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Synopsis

Synopsis:

• Introduction and motivation

• Description of the configuration

• EM field equations in strongly heterogeneous media

• EM field equations in the discretized geometry

• EM field expansions in the discretized geometry:

Edge expansions, Face expansions

• The 3D Cartesian coordinate-stretched Perfectly Matched Embedding

• Equivalent system of field relations in the (truncated) embedding



03

Delft University of Technology c© 2006 Laboratory of Electromagnetic Research

EM Research

Ingredients of a (uniquely solvable) Maxwell (EM) field problem

A Maxwell (EM) field problem consists of the following ingredients:

• Coupled system of field equations interrelating the space-time behavior of

the field quantities

• System of constitutive relations representative of the physical behavior of

vacuum and matter (active and passive)

• Set of initial conditions in accordance with the property of causality

• Set of conditions representing the radiation into an unbounded em-

bedding (universe) in accordance with the property of causality

such that

• UNIQUENESS HOLDS
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Admissible field quantities, source quantities and constitutive coefficients

The geometrical structure of space-time (R3 × R):

• x = x1i1 + x2i2 + x3i3 ∈ R
3 = Cartesian position vector in space

• {x1, x2, x3} ∈ R
3 = Cartesian position coordinates • t ∈ R = time coordinate

+ the physics of EM phenomena imply =⇒

• Admissible EM field quantities: Piecewise continuous, real-valued,

Cartesian tensors of Rank 1 (vectors)

• Admissible EM source quantities (active part in the constitutive re-

lations): Piecewise continuous, real-valued, Cartesian tensors of Rank 1

(vectors)

• Admissible EM constitutive functionals (passive part in the constitu-

tive relations): Piecewise continuous, real-valued Cartesian tensors of

Rank 2
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Admissible constitutive behavior of matter – Time Laplace transformation

Proof of UNIQUENESS implies [DeHoop, 2003] =⇒

• Admissible constitutive behavior of matter:

• Linear

• Time invariant

• Locally reacting

• Causally reacting

• Causality can only be handled via the

TIME LAPLACE TRANSFORMATION:

•F̂ (x, s) =

∫ ∞

t=t0

exp(−st)F (x, t)dt analytic for s ∈ C, Re(s) > 0

•F̂ (x, s) = o(1) as |s| → ∞ in s ∈ C, Re(s) ≥ 0

•F̂ (x, s∗) = F̂ ∗(x, s) (∗=complex conjugate) (Schwarz’ reflection principle)
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The time Laplace transformation (properties)

The time Laplace transformation (properties)

• F̂ (x, s) =

∫ ∞

t=t0

exp(−st)F (x, t)dt analytic for s ∈ C, Re(s) > 0

C

Re(s) −→

Im
(s

)
−

→

s = (s∗)∗

s∗

domain of
analyticity

domain of
analytic

continuation

s0

h h h h

Lerch sequence

singularity

LERCH’s uniqueness theorem

• {F̂ (x, s0 + nh); s0 > 0, h > 0, n = 0, 1, 2, . . .} =⇒ F (x, t)H(t − t0)
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The geometrical (tensorial) structure of EM fields in space-time

The geometrical (tensorial) structure of EM fields in space-time R
3×R:

• At any time t ∈ R each EM field quantity or constitutive coefficient is a (Carte-

sian) TENSOR for xm ∈ R
3

• The (Cartesian) components of a tensor are denoted by SUBSCRIPTED

SYMBOLS (’subscript notation’)

• The number of subscripts is equal to the RANK of the tensor

(tensor of rank 0 = scalar; tensor of rank 1 = vector)

• Repeated subscripts in a product indicate SUMMATION over the number of

dimensions (’summation convention’)

• LEVI-CIVITA TENSOR ǫi,j,k (completely anti-symmetric tensor of rank 3):

ǫi,j,k = 1 if {i, j, k} = even permutation of {1, 2, 3}, ǫi,j,k = −1 if {i, j, k} =

odd permutation of {1, 2, 3}, ǫi,j,k = 0 if {i, j, k} are not all different
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EM field topology in space-time

EM field topology in space-time

S

νn

C
τm

• C ⊂ R
3 : Bounded, oriented, closed curve with piecewise continuously turning

unit vector along its tangent τm

• xm = ξm(λ) for 0 ≤ λ < L with ξm(λ + L) = ξm(λ) (λ = arc length)

• τm = ∂λξm(λ)

• S ⊂ R
3 : Bounded, oriented, surface with piecewise continuously turning unit

vector along its normal νn and C as its boundary curve
• Σ(x1, x2, x3) = 0

• νn =
± ∂nΣ(x1, x2, x3)

[∂nΣ(x1, x2, x3)∂nΣ(x1, x2, x3)]1/2

• ǫn,p,mνn(ξp − xp)τm > 0 (right-handed orientation)
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Stokes’ theorem

Stokes’ theorem:

S

νn

C
τm

For any piecewise continuously differentiable scalar field φ(x1, x2, x3, t):

•

∮

C

τmφ dλ = ǫm,n,p

∫

S

νn∂pφ dA

For any piecewise continuously differentiable vector field Fm(x1, x2, x3, t) (take,

successively: m = 1, φ = F1; m = 2, φ = F2; m = 3, φ = F3 and add the results):

•

∮

C

τmFmdλ
︸ ︷︷ ︸

= ǫm,n,p

∫

S

νn∂pFmdA =

∫

S

νnǫn,p,m∂pFmdA
︸ ︷︷ ︸

circulation of

Fm along C

flux of ǫn,p,m∂pFm

across S
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Global EM field relations

Global EM field relations for EM field topology and time interval

T ⊂ R with boundary points ∂T :

S

νn

C
τm

•

∫

T

[circulation of magnetic field along C] dt = [electric flux across S]|∂T

•

∫

T

[circulation of electric field along C] dt = − [magnetic flux across S]|∂T

Global EM field compatibility relations:

• outward electric flux across closed surface = 0

• outward magnetic flux across closed surface = 0
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The electric and magnetic field strengths and flux densities

The EM field quantities: S

νn

C
τm

• circulation of electric field along C =

∮

C

Erτrdλ

=⇒ Er = electric field strength (V/m)

• circulation of magnetic field along C =

∮

C

Hpτpdλ

=⇒ Hp = magnetic field strength (A/m)

• electric flux across S =

∫

S

DiνidA

=⇒ Di = electric flux density (C/m2)

• magnetic flux across S =

∫

S

BjνjdA

=⇒ Bj = magnetic flux density (T)
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The global EM field equations

Global EM field equations (starting point for EM field computation in

strongly heterogeneous media):

S

νn

C
τm

•

∫

T

dt

∮

C

Hpτpdλ =

∫

S

DiνidA

∣
∣
∣
∣
∂T

•

∫

T

dt

∮

C

Erτrdλ = −

∫

S

BjνjdA

∣
∣
∣
∣
∂T

Global EM compatibility relations:

•

∫

closed surface
DiνidA = 0 (νi = unit vector along outward normal)

•

∫

closed surface
BjνjdA = 0 (νj = unit vector along outward normal)
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The local EM field equations (differentiable field quantities)

Local EM field equations for differentiable fields (unsuitable for

EM field computation in strongly heterogeneous media):

• ǫi,m,p∂mHp = ∂tDi for xm ∈ R
3, t ∈ R (Maxwell 1)

• ǫj,n,r∂nEr = −∂tBj for xm ∈ R
3, t ∈ R (Maxwell 2)

=⇒ NUMBER OF UNKNOWNS = 2 * NUMBER OF EQUATIONS

=⇒ to be supplemented by CONSTITUTIVE RELATIONS

Local EM compatibility relations

(existence conditions for Maxwell 1 & Maxwell 2):

• ∂iDi = 0 for xm ∈ R
3, t ∈ R

• ∂jBj = 0 for xm ∈ R
3, t ∈ R
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EM constitutive relations (vacuum and matter)

Local EM constitutive relations in vacuum (SI):

• Di(xm, t) = ǫ0δi,rEr(xm, t) • Bj(xm, t) = µ0δj,pHp(xm, t)

• µ0 = 4π ∗ 10−7 H/m (permeability of vacuum)

• ǫ0 = 1/µ0c
2
0 F/m (permittivity of vacuum)

• c0 = 299792458 m/s (EM wavespeed in vacuum)

• δi,j = {1, 0} for {i = j, i 6= j} (Kronecker tensor)

Macroscopic EM constitutive relations in matter: volume averaging

over D∈ (D∈ = representative elementary domain, xm = barycenter of D∈) of the

(causal) response of (classical or quantum) atomic models =⇒

{Er, Hp}(xm, t′)|t′∈(−∞<t′≤t) 7−→ {Di, Bj}(xm, t) (general)

Er(xm, t′)|t′∈(−∞<t′≤t) 7−→Di(xm, t) Hp(xm, t′)|t′∈(−∞<t′≤t) 7−→Bj(xm, t)

(most materials)
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EM constitutive relations in matter (continued)

LORENTZ’s theory of electrons:

• Di = ǫ0Ei + P ind
i + P ext

i

• Bj = µ0Hj + M ind
j + M ext

j

• P ind
i = (field-dependent) induced electric polarization (C/m2)

= atomic mechanical response to electric field excitation

(electric force on electric charge)

• P ext
i = (field-independent) external electric polarization (C/m2)

• M ind
j = (field-dependent) induced magnetization (T)

= atomic mechanical response to magnetic field excitation

(magnetic force on orbital electric charge and torque on magnetic spin)

• M ext
j = (field-independent) external magnetization (T)
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EM constitutive relations in matter (continued)

UNIQUENESS =⇒ Admissible constitutive behavior of matter:

• Linear

• Time invariant

• Locally reacting

• Causally reacting

=⇒

• Di(xm, t) =

∫ ∞

t′=0
ηi,r(xm, t′)Er(xm, t − t′)dt′ + P ext

i

• Bj(xm, t) =

∫ ∞

t′=0
ζj,p(xm, t′)Hp(xm, t − t′)dt′ + M ext

j

• ηi,r = permittivity relaxation tensor (F/m*s)

• ζj,p = permeability relaxation tensor (H/m*s)
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EM constitutive relations (passive part)

EM constitutive relations (passive part)

(
(t)
∗ = time convolution,

LT
7−→ = time Laplace transformation):

• Di(xm, t) =

∫ ∞

t′=0

ηi,r(xm, t′)Er(xm, t − t′)dt′ = ηi,r(xm, t)
(t)
∗ Er(xm, t)

LT
7−→ • D̂i(xm, s) = η̂i,r(xm, s)Êr(xm, s)

• Bj(xm, t) =

∫ ∞

t′=0

ζj,p(xm, t′)Hp(xm, t − t′)dt′ = ζj,p(xm, t)
(t)
∗ Hp(xm, t)

LT
7−→ • B̂j(xm, s) = ζ̂j,p(xm, s)Ĥp(xm, s)

Properties of {η̂i,r(xm, s), ζ̂j,p(xm, s)}:

• analytic in Re(s) > 0 • positive definite for Re(s) > 0, Im(s) = 0

Padé{n,n} representations of {η̂i,r(xm, s), ζ̂j,p(xm, s)} =⇒

Constitutive relations: • Local ordinary differential operators in time

(avoids time convolutions)
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EM field interface boundary conditions

Interface boundary conditions for EM field strengths

(needed in uniqueness proofs):

τm

τm

h/2

h/2

νΣ
m

Σ interface

•

∮

C

Hpτpdλ = o(1) as h ↓ 0

=⇒ ǫi,m,pν
Σ
mHp CONTINUOUS across interface

•

∮

C

Erτrdλ = o(1) as h ↓ 0

=⇒ǫj,n,rν
Σ
n Er CONTINUOUS across interface
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EM field interface boundary conditions (continued)

Interface boundary conditions for EM flux densities

(needed as existence conditions):

νn

νn

h/2

h/2

νΣ
m

Σ interface

•

∫

S

DiνidA = o(1) as h ↓ 0

=⇒ νΣ
i Di CONTINUOUS across interface

•

∮

C

BjνjdA = o(1) as h ↓ 0

=⇒νΣ
j Bj CONTINUOUS across interface
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Radiation into unbounded embedding (contrast-source representation)

Radiation into unbounded, homogeneous, isotropic, lossless embedding

(universe) via CONTRAST-SOURCE REPRESENTATION:

•

[

Er(xm, t)

Hp(xm, t)

]

=

[

DEP
r,i DEM

r,j

DHP
p,i DHM

p,j

] 



∫

DP G0(xm, x′
m, t)

(t)
∗ Pi(x

′
m, t)dV (x′

m)
∫

DM G0(xm, x′
m, t)

(t)
∗ Mj(x

′
m, t)dV (x′

m)





• D··
··(∂m, ∂t) = space-time differential operators

• DP = supp(Pi)

• DM = supp(Mj)
x′

m

Pi

Mj

DP ∪ DM xm

Er

Hp

ǫ0, µ0; c0 = (ǫ0µ0)
−1/2

Green’s function of the scalar wave equation:

• ∂m∂mG0 − c−2
0 ∂2

t G0 = −δ(xm − x′
m, t)

• G0(xm, x′
m, t) =

δ(t − R/c0)

4πR
for R > 0, • R = [(xm − x′

m)(xm − x′
m)]1/2 ≥ 0
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Radiation into unbounded embedding (continued)

Space-time differential operators in the CONTRAST-SOURCE

REPRESENTATION:

•

[

DEP
r,i DEM

r,j

DHP
p,i DHM

p,j

]

=

[

ε−1
0 ∂r∂i − µ0∂

2
t −ǫr,m,j∂t∂m

ǫp,n,i∂t∂n µ−1
0 ∂p∂j − ε0∂

2
t

]
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The simplicial spatial discretization

The SIMPLICIAL spatial discretization:

P(0)

P(1)

P(2)

P(3)

An(0)

• {P(0),P(1),P(2),P(3)} =

ordered set of points ∈ R
3 (vertices)

• {xm(0), xm(1), xm(2), xm(3)} =

Cartesian position vectors of

{P(0),P(1),P(2),P(3)}

Element = ordered 3-simplex Σ:

• Σ = interior of the convex hull of {P(0),P(1),P(2),P(3)}

Facets (ordered 2-faces) {F(0), F(1), F(2), F(3)}:

• F(I) = {P(0), . . . ,P(I − 1),P(I + 1), . . . ,P(3)}, I = 0, 1, 2, 3

Orientation of Σ ({xm(J) − xm(I); J 6= I} = edges):
{

• positive

• negative

}

if det[xm(1) − xm(0), xm(2) − xm(1), xm(3) − xm(2)]

{

> 0

< 0

}
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The simplicial spatial discretization (continued)

Volume V of Σ:

• V =
1

3!
|det[xm(1) − xm(0), xm(2) − xm(1), xm(3) − xm(2)]|

=
1

3!
|ǫi,j,k[xi(1) − xi(0)][xj(2) − xj(1)][xk(3) − xk(2)]|

Outwardly oriented vectorial areas of facets {Ai(I); I = 0, 1, 2, 3}:

• Ai(0) = +
1

2!
ǫi,j,k[xj(2) − xj(1)][xk(3) − xk(2)]

• Ai(1) = −
1

2!
ǫi,j,k[xj(2) − xj(0)][xk(3) − xk(2)]

• Ai(2) = +
1

2!
ǫi,j,k[xj(1) − xj(0)][xk(3) − xk(1)]

• Ai(3) = −
1

2!
ǫi,j,k[xj(1) − xj(0)][xk(2) − xk(1)]

Property:

• Ai(0) + Ai(1) + Ai(2) + Ai(3) = 0 (∂Σ is a closed surface)
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The barycentric coordinates. Spatial scalar linear interpolation function on a 3-simplex

The barycentric coordinates {λ(0), λ(1), λ(2), λ(3)}

of the position vector xm ∈ Σ ∪ ∂Σ:

• xm =

3∑

I=0

λ(I)xm(I) with 0 ≤ λ(I) ≤ 1; I = 0, 1, 2, 3,

and

3∑

I=0

λ(I) = 1 for xm ∈ Σ ∪ ∂Σ =⇒

• λ(I) =
1

4
−

1

3V
(xm − bm)Am(I) for I = 0, 1, 2, 3

• bm =
1

4

3∑

I=0

xm(I) barycenter of Σ

The local, linear, scalar, spatial expansion function φ(I, xm)

on Σ, F(I) and ∂F(I):

• φ(I, xm) =
1

4
−

1

3V
(xm − bm)Am(I) for I = 0, 1, 2, 3 =⇒φ[I, xm(J)] = δ(I, J)
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Reciprocal, affine, Cartesian base vectors at each vertex of a 3-simplex

Property of edges and outwardly oriented vectorial areas of Σ:

• [xm(J) − xm(I)]Am(K) = −3V [δ(J,K) − δ(I, K)]

for I = 0, 1, 2, 3; J = 0, 1, 2, 3; K = 0, 1, 2, 3 =⇒

• At each vertex P(I)(I = 0, 1, 2, 3) the base

• {xm(J) − xm(I); I = 0, 1, 2, 3; J = 0, 1, 2, 3; J 6= I}

is RECIPROCAL to the base

• {−(1/3V )Am(K); K = 0, 1, 2, 3; K 6= I}

• At each vertex P(I)(I = 0, 1, 2, 3) the base

• {Am(K); K = 0, 1, 2, 3; K 6= I}

is RECIPROCAL to the base

• {−(1/3V )[xm(J) − xm(I)]; I = 0, 1, 2, 3; J = 0, 1, 2, 3; J 6= I}

(cf. CRYSTALLOGRAPHY)
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The linear, vectorial, edge and face expansion functions on a 3-simplex

The linear, scalar, expansion functions φ(I, xm) on Σ:

• φ(I, xm) =
1

4
−

1

3V
(xm − bm)Am(I) for I = 0, 1, 2, 3

The linear, vectorial, edge expansion functions wedge
r (I, J, xm) on Σ:

• wedge
r (I, J, xm) = −(1/3V )φ(I, xm)Ar(J)

for I = 0, 1, 2, 3; J = 0, 1, 2, 3; I 6= J

The linear, vectorial, face expansion functions wface
i (I, J, xm) on Σ:

• wface
i (I, J, xm) = −(1/3V )φ(I, xm)[xi(J) − xi(I)]

for I = 0, 1, 2, 3; J = 0, 1, 2, 3; I 6= J
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The electric and magnetic field strengths linear edge expansions on a 3-simplex

The electric field strength linear edge expansion on Σ:

• Er(xm, t) =

3∑

I=0

3∑

J=0

αE(I, J, t)wedge
r (I, J, xm)

• αE(I, J, t) = Er[xm(I), t][xr(J) − xr(I)]

for I = 0, 1, 2, 3; J = 0, 1, 2, 3; I 6= J

The magnetic field strength linear edge expansion on Σ:

• Hp(xm, t) =

3∑

I=0

3∑

J=0

αH(I, J, t)wedge
r (I, J, xm)

• αH(I, J, t) = Hp[xm(I), t][xp(J) − xp(I)]

for I = 0, 1, 2, 3; J = 0, 1, 2, 3; I 6= J
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The electric and magnetic flux densities linear face expansions on a 3-simplex

The electric flux density linear face expansion on Σ:

• Di(xm, t) =

3∑

I=0

3∑

J=0

αD(I, J, t)wface
i (I, J, xm)

• αD(I, J, t) = Di[xm(I), t]Ai(J)

for I = 0, 1, 2, 3; J = 0, 1, 2, 3; I 6= J

The magnetic flux density linear face expansion on Σ:

• Bj(xm, t) =

3∑

I=0

3∑

J=0

αB(I, J, t)wface
j (I, J, xm)

• αB(I, J, t) = Bj[xm(I), t]Aj(J)

for I = 0, 1, 2, 3; J = 0, 1, 2, 3; I 6= J
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The computational procedure

The computational procedure:

• Specify INPUT

• Generate SIMPLICIAL MESH that fits piecewise continuously turning interfaces

up to order o(h) (h=mesh size)

• Apply FIELD EQUATIONS IN INTEGRAL FORM to all facets of each element

under the application of the ’TRAPEZOIDAL’ INTEGRATION RULE

• Invoke CONSTITUTIVE RELATIONS at each vertex of each element

• Invoke INTERFACE FIELD CONTINUITY CONDITIONS on the SIMPLICIAL

STAR of each EDGE (Er, Hp) and each FACET (Di, Bj)
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The computational procedure (continued)

The computational procedure (continued):

• Simulate radiation into unbounded embedding through CARTESIAN

COORDINATE-STRETCHED PERFECTLY MATCHED EMBEDDING, with

absorptive (and/or time-delaying) layers

• Truncate coordinate-stretched perfectly matched Cartesian embedding by PERI-

ODIC BOUNDARY CONDITION (cf. QUANTUM THEORY OF SOLIDS)

• Apply TRAPEZOIDAL RULE to the TIME INTEGRATIONS

• SOLVE SYSTEM OF EQUATIONS (iteratively)

• Organize OUTPUT
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The domain of computation and its homogeneous, isotropic, lossless embedding

LT-domain contrast-source field representations with respect to

unbounded, homogeneous, isotropic, lossless embedding:

domain of
computation

(3-rectangle)

D

H
o
m

o
g
e
n
e
o
u
s,

isotropic, lossless

e
m

b
e
d
d
in

g

D∞

ε0, µ0

• Ĝ0(xm, x′
m, s) =

exp(−sR/c0)

4πR
for R > 0

• R = [(xm − x′
m)(xm − x′

m)]1/2

•

[

Êr(xm, s)

Ĥp(xm, s)

]

=

[

ε−1
0 ∂r∂i − µ0s

2 −ǫr,m,js∂m

ǫp,n,is∂n µ−1
0 ∂p∂j − ε0s

2

]

[ ∫

DP Ĝ0(xm, x′
m, s)P̂i(x

′
m, s)dV (x′

m)
∫

DM Ĝ0(xm, x′
m, s)M̂j(x

′
m, s)dV (x′

m)

]
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The time-dependent Cartesian coordinate-stretching procedure

The time-dependent Cartesian coordinate-stretching procedure:

domain of
computation

(3-rectangle)

χ̂m(xm, s) = 1 D

C
ar

te
si
a
n

coordinate-stretched

e
m

b
e
d
d
in

g

∂m → χ̂−1

m (xm, s)∂m = ∂̂σ
m

Eσ

Out of the homogeneous, isotropic, loss-

less embedding D∞ a Cartesian coordinate-

stretched embedding Eσ is constructed by car-

rying out the LT-domain operation:

• ∂m→[χ̂m(xm, s)]−1∂m = ∂̂σ
m for m = 1, 2, 3 (no summation) with

•{χ̂1(x1, s), χ̂2(x2, s), χ̂3(x3, s)} piecewise continuous in space,

analytic for s ∈ C, Re(s) > 0, and real and positive for s ∈ R, s > 0

(=⇒ causality in time + UNIQUENESS)

•{χ̂1(x1, s), χ̂2(x2, s), χ̂3(x3, s)} = {1, 1, 1} in domain of computation D
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The scalar Green’s function (propagator) of the Cartesian coordinate-stretched embedding

The LT-domain Green’s function (propagator) Ĝσ
0 (xm, x′

m, s) of the

Cartesian coordinate-stretched embedding (∂̂σ
m = [χ̂m(xm, s)]−1∂m):

• ∂̂σ
m∂̂σ

mĜσ
0(xm, x′

m, s) − (s2/c2
0)Ĝ

σ
0(xm, x′

m, s) =

−[χ̂1(x
′
1, s)]−1[χ̂2(x

′
2, s)]−1[χ̂3(x

′
3, s)]−1δ(x1 − x′

1, x2 − x′
2, x3 − x′

3)

• Ĝσ
0(xm, x′

m, s) =
exp(−sR̂σ/c0)

4πR̂σ
for R̂σ 6= 0 with

• R̂σ =





[
∫ x1

x′1

χ̂1(ξ1, s)dξ1

]2

+

[
∫ x2

x′2

χ̂2(ξ2, s)dξ2

]2

+

[
∫ x3

x′3

χ̂3(ξ3, s)dξ3

]2




1/2

≥ 0

for s ∈ R, s > 0 (LT-domain stretched-coordinate distance function)

=⇒ NO REFLECTIONS NOTWITHSTANDING INHOMOGENEITY

=⇒
THE CARTESIAN COORDINATE-STRETCHED EMBEDDING

IS 3D REFLECTIONFREE ! (De Hoop et. al. 2005)
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The domain of computation and its Cartesian coordinate-stretched reflectionless embedding

LT-domain contrast-source field representations with respect to an

unbounded Cartesian coordinate-stretched reflectionless embedding:

domain of
computation

(3-rectangle)

χ̂m(xm, s) = 1 D

C
ar

te
si
a
n

coordinate-stretched

e
m

b
e
d
d
in

g

∂m → χ̂−1

m (xm, s)∂m = ∂̂σ
m

Eσ

• Ĝσ
0(xm, x′

m, s) =
exp(−sR̂σ/c0)

4πR̂σ

for R̂σ 6= 0

• R̂σ = R̂σ(xm, x′
m, s)

•

[

Êr(xm, s)

Ĥp(xm, s)

]

=

[

ε−1
0 ∂̂σ

r ∂̂σ
i − µ0s

2 −ǫr,m,js∂̂
σ
m

ǫp,n,is∂̂
σ
n µ−1

0 ∂̂σ
p ∂̂σ

j − ε0s
2

]

[ ∫

DP Ĝσ
0(xm, x′

m, s)P̂i(x
′
m, s)dV (x′

m)
∫

DM Ĝσ
0(xm, x′

m, s)M̂j(x
′
m, s)dV (x′

m)

]

=⇒ REPRODUCES ACTUAL FIELD IN D
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The domain of computation and its truncated Cartesian coordinate-stretched embedding

LT-domain contrast-source field representations with respect to a

truncated Cartesian coordinate-stretched embedding:

domain of
computation

(3-rectangle)

χ̂m(xm, s) = 1 D

T
ru

n
ca

te
d

Cartesian coordinate-stretched

e
m

b
e
d
d
in

g

∂m → χ̂−1

m (xm, s)∂m = ∂̂σ
m

Eσ

: periodic boundary conditions

• Ĝσ;per
0 (xm, x′

m, s) =

∑
[

exp(−sR̂σ;per/c0)

4πR̂σ;per

]

•
R̂σ;per = distance function from

periodically repeated source points

•

[

Êr(xm, s)

Ĥp(xm, s)

]

=

[

ε−1
0 ∂̂σ

r ∂̂σ
i − µ0s

2 −ǫr,m,js∂̂
σ
m

ǫp,n,is∂̂
σ
n µ−1

0 ∂̂σ
p ∂̂σ

j − ε0s
2

]

[ ∫

DP Ĝσ;per
0 (xm, x′

m, s)P̂i(x
′
m, s)dV (x′

m)
∫

DM Ĝσ;per
0 (xm, x′

m, s)M̂j(x
′
m, s)dV (x′

m)

]

=⇒ ACTUAL FIELD IN D + SPURIOUS CONTRIBUTIONS
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Excess time delay and attenuation in the Cartesian coordinate-stretched embedding

A class of coordinate-stretching functions controlling excess time delay

and attenuation in the Cartesian coordinate-stretched embedding:

• χ̂m(xm, s) = 1 + Nm(xm) + s−1σm(xm) (De Hoop et. al., 2005)

• Nm(xm) = excess time delay coefficient [Nm(xm) > −1]

• σm(xm) = absorption coefficient [σm(xm) ≥ 0]

for m = 1, 2, 3 (no summation) =⇒

• Ĝσ
0 =

s

4πc0T

exp{−T [(s + A)2 + B2]1/2}

[(s + A)2 + B2]1/2

Abramowitz & Stegun, Formula 29.3.92, p. 1027 =⇒:

• Gσ
0 =

1

4πc0T
∂t

[

exp(−At)J0[B(t2 − T 2)1/2]H(t − T )
]

J0 = Bessel function of the first kind and order zero

• T = time delay along propagation path

• A = attenuation along propagation path
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The EM field equations in the Cartesian coordinate-stretched embedding (original form)

The LT-domain EM field equations in the Cartesian

coordinate-stretched embedding (original form):

• ǫi,m,p∂̂
σ
mĤp = sD̂i • ǫj,n,r∂̂

σ
nÊr = −sB̂j

The LT-domain EM field constitutive relations in the Cartesian

coordinate-stretched embedding (original form):

• D̂i = ǫ0δi,rÊr • B̂j = µ0δj,pĤp

=⇒
IN THE TIME DOMAIN, ∂̂σ

mĤp and ∂̂σ
nÊr =⇒

TIME CONVOLUTIONS

(NUMERICALLY UNWANTED)
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The modified EM field equations in the Cartesian coordinate-stretched embedding

The LT-domain EM field equations in the Cartesian

coordinate-stretched embedding (equivalent form fitting the

discretization stencil in D):

• ǫi,m,p∂mĤσ
p = sD̂σ

i

• Ĥσ
1 = χ̂1Ĥ1 • Ĥσ

2 = χ̂2Ĥ2 • Ĥσ
3 = χ̂3Ĥ3

• D̂σ
1 = χ̂2χ̂3D̂1 • D̂σ

2 = χ̂3χ̂1D̂2 • D̂σ
3 = χ̂1χ̂2D̂3

• ǫj,n,r∂nÊ
σ
r = −sB̂σ

j

• Êσ
1 = χ̂1Ê1 • Êσ

2 = χ̂2Ê2 • Êσ
3 = χ̂3Ê3

• B̂σ
1 = χ̂2χ̂3B̂1 • B̂σ

2 = χ̂3χ̂1B̂2 • B̂σ
3 = χ̂1χ̂2B̂3

=⇒

UNPHYSICAL OPERATIONS ON PHYSICAL FIELDS ARE

REPLACED WITH PHYSICAL OPERATIONS ON

UNPHYSICAL FIELDS (IN EMBEDDING, NOT IN D!)
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The modified constitutive relations in the Cartesian coordinate-stretched embedding

The LT-domain modified constitutive relations in the Cartesian

coordinate-stretched embedding:

• D̂σ
1 =

χ̂2χ̂3

χ̂1
Êσ

1 • D̂σ
2 =

χ̂3χ̂1

χ̂2
Êσ

2 • D̂σ
3 =

χ̂1χ̂2

χ̂3
Êσ

3

• B̂σ
1 =

χ̂2χ̂3

χ̂1
Ĥσ

1 • B̂σ
2 =

χ̂3χ̂1

χ̂2
Ĥσ

2 • B̂σ
3 =

χ̂1χ̂2

χ̂3
Ĥσ

3

=⇒

IN THE TIME DOMAIN, (NUMERICALLY UNWANTED)

TIME CONVOLUTIONS HAVE BEEN SHIFTED TO THE

CONSTITUTIVE RELATIONS =⇒ CAN BE CIRCUM-

VENTED FOR LORENTZ THEORY–OF–ELECTRONS

MODEL FOR CONSTITUTIVE BEHAVIOR OF MAT-

TER IN D AND ABSORPTIVE/DELAY COORDINATE-

STRETCHING MODEL IN Eσ
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Time-domain field equations and constituitive relations in coordinate-stretched embedding

The time-domain EM field equations in the Cartesian

coordinate-stretched embedding:

• ǫi,m,p∂mHσ
p = ∂tD

σ
i • ǫj,n,r∂nE

σ
r = −∂tB

σ
j

The time-domain EM field constitutive relations in the Cartesian

coordinate-stretched embedding (absorptive/delay

coordinate-stretching model) follow from the inverse LT of:

• s (sχ̂1)D̂
σ
1 = (sχ̂2)(sχ̂3)Ê

σ
1

• s (sχ̂2)D̂
σ
2 = (sχ̂3)(sχ̂1)Ê

σ
2

• s (sχ̂3)D̂
σ
3 = (sχ̂1)(sχ̂2)Ê

σ
3

• s (sχ̂1)B̂
σ
1 = (sχ̂2)(sχ̂3)Ĥ

σ
1

• s (sχ̂2)B̂
σ
2 = (sχ̂3)(sχ̂1)Ĥ

σ
2

• s (sχ̂3)B̂
σ
3 = (sχ̂1)(sχ̂2)Ĥ

σ
3

and observing that:

• s → ∂t

• s χ̂m(xm, s) → [1 + Nm(xm)]∂t + σ(xm) for m = 1, 2, 3 (no summation)


