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Objectives

The objective is to construct a computational

discretization of the (forward) electromagnetic

wave problem that is

• as coherent and internally consistent as

possible

• as close as possible to the physics of the

problem

Type of configuration:

• piecewise continuous distribution of constitutive

parameters

• piecewise continuous volume source distribu-

tions

Guideline:

• avoid spatial delta distributions!
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Cartesian reference frame, subscript notation

Reference frame in R3:
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Er(x, t)

Position vector:

• x = x1i1 + x2i2 + x3i3

Subscript notation, summation conven-

tion:

• εk,rEr = ∑3
r=1 εk,rEr for k = 1, 2, 3

• ∂m = derivative with respect to xm
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Electromagnetic wave and source quantities

• Electromagnetic wave quantities:

Er = electric field strength (V/m)

Hp = magnetic field strength (A/m)

Dk = electric flux density (C/m2)

Bj = magnetic flux density (T)

• Electromagnetic source quantities:

Jk = volume source density of electric

current (A/m2)

Kj = volume source density of magnetic

current (V/m2)
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Electromagnetic medium properties

• Electromagnetic medium parameters for

an inhomogeneous, anisotropic medium

with relaxation:

κe
k,r = electric relaxation function (F/m·s)

κm
j,p = magnetic relaxation function (H/m·s)

• Electromagnetic constitutive relations:

Dk = κe
k,r

(t)
∗ Er

Bj = κm
j,p

(t)
∗ Hp

where

(t)
∗ = time convolution



& %

$' URSI

6

Delft University of Technology c©1996 Laboratory of Electromagnetic Research

Electromagnetic medium properties (continued)

• Electromagnetic constitutive relations

for a simple inhomogeneous, anisotropic

medium:

∂tDk = σk,rEr + εk,r∂tEr

∂tBj = χj,pHp + µj,p∂tHp

where

σk,r = conductivity (S/m)

εk,r = permittivity (F/m)

χj,p = linear magnetic hysteresis loss

coefficient (H·s/m)

µj,p = permeability (H/m)
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Electromagnetic field equations, compatibility relations

• Electromagnetic field equations:

−εk,m,p∂mHp + ∂tDk = −Jk

εj,n,r∂nEr + ∂tBj = −Kj

• Electromagnetic compatibility relations:

∫
S νk∂tDkdA = −

∫
S νkJkdA

∫
S νj∂tBjdA = −

∫
S νjKjdA

for any closed surface S (νm = unit vector along

outward normal to S)

• Levi-Civita tensor:

εk,m,p = {+1,−1, 0} if {k, m, p} is

{even, odd, no} permutation of {1, 2, 3}
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Electromagnetic boundary conditions

• Interface boundary conditions: across any

surface of discontinuity in medium properties

εk,m,pνmHp = continuous

εj,n,rνnEr = continuous

νm = unit vector along the normal to the interface

• Compatibility boundary conditions: across

any surface of discontinuity in medium properties

and/or volume source distributions

νk(∂tDk + Jk) = continuous

νj(∂tBj + Kj) = continuous

νk = unit vector along the normal to the surface

of discontinuity
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Reciprocity
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The two admissible states

in the reciprocity theorem.
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Reciprocity theorem of the time-convolution type

• Electromagnetic reciprocity theorem of

the time-convolution type:

εm,r,p

∫
∂D νm[EA

r

(t)
∗ HZ

p − EZ
r

(t)
∗ HA

p ]dA

=
∫
D[∂tD

A
k

(t)
∗ EZ

k − ∂tD
Z
r

(t)
∗ EA

r

−∂tB
A
j

(t)
∗ HZ

j + ∂tB
Z
p

(t)
∗ HA

p ]dV

+
∫
D[JA

k

(t)
∗ EZ

k − KA
j

(t)
∗ HZ

j

−JZ
r

(t)
∗ EA

r + KZ
p

(t)
∗ HA

p ]dV

• The reciprocity relation is a “weak”

formulation of the field problem: for the

theorem to hold for arbitrary States Z,

State A must satisfy the field equations
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Simplex in R3 (tetrahedron)
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Σ

Oriented simplex Σ in R3 with

ordered set of vertices

{x(0), x(1), x(2), x(3)}
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Vectorial edges and faces of a simplex in R3

• Vectorial edges leaving the vertex x(I):

{x(J) − x(I)} for I = 0, 1, 2, 3; J = 0, 1, 2, 3;

I 6= J

• Outwardly oriented vectorial faces meeting at

the vertex x(I):

{A(J)} for I = 0, 1, 2, 3; J = 0, 1, 2, 3; I 6= J

where

• A(I) = outwardly oriented face opposite the

vertex x(I)
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Base vectors at the vertex of a simplex Σ

• Property:

[xm(J) − xm(I)]Am(K)

−3VΣ[δ(J,K) − δ(I, K)]

for I = 0, 1, 2, 3; J = 0, 1, 2, 3; K = 0, 1, 2, 3

where

• VΣ is the volume of Σ

=⇒ At the vertex x(I), the set of base

vectors {x(J) − x(I); I 6= J} is re-

ciprocal to the set of base vectors

{−(3VΣ)−1A(K); K 6= I}
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Local, spatially linear (vertex-based) representation

All field quantities, medium parameters and

source quantities are locally (i.e. in each tetra-

hedron Σ) represented as

• spatially linear interpolations

of their values at the vertices of Σ

Vertex-based local representation

• A vertex-based representation is a local, spa-

tially linear representation of a scalar, vector or

tensor quantity whose vertex values are decom-

posed along the axes of the background

Cartesian reference frame
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Edge- and face-based local vector representation

Edge-based local vector representation

• An edge-based representation is a local, spa-

tially linear representation of a vector quantity

whose vertex “components” are the projections

of that vector on the vectorial edges leav-

ing that vertex

Face-based local vector representation

• A face-based representation is a local, spa-

tially linear representation of a vector quantity

whose vertex “components” are the projections

of that vector on the vectorial faces meet-

ing at that vertex
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Number of local expansion coefficients (vector quantity)

The number of local expansion coefficients

of a vector quantity in a tetrahedron is:

• Vertex-based representation:

4 (vertices) × 3 (components)

• Edge-based representation:

6 (edges) × 2 (projections)

• Face-based representation:

4 (faces) × 3 (projections)
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Global representations (field quantities)

The global representations of the field

quantities {Er, Hp, Dk, Bj} on the discretized

geometry are constructed out of their

• local representations

plus the application of the

• interface boundary conditions to the

edge-based expansion coefficients of

{Er, Hp}

• compatibility boundary conditions to the

face-based expansion coefficients of

{Dk, Bj}
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Global representations (medium parameters, sources)

The global representations of the

• medium parameters {κe
k,r, κ

m
j,p}

and the

• source quantities {Jk, Kj}

on the discretized geometry are constructed out

of their

• local vertex-based representations
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Embedding procedure

To accomodate radiation problems without ex-

plicit boundary conditions on the boundary of the

domain of computation, an embedding proce-

dure is applied; the embedding has:

• R3 as support

• medium parameters {κe;b
k,r, κ

m;b
j,p }, such that

the Green’s functions (point-source solu-

tions) are analytically known

=⇒ Field computation problem can be reformu-

lated as a scattering problem with contrast

source distributions that have the contrasting

domain of computation as their support
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Computational methods based on reciprocity

In the global reciprocity theorem of the time-

convolution type, applied to the domain of com-

putation, we substitute

• State A = constructed global expansions

of field and source quantities

• State Z = sequence of suitable

“computational” States C

Depending on the choice of State C, the

• finite-element method

• integral-equation method

• domain integration method

result
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Finite-element method (computational state)

The finite-element method is characterized by

the computational state:

• {κe;C
r,k , κm;C

p,j } = {0, 0}

=⇒ • {DC
j , BC

p } = {0, 0},

together with either

• EC
k ∈ δ(t){edge-based global expansion

function}, HC
j = 0

=⇒ • {JC
r = 0, KC

p = −εp,n,k∂nE
C
k }

or

• EC
k = 0, HC

j ∈ δ(t){edge-based global

expansion function}

=⇒ • {JC
r = εr,m,j∂mHC

j , KC
p = 0}
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Finite-element method (procedure)

Finite-element method:

• Substitute expanded (actual) field state and

chosen computational state in reciprocity theo-

rem of the time-convolution type, applied to the

domain of computation

• Invoke constitutive relations at all vertices

• Relate boundary values on the boundary

of the domain of computation to contrast

source densities via source-type field represen-

tation in embedding

=⇒

• “square”system of equations in the time evo-

lution of the expansion coefficients

(continued . . .)
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Finite-element method (procedure, continued)

• Substitute expanded (actual) field state in

compatibility relations and compatibility

boundary conditions

=⇒

• additional equations in the same set of ex-

pansion coefficients

An overdetermined system of equations in the

time evolution of the expansion coefficients results

• Solution method: iterative procedure with

guaranteed decrease in the norm of the

residual
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Integral-equation method (computational state)

The integral-equation method is character-

ized by the computational state:

• {κe;C
r,k , κm;C

p,j } = {κe;b
k,r, κ

m;b
j,p } together with

either

• JC
r ∈ δ(t){vertex-based expansion function},

KC
p = 0

=⇒ • {EC
k , HC

j } via source-type integral

representations

or

• JC
r = 0, KC

p ∈ δ(t){vertex-based expansion

function

=⇒ • {EC
r , HC

p } via source-type integral

representations
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Integral-equations method (procedure)

Integral-equation method:

• Substitute expanded (actual) field state and

chosen computational state in the reciprocity

theorem of the time-convolution type, applied

to the entire R3

• Invoke reproduction of volume densities of

contrast sources at all vertices

=⇒

• “square”system of equations in the time evo-

lution of the expansion coefficients

(continued . . .)
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Integral-equation method (procedure, continued)

• Substitute expanded (actual) field state in

compatibility relations and compatibility

boundary conditions

=⇒

• additional equations in the same set of ex-

pansion coefficients

An overdetermined system of equations in the

time evolution of the expansion coefficients results

• Solution method: iterative procedure with

guaranteed decrease in the norm of the

residual



& %

$' URSI

27

Delft University of Technology c©1996 Laboratory of Electromagnetic Research

Domain integration method (computational state)

The domain integration method is character-

ized by the computational state:

• {κe;C
r,k , κm;C

p,j } = {0, 0}

=⇒ • {DC
r , BC

p } = {0, 0},

together with either

• {EC
k ∈ δ(t){global constant with the domain

of computation as support}, HC
j = 0}

=⇒ • {JC
r , KC

p } = {0, 0}

or

• {EC
k = 0, HC

j ∈ δ(t){global constant with

the domain of computation as support}

=⇒ • {JC
r , KC

p } = {0, 0}
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Domain integration method (procedure)

Domain integration method:

• Substitute expanded (actual) field state and

chosen computational state in reciprocity theo-

rem of the time-convolution type, applied to the

domain of computation

• Invoke constitutive relations at all vertices

• Relate boundary values on the boundary

of the domain of computation to contrast

source densities via source-type field representa-

tion in embedding

=⇒

• “square”system of equations in the time evo-

lution of the expansion coefficients

(continued . . .)
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Domain integration method (procedure, continued)

• Substitute expanded (actual) field state in

compatibility relations and compatibility

boundary conditions

=⇒

• additional equations in the same set of ex-

pansion coefficients

An overdetermined system of equations in the

time evolution of the expansion coefficients results

• Solution method: iterative procedure with

guaranteed decrease in the norm of the

residual
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Domain integration method (note)

Note:

In the substitution of the computational states in

the reciprocity theorem of the time-convolution

type, the value of the chosen constant drops out

and the resulting equations are the same as when

the field equations are integrated over the domain

of computation and Gauss’ integral theorem is ap-

plied. The latter domain integration method

can therefore also be approached directly.
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Operator equation, inner product, norm, residual

Operator equation to be “solved”:

• Lu ' q

Inner product:

• < v, u > with

• < v, u >=< u, v >∗

• < v, Lu >=< LHv, u >

(LH= Hermitean conjugate of L)

Associated norm:

• ||u|| =< u, u >1/2

Residual:

• r = q − Lu
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Iterative solution procedure, “improvement condition”

Iterative solution procedure:

• u[n+1] = u[n] + δu[n] for n = 0, 1, 2, . . .

Residual after n steps:

• r[n] = q − Lu[n] for n = 0, 1, 2, . . .

=⇒ r[n+1] = r[n] − Lδu[n]

“Improvement condition”:

• ||r[n]||2 > ||r[n+1]||2 for n = 0, 1, 2, . . .

Sufficient condition for improvement:

• < r[n+1], Lδu[n] > + < Lδu[n], r[n+1] >= 0

which is satisfied by∗

• δu[n] = α[n]LHr[n] with • α[n] = ||LHr[n]||2

||LLHr[n]||2

∗More sophisticated choices for δu[n] exist
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Complex frequency domain analysis

Mapping of causal time functions to the com-

plex frequency domain takes place via the

Laplace transformation:

• û(x, s) =
∫ ∞
t0

exp(−st)u(x, t)dt

for {s ∈ C, Re(s) > s0}

Properties:

• ∂t → s

• u(x, t)
(t)
∗ v(x, t) → û(x, s)v̂(x, s)

• Real frequences: s = jω with ω ∈ R

• The spatial discretization parts run parallel to

the ones for the time-domain analysis


