried out with the aid of the modified Cagniard method or any related technique. The simplest case in
this category occurs when the medium is isotropic as well as homogeneous. This case is discussed below. In
particular, the pure initial-value problem is addressed, i.e. the case where no volume sources are assumed to be
active for ¢ > t;. Recent results for the general anisotropic case can be found in a paper by Smit and M.V. de
Hoop [5].

5.1. Time evolution of an elastic wavefield in a homogeneous, isotropic medium

For a homogeneous, isotropic, perfectly elastic solid with volume density of mass p and Lamé coefficients A
and u we have

Sijpa = A6;,jOpq +2M A;fj,p,q’ . (62)

with
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_ A
(BA+2u)2u’
el
4u
The corresponding stiffness (i.e., the inverse of the compliance) is given by

Cpqij = AOp,gij + Z'UJA;,q,i,j'

From Egs. (60) and (61) we then obtain, putting fk =0 and Z,-, i=0,
AZm,p,qjkm?p,q + Sp?jk = p’l)’k(tﬂ) exp( “StO) >
“A?,Lj,n.rj knUr = $Si,j.p.qTp.g = —Si,j,p.aTp.qa(t0) €Xp(—sto).
Solving 7,4 from Eq. (67) as

Tog =5 Tpq(to) exp(—sto) — s71Cp 4:1(1/2) (Gkvj +jkiv) ],

(63)

(64)

(65)

(66)
(67)

(68)

and substituting this result in Eq. (66), we arrive at the spectral-domain elastodynamic wave equation for the

_particle velocity
(ch — c§) kil + C5lenknDi + 57D = O,
in which
cp = [(A+2p)/p]"
is the compressional or P-wave speed,
cs = (u/p)'*
is the shear or S-wave speed and
O = sTx(to) exp(—stp) — P kB g g (0) €XD(—stp).

Application of the operation ki to Eq. (69) leads to the auxiliary relation

-~ k m Qm

kiv; = *C%kn,kn, T
Employing Eq. (73) in Eq. (69) yields

(3 — ) kiknOn
crkpky + 52

(C?S‘kmkm + 52)5k = ék -

3

from which it follows that

5, = ék . (C%) - Cg)kkkménl
¢ C?gknzkm + 52 (C%kmkm + 52) (C%knkn =+ s2)

However,

(c3 —c%) _1 1 . 1
(B hmkm + 52) (Ehnky + 52) 5% \ bk + 52/ch  knky + $2/2 )

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)
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Hence, the expression for 7, can be written as

Ty = GraQr, (717)
in which

Gri =G5Sk — s 2krki(3Gp — c3Gs), (78)
with

Gps = - (79)

2 L]
cpskmkm + 52

is the spectral-domain Green’s tensor for the elastodynamic wave equation. Upon introducing the spectral-
domain P- and S- wave potentials

@S = Gpsti(jk, to) exp(—sto), (80)
D7 = Gps7ij(jk, to) exp(—sto), (81
Eq. (77) can be written as
D= s@zr;;s _ s“lk,kk(c%&v)fp _ C%EIVJZ;S)
o e BT 4 p 5 ki A i (CBOT — FOTY). (82)

Using the rules for the inverse spatial Fourier transformation, U, is from Eq. (82) obtained as

~ oy — =uP 2508
v,=sCI>ﬁ’s + 5 la,ak(cﬁ,@k —cs®,”)

+PulamAj,_m,i,jaz;J§ + pﬁls_Zaraka’”Azm,i:j(C?’&;Ziip - ngﬁz’fs) ’ (83)
in which
!
. —s(|x — :
@jc'RS: / expl s(|x2 x'|feps+t0)] oe(x' 10) AV (84)
x'eR3 '
— — —x' +1t9)]
s / exp[—s(|x — x'|/cps (1) AV 85
t,J 4770%,8‘}: — x'| Tz,j( 0) ( )
x'€R? ’

Proceeding as in Section 3, the inversion to the time domain yields the result

vy =3, %5 + 13,0, (A" — c%@‘,fs)
407 O JOTS + p 20,0 OmA L (CHOTS — CET)

roni,j
for t > to, o
in which
(I)Z;P’S(x, H=(t- to)(Uk(xl, tO))S[x,CP,s(t—to)]’ D
TS (x, 1) = (8 = 10) {Ti,j (X', 10)) SLx.ensti=m)1 Y
for t > tyg,

and where I, denotes time integration from #, onward. Spatial and temporal inversion of Eq. (67) finally yields
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Tpg = Tpg(¥:10) + Cp,g,1i11di0;. - (89)

Egs. (86)-(89) constitute the solution to the elastodynamic initial-value problem and govern the pure time
evolution of an elastic wave in a homogeneous, isotropic, perfectly elastic solid. Note that the solution to the
elastodynamic initial-value problem posed in this section is more complicated than the one for the elastodynamic
wave equation for the particle velocity as given by Love [3].

6. The initial-value problem for electromagnetic waves

In this section the initial-value problem associated with electromagnetic waves is discussed. The state quan-
tities E, = E,(x,t) (= electric field strength) and H, = H,(x,t) (= magnetic field strength) of such a wave,
present in a medium with permittivity €, = €x,(x) and permeability w;, = p;p(x) and excited by sources
with volume density of electric current J; = Ji(x,t) and volume density of magnetic current K; = K;(x, 1),
satisfy the system of first-order partial differential equations (Maxwell’s equations)

—Ekm,pOmHp + €1,0.E, = —Jy, (90)
€nrOnEy + pjpd Hy = —Kj, (91)
for x € R? and ¢ > 1o,
and have the assumed initial values
E.(x,to) and H,(x,t) forx € R>. (92)
In Egs. (90) and (91), &; 4 is the completely antisymmetric unit tensor of rank three (Lévi-Civita tensor):
=1 if {i,j,k} is an even permutation of {1,2,3}, |
€;jx=—1 if {i,j,k} is an odd permutation of {1,2,3}, (93)
=0 if {i,j,k} is no permutation of {1,2,3}.
Taking the time Laplace transform of Eqs. (90) and (91) and applying Eq. (2), we obtain

'_Sk,m,pamﬁp + ka,rEr = _fk + Ek,r(x)Er(x: to) exp(—sto), (94)
EjnrInEy + spipHp = —Kj + prjp (x) Hp (X, 10) exp(—sto), (95)
for x € R3.

As the right-hand sides of these equations show, the incorporation of non-zero initial values of the state
quantities at ¢ = ty is equivalent to a change of the volume densities of the actual sources as they are active for
t > to into their related equivalent values given by

T3 =Ti — €, (%) E(x, o) exp(—sto), (96)
K=K — pjp(x) Hy(%,10) exp(—sto). (97)

In the time domain these equivalent source densities are
T3 =Ty — €xr (%) E-(x,10)8(t — to), (98)
K =Kj — pjp(x)Hp(x,10)6(t — to). (99)

In view of the superposition principle, the total wave motion is thus the superposition of the one excited by the
source distributions as they are active for ¢ > fo and a contribution from the initial values of the state quantities
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at t = ty. With the aid of the Green’s functions that express the state quantities at position x and instant ¢ in
terms of the source distributions at position x’ and instant ¢/, the total wave motion can therefore be represented
as

o0
Er(x,t)=/dt’ / [GEi(x,x",t — ') (%, 1)
t=tp x'eDs
+GE (x, %', t — 1) Ki(x', )] dV
— [ 16 = ) e B )
x/'eR3
+GES (%, x",t — t0) pjp (X' Hp (X', 20) 1 AV, (100)

[e o]

H,,(x,t):/dt’ / [Gi(x,x" e — 1) (x', 1)
=ty x/€Ds
+GHK (x, %'t — ) Kj(x', 1) T dV

- / [GH(x, %', 1 — to) ek (¥) Er(x', 10)
x'eR3

+GHK (x, %', t = 10) pypr (%) Hpr (2 80) 1 AV (101)

for x € R? and ¢t > 1o,

where D is the spatial support of the source distributions and the superscripts on the symbol G for the Green’s
functions indicate which mapping from source to field quantity is meant.

In those cases where the Green’s functions can be determined analytically, a further reduction of the field
representations can be obtained. In particular, this applies to homogeneous media where, owing to the shift
invariance in space, the Fourier transformation offers itself as a useful tool. With the aid of Eq. (4) and the
property that the electric field strength and the magnetic field strength are, under the present circumstance,
continuous functions of position, the Fourier transform of Eqs. (94) and (95) is, omitting the argument jk,
obtained as

Ek,m,pjkmﬁp -+ Sek,rEr = "Zc + Ek,rEr(tO) eXP(—Sto) s (102)
—&priknEr + spjpHp = —K; + pjp Hp (t0) exp(—sto). (103)

Once this system of linear algebraic equations has been solved, the inversion to the space-time domain can
be carried out with the aid of the modified Cagniard method or any related technique. The simplest case in
this category occurs when the medium is isotropic as well as homogeneous. This case is discussed below. In
particular, the pure initial-value problem is addressed, i.e. the case where no volume sources are assumed to be
“active for t > fo.

6.1. Time evolution of an electromagnetic wavefield in a homogeneous, isotropic medium

For a homogeneous, isotropic medium we have €x, = €dy,r and u;, = ud;p,. From Egs. (102) and (103)
we then obtain, putting J; =0 and H, =0,

ExmpikmHy + s€Ex= €Ex(to) exp(—sto), (104)
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—&jnriknEr + suH; = wH;j(to) exp(—sto).
Solving FIj from Eq. (105) as

Hj = s7'H;(10) exp(—sto) + (sp1) "' &jnriknEr

(105)

(106)

and substituting this result in Eq. (104), we arrive at the spectral-domain equation for the electric field strength

—EkmpEpnrCkmknEr + S Ey = sE(to) exp(—sty) — € e mpiknH, (10) exp(—sty),
in which

c=(ep)™'/?
is the electromagnetic wavespeed. With the aid of the relation

EmpEpimnr = OknOmr — SkrOmn

Eq. (107) can be rewritten as

A (—kihr By + kkmEr) + 52Ey = sEy (o) exp(—sto) — € ' ExmpikmHp(to) exp(—sto).

Application of the operation ki to Eq. (110) leads to the auxiliary relation
kiEy = s~ ki Ex (o) exp(—sto).
Employing Eq. (111) in Eq. (110), we obtain
(Phk + 52 B = sEi(t0) exp(—sto) + 57 Pk, Ex (10) exp(—sto)
—€ &g pjkmHy (t0) exp(—sto),

from which it follows that

Ey = GLsEi(to) exp(—sto) + s~ ks Er(10) exp(—sto) — €™ xmpiknFp (o) exp(—sto)],

in which
~ 1
G=— .
kyky + 52

Introducing the spectral-domain potentials
OF = GEr(jk, t0) exp(—sto),
(55?' =GH;(jk, to) exp(—sto),

Eq. (113) can be written as

B, = s®F + 57 Pk i ®F — € e jikn® .

Using the rules for the inverse spatial Fourier transformation, E, is from Eq. (117) obtained as

E, =sDE — 57120, 04D + € &, j0m P,

in which

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)
(116)

(117)

(118)
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~ exp[—s(|x — x'|/c+ 1) ] ,
OE = Ex(x',19) AV
k / ppTp— k(x', to) (119)
x/'eR3
~ exp[—s(|x —x'|/c+t0)] ,
PH = H:(x', /
7] / 47TC2|x—"xll j(x tO) dV (120)
x'€R3

Proceeding as in Section 3, the inversion to the time domain yields the result

E, =0,®F — 21,8, DF + € & jOm @Y

for t > tg, (121)
in which
DL (x,1) = (¢ — 10) (Ex(X', 10))Slx.cCt—10)1> (122)
O (x, 1) = (£ — 10) (Hj(x', 10) ) sLx.cCt-1)1> (123)
for t > 1y,

and where I, denotes time integration from #p onward.
To arrive at the expression for the magnetic field strength, Eq. (113) is substituted in Eq. (106). This yields

H, = G[sH,(to) exp(—sto) + s Pk, kiH;(to) exp(—sty) + ™ €piiknEr]. (124)

The right-hand side in this equation has the same structure as the one in Eq. (113). Applying the same
procedure as for the electric field strength, we obtain

Hy = 3,01 — 1,3,0,0% — u™"&p,0,0,0F
for t > to. (125)

Eqgs. (121)-(123) and (125) constitute the solution to the electromagnetic initial-value problem and govern
the pure time evolution of an electromagnetic wave in a homogeneous, isotropic, lossless medium. Note the
symmetry in the expressions for the electric and the magnetic field strengths, a symmetry that is absent in
acoustic and elastodynamic wave problems.

7. Conclusion

The initial-value problems in acoustics, elastodynamics and electromagnetics for wave propagation in a
lossless medium have been discussed from a general point of view. Their solutions are expressed through the
Green’s functions that apply to the inhomogeneous and anisotropic media at hand and have the form of a
superposition of the contribution from the volume sources as they are active in the the time interval succeeding
the instant at which the initial values of the state quantities are given and a contribution from these initial values
themselves. The latter expressions govern the pure time evolution of the relevant wave phenomena, once the
initial values of the two state quantities (i.e. the wave quantities whose product specifies the power flow density
in the wave motion) are given at a certain instant fo in all space. The cases of homogeneous, isotropic media
are dealt with in detail. From the relevant results it follows that if the spatial support of the initial disturbances
is bounded and has a maximum diameter D, the support of the evolved wave phenomenon at the instant ¢ with
t > to has a support of maximum diameter D + 2¢max(# — t0), Where cmax is the maximum wavespeed of the
wave phenomenon involved (in acoustics and electromagnetics this is just the wavespeed; in elastodynamics
this is the P-wave speed).




136 A.T. de Hoop/Wave Motion 23 (1996) 121-137

Acknowledgement

The research presented in this paper has been financially supported through a Research Grant from the Stich-
ting Fund for Science, Technology and Research (a companion organization to the Schlumberger Foundation
in the USA). This support is gratefully acknowledged. In addition, the author wishes to thank Professor J.D.
Achenbach and Dr. C.-Y. Wang, Center for Quality Engineering and Failure Prevention, Northwestern University,
Evanston, IL, USA, who, through constructive comments on the original manuscript, have encouraged him to
put the problem in a more general setting and to prepare the present revised version.

Appendix A. Determination of G from its spatial Fourier transform G

To determine the complex frequency domain scalar Green’s function G = G(x,s) from its spatial Fourier
transform (cf. Eq. (12))

1

G= s, :
kpky + 52 (A1)
we evaluate the three-dimensional spatial Fourier integral
. 3 . -
A 1 exp(—jkmxm)
G(x,s)={— ————dV .
(x:5) (277) / ok + 5% _(A 2

keR3

One way to determine G is to apply to the right-hand side of Eq. (A.2) the modified Cagniard method as
developed by the present author (see, for example, De Hoop [6]). This method involves, however, the evaluation
of a modified Cagniard path of integration in a complex slowness plane, which evaluation is unavoidable when
considering wave propagation in layered media, but which can be circumvented in the present case, where
the propagation takes place in an unbounded homogeneous medium. In stead a simple change of variables of
integration and a subsequent application of the theorem of residues will provide the answer. Following this line,
we first introduce in Eq. (A.2) the polar variables of integration {k,8, ¢}, with 0 < k < 00,0 < 6 < 7 and
0 < ¢ < 241, around x as polar axis. Then, kyx, = k|x|cos(8), knkn = k? and dV = k?sin(0) dkdfd¢. The
integrations with respect to ¢ and @ are elementary and lead to

~ 1 oof:xp(jk|x|) — exp(—jk|x|)

= kdk
Gx,9) 472 x| / c2k? 4 52
=0

o0
1 exp(—jk|x|)
=~ 2] / et ) kdk. (A3)
k=—00

In the last integral on the right-hand side, the integrand, which is an analytic function of k, is continued away
from the real axis into the complex k-plane. Next, the path of integration (the real axis) is supplemented by a
semi-circle at infinity in the lower half of the k-plane and the residue theorem is applied to the resulting closed
contour that encloses the simple pole k = —js/c (note that s is real and positive). Since the contribution from
the semi-circle at infinity vanishes in view of Jordan’s lemma (note that |x| > 0 for x # 0), the result is

exp(=sxl/e) o1l # 0. (A4)

Glx,s) = 47rc?|x|

Eq. (A.4) is used in the main text.
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