

Electromagnetic Field Computation in Strongly Heterogeneous Media – The Numerics that Models the Physics

by

Adrianus T. de Hoop

Delft University of Technology Laboratory of Electromagnetic Research Faculty of Electrical Engineering, Mathematics and Computer Science Mekelweg 4 • 2628 CD Delft • the Netherlands T: +31 15 2785203 / +31 15 2786620 F: +31 15 2786194 E: a.t.dehoop@ewi.tudelft.nl

Title

Copyright © 2006

Laboratory of Electromagnetic Research

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Mekelweg 4

2628 CD Delft, the Netherlands

T: +31 15 2786620 • **F:** +31 15 2786194 • **W:** www.emlab.ewi.tudelft.nl

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Laboratory of Electromagnetic Research.

Copyright statement

1a

Synopsis:

- Introduction and motivation
- Description of the configuration
- EM field equations in strongly heterogeneous media
- EM field equations in the discretized geometry
- EM field expansions in the discretized geometry: Edge expansions, Face expansions
- The 3D Cartesian coordinate-stretched Perfectly Matched Embedding
- Equivalent system of field relations in the (truncated) embedding

Synopsis

02

EM Research

A Maxwell (EM) field problem consists of the following ingredients:

- **Coupled system of field equations** interrelating the space-time behavior of the field quantities
- **System of constitutive relations** representative of the physical behavior of vacuum and matter (active and passive)
- Set of initial conditions in accordance with the property of causality
- Set of conditions representing the radiation into an unbounded embedding (universe) in accordance with the property of causality such that

• UNIQUENESS HOLDS

TUDelft

Ingredients of a (uniquely solvable) Maxwell (EM) field problem

The geometrical structure of space-time $(\mathbb{R}^3 \times \mathbb{R})$:

- $\boldsymbol{x} = x_1 \boldsymbol{i}_1 + x_2 \boldsymbol{i}_2 + x_3 \boldsymbol{i}_3 \in \mathbb{R}^3 = \mathsf{Cartesian}$ position vector in space
- $\{x_1, x_2, x_3\} \in \mathbb{R}^3$ = Cartesian position coordinates $t \in \mathbb{R}$ = time coordinate
- + the physics of EM phenomena $imply \implies$

TUDelft

- Admissible EM field quantities: Piecewise continuous, real-valued, Cartesian tensors of Rank 1 (vectors)
- Admissible EM source quantities (active part in the constitutive relations): Piecewise continuous, real-valued, Cartesian tensors of Rank 1 (vectors)
- Admissible EM constitutive functionals (passive part in the constitutive relations): Piecewise continuous, real-valued Cartesian tensors of Rank 2

Admissible field quantities, source quantities and constitutive coefficients

Proof of **UNIQUENESS** implies [DeHoop, 2003] \implies

• Admissible constitutive behavior of matter:

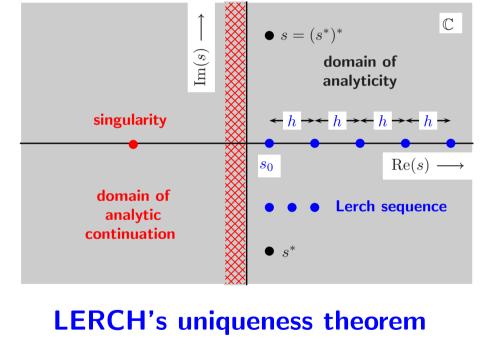
- Linear
- Time invariant
- Locally reacting
- Causally reacting
- Causality can only be handled via the TIME LAPLACE TRANSFORMATION:

•
$$\hat{F}(\boldsymbol{x}, s) = \int_{t=t_0}^{\infty} \exp(-st)F(\boldsymbol{x}, t)dt$$
 analytic for $s \in \mathbb{C}$, $\operatorname{Re}(s) > 0$
• $\hat{F}(\boldsymbol{x}, s) = o(1)$ as $|s| \to \infty$ in $s \in \mathbb{C}$, $\operatorname{Re}(s) \ge 0$
• $\hat{F}(\boldsymbol{x}, s^*) = \hat{F}^*(\boldsymbol{x}, s)$ (*=complex conjugate) (Schwarz' reflection principle)

05 Admissible constitutive behavior of matter – Time Laplace transformation

The time Laplace transformation (properties)

•
$$\hat{F}(\boldsymbol{x},s) = \int_{t=t_0}^{\infty} \exp(-st)F(\boldsymbol{x},t) dt$$
 analytic for $s \in \mathbb{C}, \operatorname{Re}(s) > 0$



• {
$$\hat{F}(\boldsymbol{x}, \boldsymbol{s}_0 + \boldsymbol{n}\boldsymbol{h}); \boldsymbol{s}_0 > 0, \boldsymbol{h} > 0, \boldsymbol{n} = 0, 1, 2, \ldots$$
} \Longrightarrow $F(\boldsymbol{x}, t)H(t - t_0)$

The time Laplace transformation (properties)

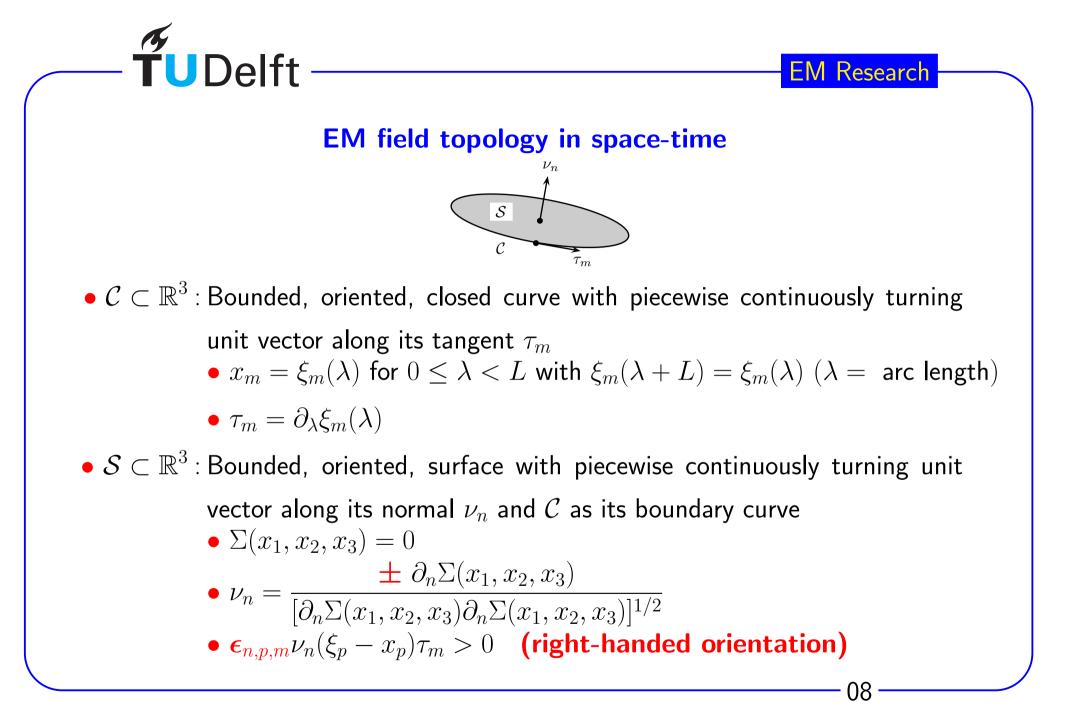
The geometrical (tensorial) structure of EM fields in space-time $\mathbb{R}^3 \times \mathbb{R}$:

- At any time $t \in \mathbb{R}$ each EM field quantity or constitutive coefficient is a (Cartesian) **TENSOR** for $x_m \in \mathbb{R}^3$
- The (Cartesian) components of a tensor are denoted by SUBSCRIPTED SYMBOLS ('subscript notation')
- The number of subscripts is equal to the **RANK** of the tensor (tensor of rank 0 = scalar; tensor of rank 1 = vector)
- Repeated subscripts in a product indicate **SUMMATION** over the number of dimensions ('summation convention')
- LEVI-CIVITA TENSOR ε_{i,j,k} (completely anti-symmetric tensor of rank 3):
 ε_{i,j,k} = 1 if {i, j, k} = even permutation of {1, 2, 3}, ε_{i,j,k} = -1 if {i, j, k} = odd permutation of {1, 2, 3}, ε_{i,j,k} = 0 if {i, j, k} are not all different

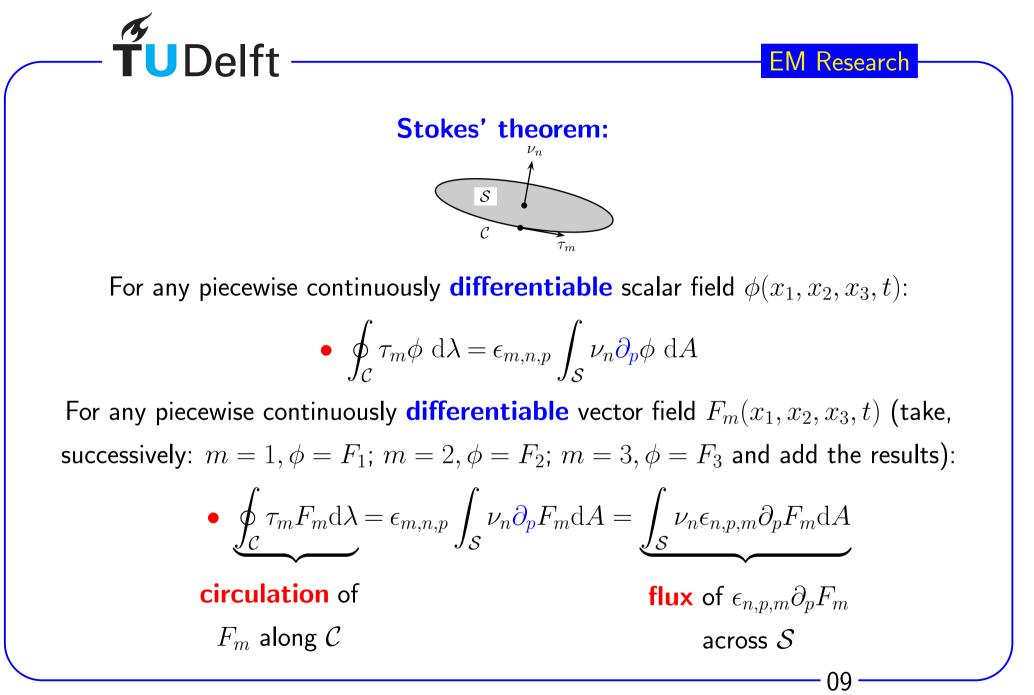
The geometrical (tensorial) structure of EM fields in space-time

TUDelft

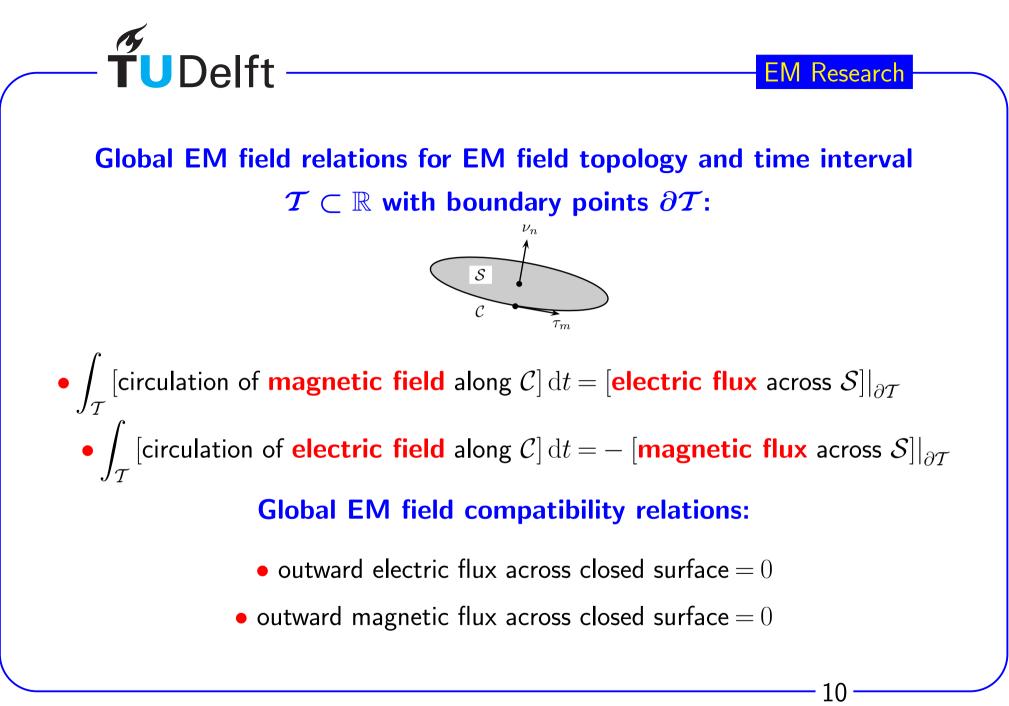
()7



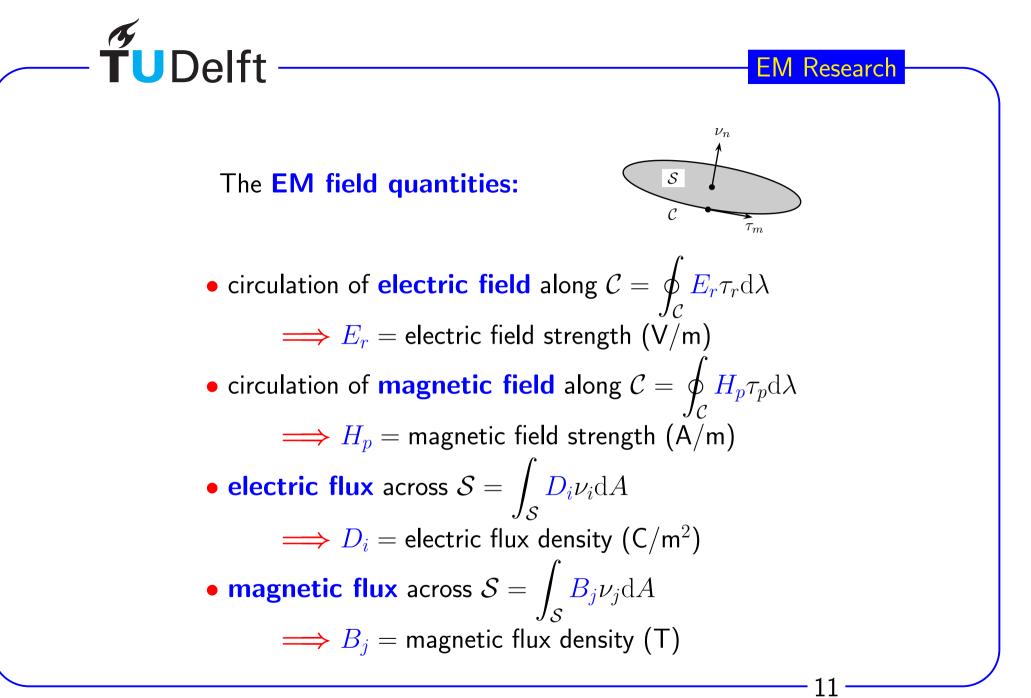
EM field topology in space-time



Stokes' theorem



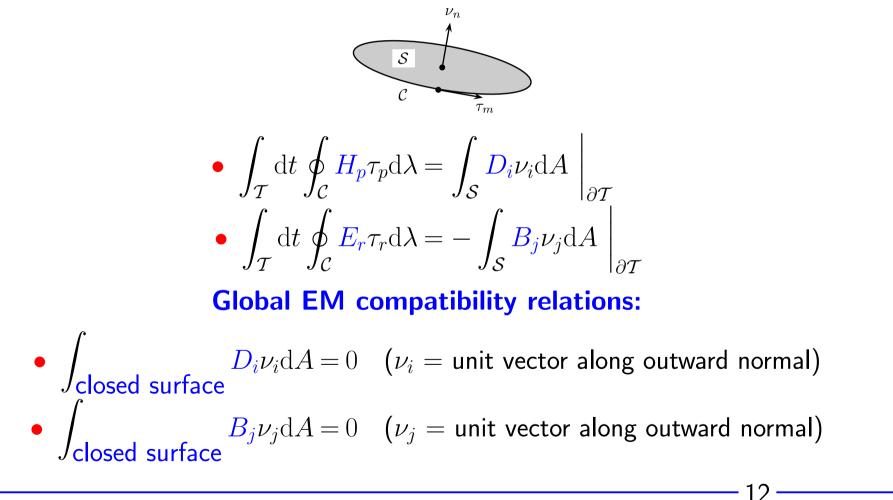
Global EM field relations



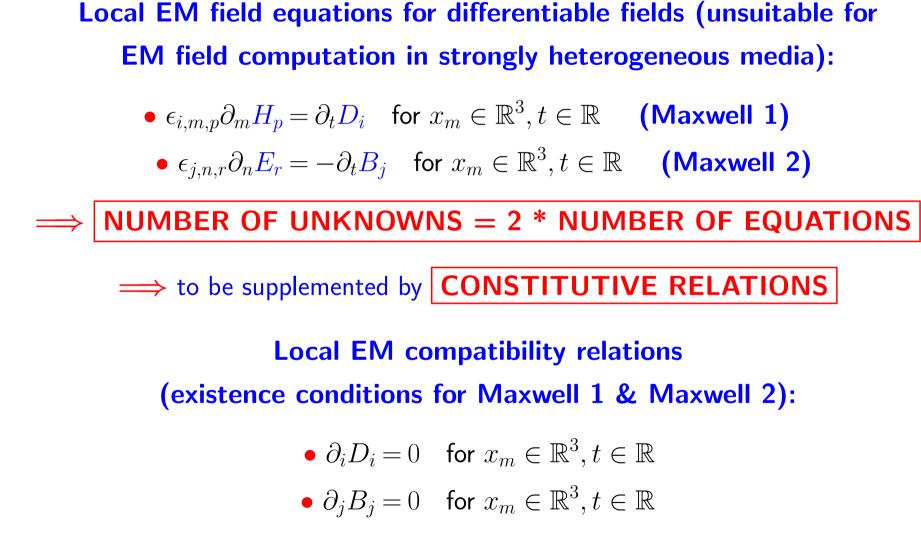
The electric and magnetic field strengths and flux densities

Global EM field equations (starting point for EM field computation in

strongly heterogeneous media):



The global EM field equations



The local EM field equations (differentiable field quantities)

TUDelft

Local EM constitutive relations in vacuum (SI):

•
$$D_i(x_m, t) = \epsilon_0 \delta_{i,r} E_r(x_m, t)$$
 • $B_j(x_m, t) = \mu_0 \delta_{j,p} H_p(x_m, t)$

- $\mu_0 = 4\pi * 10^{-7}$ H/m (permeability of vacuum)
- $\epsilon_0 = 1/\mu_0 c_0^2$ F/m (permittivity of vacuum)
- $c_0 = 299792458$ m/s (EM wavespeed in vacuum)
- $\delta_{i,j} = \{1, 0\}$ for $\{i = j, i \neq j\}$ (Kronecker tensor)

Macroscopic EM constitutive relations in matter: volume averaging over \mathcal{D}_{\in} (\mathcal{D}_{\in} = representative elementary domain, x_m = barycenter of \mathcal{D}_{\in}) of the (causal) response of (classical or quantum) atomic models \Longrightarrow

$$\{E_r, H_p\}(x_m, t')|_{t' \in (-\infty < t' \le t)} \longmapsto \{D_i, B_j\}(x_m, t) \quad \text{(general)}$$

$$E_r(x_m, t')|_{t' \in (-\infty < t' \le t)} \longmapsto D_i(x_m, t) \qquad H_p(x_m, t')|_{t' \in (-\infty < t' \le t)} \longmapsto B_j(x_m, t)$$

$$\text{(most materials)}$$

EM constitutive relations (vacuum and matter)

ÚDelft

LORENTZ's theory of electrons:

- $D_i = \epsilon_0 E_i + P_i^{\text{ind}} + P_i^{\text{ext}}$
- $B_j = \mu_0 H_j + M_j^{\text{ind}} + M_j^{\text{ext}}$

• $P_i^{\text{ind}} = (\text{field-dependent}) \text{ induced electric polarization } (C/m^2)$

= atomic mechanical response to electric field excitation (electric force on electric charge)

- $P_i^{\text{ext}} = (\text{field-independent}) \text{ external electric polarization } (C/m^2)$
- $M_j^{\text{ind}} = (\text{field-dependent}) \text{ induced magnetization } (\mathsf{T})$

= atomic mechanical response to magnetic field excitation

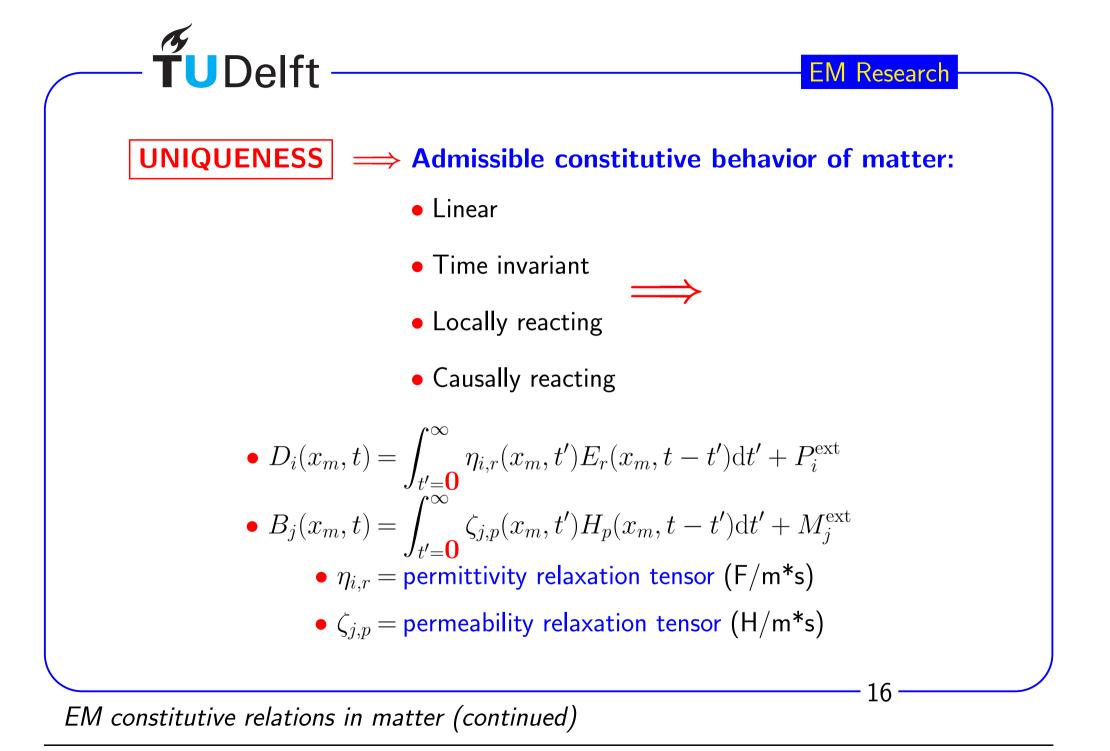
(magnetic force on orbital electric charge and torque on magnetic spin)

• $M_i^{\text{ext}} = (\text{field-independent}) \text{ external magnetization } (\mathsf{T})$

EM constitutive relations in matter (continued)

15

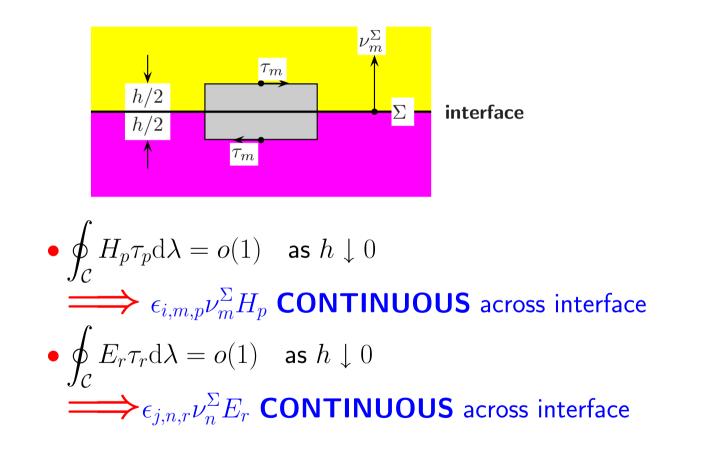
EM Research



EM constitutive relations (passive part) $(* = time convolution, \mapsto = time Laplace transformation):$ • $D_i(x_m, t) = \int_{-\infty}^{\infty} \eta_{i,r}(x_m, t') E_r(x_m, t - t') dt' = \eta_{i,r}(x_m, t) \overset{(t)}{*} E_r(x_m, t)$ $\stackrel{\textbf{LT}}{\longmapsto} \quad \bullet \ \hat{D}_i(x_m, s) = \hat{\eta}_{i,r}(x_m, s) \hat{E}_r(x_m, s)$ • $B_j(x_m, t) = \int_{t'=0}^{\infty} \zeta_{j,p}(x_m, t') H_p(x_m, t - t') dt' = \zeta_{j,p}(x_m, t) \overset{(t)}{*} H_p(x_m, t)$ $\stackrel{\textbf{LT}}{\longmapsto} \quad \bullet \ \hat{B}_i(x_m, s) = \hat{\zeta}_{i,n}(x_m, s) \hat{H}_p(x_m, s)$ Properties of $\{\hat{\eta}_{i,r}(x_m,s), \hat{\zeta}_{i,n}(x_m,s)\}$: • analytic in $\operatorname{Re}(s) > 0$ • positive definite for $\operatorname{Re}(s) > 0$, $\operatorname{Im}(s) = 0$ **Padé**{n,n} representations of { $\hat{\eta}_{i,r}(x_m,s), \hat{\zeta}_{j,p}(x_m,s)$ } \implies Constitutive relations: • Local ordinary differential operators in time (avoids time convolutions) 17EM constitutive relations (passive part)

UDelft

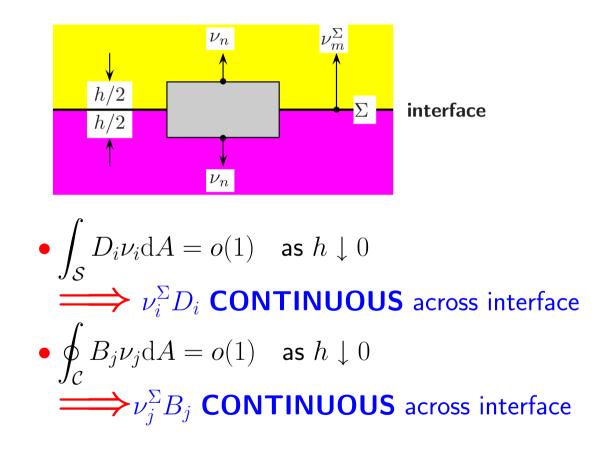
Interface boundary conditions for EM field strengths (needed in uniqueness proofs):



EM field interface boundary conditions

Interface boundary conditions for EM flux densities

(needed as existence conditions):

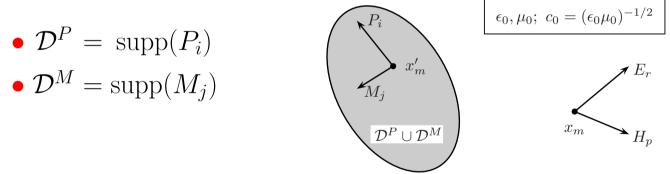


EM field interface boundary conditions (continued)

TUDelft Radiation into unbounded, homogeneous, isotropic, lossless embedding (universe) via CONTRAST-SOURCE REPRESENTATION:

$$\begin{bmatrix} E_r(x_m,t) \\ H_p(x_m,t) \end{bmatrix} = \begin{bmatrix} \mathsf{D}_{r,i}^{EP} \ \mathsf{D}_{r,j}^{EM} \\ \mathsf{D}_{p,i}^{HP} \ \mathsf{D}_{p,j}^{HM} \end{bmatrix} \begin{bmatrix} \int_{\mathcal{D}^P} G_0(x_m,x'_m,t) \overset{(t)}{*} P_i(x'_m,t) \mathrm{d}V(x'_m) \\ \int_{\mathcal{D}^M} G_0(x_m,x'_m,t) \overset{(t)}{*} M_j(x'_m,t) \mathrm{d}V(x'_m) \end{bmatrix}$$

• $D::(\partial_m, \partial_t) =$ space-time differential operators



Green's function of the scalar wave equation:

•
$$\partial_m \partial_m G_0 - c_0^{-2} \partial_t^2 G_0 = -\delta(x_m - x'_m, t)$$

• $G_0(x_m, x'_m, t) = \frac{\delta(t - R/c_0)}{4\pi R}$ for $R > 0$, • $R = [(x_m - x'_m)(x_m - x'_m)]^{1/2} \ge 0$
20

Radiation into unbounded embedding (contrast-source representation)

Space-time differential operators in the CONTRAST-SOURCE REPRESENTATION:

•
$$\begin{bmatrix} \mathsf{D}_{r,i}^{EP} & \mathsf{D}_{r,j}^{EM} \\ \mathsf{D}_{p,i}^{HP} & \mathsf{D}_{p,j}^{HM} \end{bmatrix} = \begin{bmatrix} \varepsilon_0^{-1} \partial_r \partial_i - \mu_0 \partial_t^2 & -\epsilon_{r,m,j} \partial_t \partial_m \\ \epsilon_{p,n,i} \partial_t \partial_n & \mu_0^{-1} \partial_p \partial_j - \varepsilon_0 \partial_t^2 \end{bmatrix}$$

Radiation into unbounded embedding (continued)

Delft EM Research The SIMPLICIAL spatial discretization: $\mathcal{P}(3)$ • { $\mathcal{P}(0), \mathcal{P}(1), \mathcal{P}(2), \mathcal{P}(3)$ } = ordered set of points $\in \mathbb{R}^3$ (vertices) $A_n(0)$ • { $x_m(0), x_m(1), x_m(2), x_m(3)$ } = $\mathcal{P}(2)$ Cartesian position vectors of $\{\mathcal{P}(0), \mathcal{P}(1), \mathcal{P}(2), \mathcal{P}(3)\}$ $\mathcal{P}(1)$ Element = ordered 3-simplex Σ : • Σ = interior of the convex hull of { $\mathcal{P}(0), \mathcal{P}(1), \mathcal{P}(2), \mathcal{P}(3)$ } Facets (ordered 2-faces) { $\mathcal{F}(0), \mathcal{F}(1), \mathcal{F}(2), \mathcal{F}(3)$ }: • $\mathcal{F}(I) = \{\mathcal{P}(0), \dots, \mathcal{P}(I-1), \mathcal{P}(I+1), \dots, \mathcal{P}(3)\}, I = 0, 1, 2, 3$ Orientation of Σ ({ $x_m(J) - x_m(I); J \neq I$ } = edges): • positive • negative $\left. \begin{array}{l} \text{if } \det[x_m(1) - x_m(0), x_m(2) - x_m(1), x_m(3) - x_m(2)] \\ < 0 \end{array} \right\}$

The simplicial spatial discretization

Volume V of Σ :

•
$$V = \frac{1}{3!} |\det[x_m(1) - x_m(0), x_m(2) - x_m(1), x_m(3) - x_m(2)]|$$

= $\frac{1}{3!} |\epsilon_{i,j,k}[x_i(1) - x_i(0)][x_j(2) - x_j(1)][x_k(3) - x_k(2)]|$

Outwardly oriented vectorial areas of facets $\{A_i(I); I = 0, 1, 2, 3\}$:

•
$$A_i(0) = +\frac{1}{2!} \epsilon_{i,j,k} [x_j(2) - x_j(1)] [x_k(3) - x_k(2)]$$

• $A_i(1) = -\frac{1}{2!} \epsilon_{i,j,k} [x_j(2) - x_j(0)] [x_k(3) - x_k(2)]$
• $A_i(2) = +\frac{1}{2!} \epsilon_{i,j,k} [x_j(1) - x_j(0)] [x_k(3) - x_k(1)]$
• $A_i(3) = -\frac{1}{2!} \epsilon_{i,j,k} [x_j(1) - x_j(0)] [x_k(2) - x_k(1)]$

Property:

• $A_i(0) + A_i(1) + A_i(2) + A_i(3) = 0$ ($\partial \Sigma$ is a closed surface)

The simplicial spatial discretization (continued)

Delft The barycentric coordinates $\{\lambda(0), \lambda(1), \lambda(2), \lambda(3)\}$ of the position vector $x_m \in \Sigma \cup \partial \Sigma$: • $x_m = \sum \lambda(I) x_m(I)$ with $0 \le \lambda(I) \le 1$; I = 0, 1, 2, 3, and $\sum \lambda(I) = 1$ for $x_m \in \Sigma \cup \partial \Sigma \implies$ • $\lambda(I) = \frac{1}{4} - \frac{1}{3V}(x_m - b_m)A_m(I)$ for I = 0, 1, 2, 3• $b_m = \frac{1}{4} \sum_{i=1}^{3} x_m(I)$ barycenter of Σ

The local, linear, scalar, spatial expansion function $\phi(I, x_m)$ on Σ , $\mathcal{F}(I)$ and $\partial \mathcal{F}(I)$:

•
$$\phi(I, x_m) = \frac{1}{4} - \frac{1}{3V}(x_m - b_m)A_m(I)$$
 for $I = 0, 1, 2, 3 \implies \phi[I, x_m(J)] = \delta(I, J)$

The barycentric coordinates. Spatial scalar linear interpolation function on a 3-simplex

Property of edges and outwardly oriented vectorial areas of Σ :

•
$$[x_m(J) - x_m(I)]A_m(K) = -3V[\delta(J, K) - \delta(I, K)]$$

for $I = 0, 1, 2, 3; J = 0, 1, 2, 3; K = 0, 1, 2, 3 \Longrightarrow$

• At each vertex $\mathcal{P}(I)(I=0,1,2,3)$ the base

•
$$\{x_m(J) - x_m(I); I = 0, 1, 2, 3; J = 0, 1, 2, 3; J
eq I\}$$

is RECIPROCAL to the base

- $\{-(1/3V)A_m(K); K = 0, 1, 2, 3; K \neq I\}$
- At each vertex $\mathcal{P}(I)(I=0,1,2,3)$ the base
 - $\{A_m(K); K=0,1,2,3; K
 eq I\}$

is **RECIPROCAL** to the base

IUDelft

• $\{-(1/3V)[x_m(J) - x_m(I)]; I = 0, 1, 2, 3; J = 0, 1, 2, 3; J \neq I\}$

(cf. CRYSTALLOGRAPHY)

Reciprocal, affine, Cartesian base vectors at each vertex of a 3-simplex

The linear, scalar, expansion functions $\phi(I, x_m)$ on Σ :

•
$$\phi(I, x_m) = \frac{1}{4} - \frac{1}{3V}(x_m - b_m)A_m(I)$$
 for $I = 0, 1, 2, 3$

The linear, vectorial, edge expansion functions $w_r^{ ext{edge}}(I,J,x_m)$ on Σ :

•
$$w_r^{\text{edge}}(I, J, x_m) = -(1/3V)\phi(I, x_m)A_r(J)$$

for $I = 0, 1, 2, 3; J = 0, 1, 2, 3; I \neq .$

The linear, vectorial, face expansion functions $w_i^{ ext{face}}(I,J,x_m)$ on Σ :

•
$$w_i^{\text{face}}(I, J, x_m) = -(1/3V)\phi(I, x_m)[x_i(J) - x_i(I)]$$

for $I = 0, 1, 2, 3; J = 0, 1, 2, 3; I \neq J$

The linear, vectorial, edge and face expansion functions on a 3-simplex

The electric field strength linear edge expansion on Σ :

•
$$E_r(x_m, t) = \sum_{I=0}^{3} \sum_{J=0}^{3} \alpha^E(I, J, t) w_r^{\text{edge}}(I, J, x_m)$$

• $\alpha^E(I, J, t) = E_r[x_m(I), t][x_r(J) - x_r(I)]$
for $I = 0, 1, 2, 3; J = 0, 1, 2, 3; I \neq J$

The magnetic field strength linear edge expansion on Σ :

•
$$H_p(x_m, t) = \sum_{I=0}^{3} \sum_{J=0}^{3} \alpha^H(I, J, t) w_r^{\text{edge}}(I, J, x_m)$$

• $\alpha^H(I, J, t) = H_p[x_m(I), t][x_p(J) - x_p(I)]$
for $I = 0, 1, 2, 3; J = 0, 1, 2, 3; I \neq J$

The electric and magnetic field strengths linear edge expansions on a 3-simplex

The electric flux density linear face expansion on Σ :

•
$$D_i(x_m, t) = \sum_{I=0}^3 \sum_{J=0}^3 \alpha^D(I, J, t) w_i^{\text{face}}(I, J, x_m)$$

• $\alpha^D(I, J, t) = D_i[x_m(I), t] A_i(J)$
for $I = 0, 1, 2, 3; J = 0, 1, 2, 3; I \neq J$

The magnetic flux density linear face expansion on Σ :

•
$$B_j(x_m, t) = \sum_{I=0}^3 \sum_{J=0}^3 \alpha^B(I, J, t) w_j^{\text{face}}(I, J, x_m)$$

• $\alpha^B(I, J, t) = B_j[x_m(I), t] A_j(J)$
for $I = 0, 1, 2, 3; J = 0, 1, 2, 3; I \neq J$

28 -The electric and magnetic flux densities linear face expansions on a 3-simplex

The computational procedure:

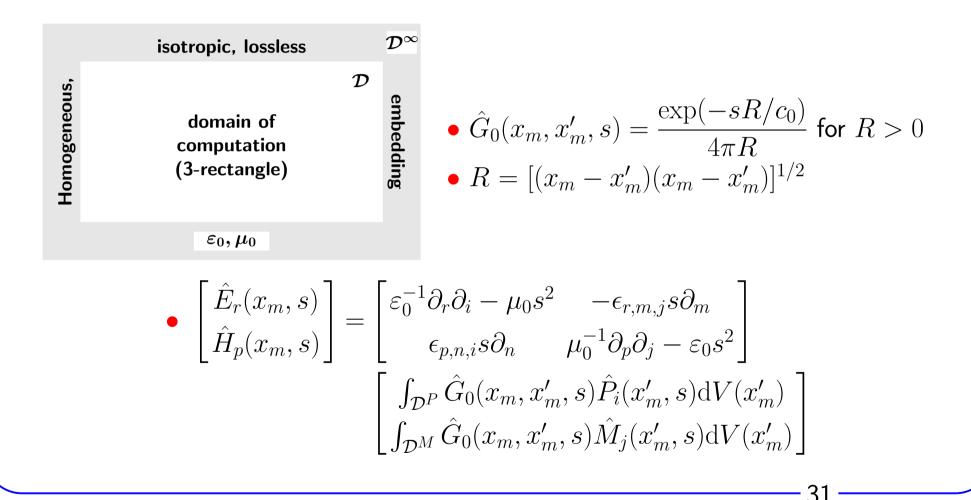
- Specify INPUT
- Generate SIMPLICIAL MESH that fits piecewise continuously turning interfaces up to order o(h) (h=mesh size)
- Apply FIELD EQUATIONS IN INTEGRAL FORM to all facets of each element under the application of the 'TRAPEZOIDAL' INTEGRATION RULE
- Invoke CONSTITUTIVE RELATIONS at each vertex of each element
- Invoke INTERFACE FIELD CONTINUITY CONDITIONS on the SIMPLICIAL STAR of each EDGE (E_r, H_p) and each FACET (D_i, B_j)

The computational procedure (continued):

- Simulate radiation into unbounded embedding through CARTESIAN COORDINATE-STRETCHED PERFECTLY MATCHED EMBEDDING, with absorptive (and/or time-delaying) layers
- Truncate coordinate-stretched perfectly matched Cartesian embedding by PERI-ODIC BOUNDARY CONDITION (cf. QUANTUM THEORY OF SOLIDS)
- Apply TRAPEZOIDAL RULE to the TIME INTEGRATIONS
- SOLVE SYSTEM OF EQUATIONS (iteratively)
- Organize OUTPUT

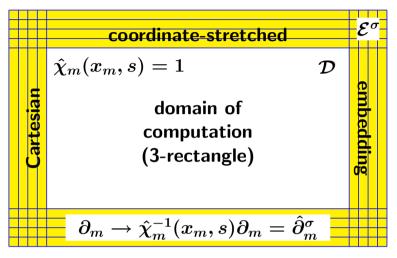
The computational procedure (continued)

LT-domain contrast-source field representations with respect to unbounded, homogeneous, isotropic, lossless embedding:



The domain of computation and its homogeneous, isotropic, lossless embedding

The time-dependent Cartesian coordinate-stretching procedure:



Out of the homogeneous, isotropic, loss-less embedding \mathcal{D}^{∞} a Cartesian coordinate-stretched embedding \mathcal{E}^{σ} is constructed by carrying out the LT-domain operation:

• $\partial_m \rightarrow [\hat{\chi}_m(x_m, s)]^{-1} \partial_m = \hat{\partial}_m^{\sigma}$ for m = 1, 2, 3 (no summation) with • { $\hat{\chi}_1(x_1, s), \hat{\chi}_2(x_2, s), \hat{\chi}_3(x_3, s)$ } piecewise continuous in space, analytic for $s \in \mathbb{C}$, $\operatorname{Re}(s) > 0$, and real and positive for $s \in \mathbb{R}$, s > 0(\Longrightarrow causality in time + UNIQUENESS)

• { $\hat{\chi}_1(x_1, s), \hat{\chi}_2(x_2, s), \hat{\chi}_3(x_3, s)$ } = {1, 1, 1} in domain of computation \mathcal{D}

The time-dependent Cartesian coordinate-stretching procedure

The LT-domain Green's function (propagator) $\hat{G}_0^{\sigma}(x_m, x'_m, s)$ of the Cartesian coordinate-stretched embedding $(\hat{\partial}_m^{\sigma} = [\hat{\chi}_m(x_m, s)]^{-1}\partial_m)$:

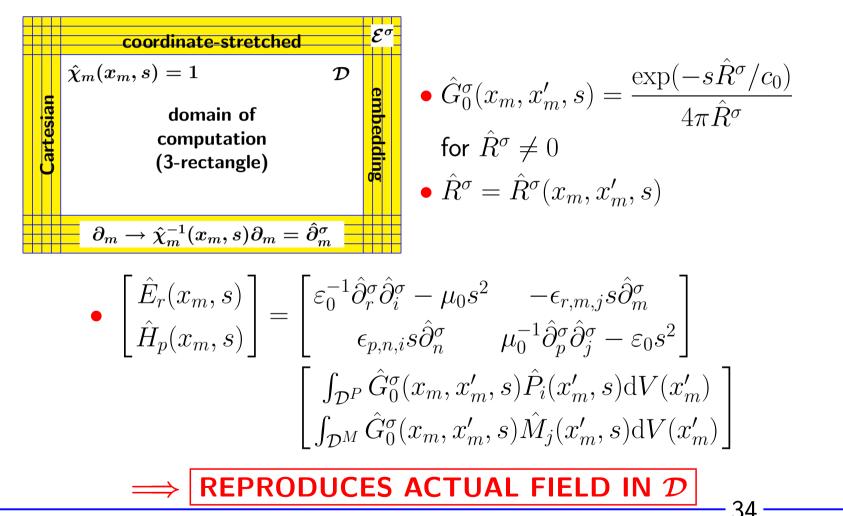
•
$$\hat{\partial}_{m}^{\sigma} \hat{\partial}_{m}^{\sigma} \hat{G}_{0}^{\sigma}(x_{m}, x'_{m}, s) - (s^{2}/c_{0}^{2}) \hat{G}_{0}^{\sigma}(x_{m}, x'_{m}, s) =$$

 $-[\hat{\chi}_{1}(x'_{1}, s)]^{-1} [\hat{\chi}_{2}(x'_{2}, s)]^{-1} [\hat{\chi}_{3}(x'_{3}, s)]^{-1} \delta(x_{1} - x'_{1}, x_{2} - x'_{2}, x_{3} - x'_{3})$
• $\hat{G}_{0}^{\sigma}(x_{m}, x'_{m}, s) = \frac{\exp(-s\hat{R}^{\sigma}/c_{0})}{4\pi\hat{R}^{\sigma}}$ for $\hat{R}^{\sigma} \neq 0$ with
• $\hat{R}^{\sigma} = \left(\left[\int_{x'_{1}}^{x_{1}} \hat{\chi}_{1}(\xi_{1}, s) \mathrm{d}\xi_{1}\right]^{2} + \left[\int_{x'_{2}}^{x_{2}} \hat{\chi}_{2}(\xi_{2}, s) \mathrm{d}\xi_{2}\right]^{2} + \left[\int_{x'_{3}}^{x_{3}} \hat{\chi}_{3}(\xi_{3}, s) \mathrm{d}\xi_{3}\right]^{2}\right)^{1/2} \geq 0$
for $s \in \mathbb{R}, s > 0$ (LT-domain stretched-coordinate distance function)
 \implies NO REFLECTIONS NOTWITHSTANDING INHOMOGENEITY
 \implies THE CARTESIAN COORDINATE-STRETCHED EMBEDDING
IS 3D REFLECTIONFREE ! (De Hoop et. al. 2005)

The scalar Green's function (propagator) of the Cartesian coordinate-stretched embedding

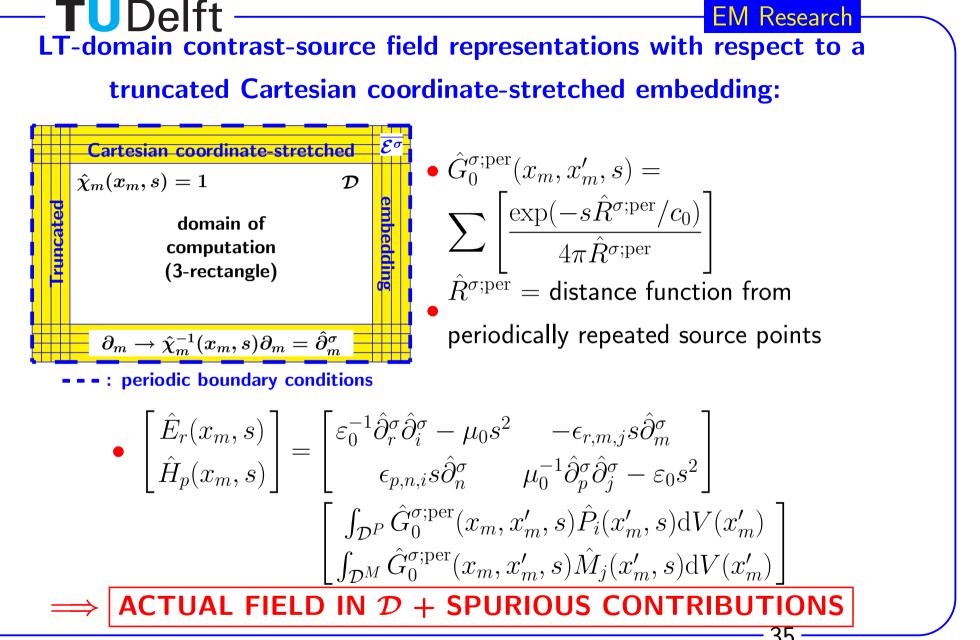
TUDelft

LT-domain contrast-source field representations with respect to an unbounded Cartesian coordinate-stretched reflectionless embedding:



The domain of computation and its Cartesian coordinate-stretched reflectionless embedding

TUDelft



The domain of computation and its truncated Cartesian coordinate-stretched embedding

A class of coordinate-stretching functions controlling excess time delay and attenuation in the Cartesian coordinate-stretched embedding:

- $\hat{\chi}_m(x_m, s) = 1 + N_m(x_m) + s^{-1}\sigma_m(x_m)$ (De Hoop et. al., 2005)
 - $N_m(x_m) =$ excess time delay coefficient $[N_m(x_m) > -1]$
 - $\sigma_m(x_m) = \text{absorption coefficient } [\sigma_m(x_m) \ge 0]$

•
$$\hat{G}_0^{\sigma} = \frac{s}{4\pi c_0 T} \frac{\exp\{-T[(s+A)^2 + B^2]^{1/2}\}}{[(s+A)^2 + B^2]^{1/2}}$$

Abramowitz & Stegun, Formula 29.3.92, p. 1027 \implies :

• $G_0^{\sigma} = \frac{1}{4\pi c_0 T} \partial_t \left[\exp(-At) J_0 [B(t^2 - T^2)^{1/2}] H(t - T) \right]$ $J_0 = \text{Bessel function of the first kind and order zero}$

• T = time delay along propagation path

• A =attenuation along propagation path

Excess time delay and attenuation in the Cartesian coordinate-stretched embedding

TUDelft

The LT-domain EM field equations in the Cartesian coordinate-stretched embedding (original form):

•
$$\epsilon_{i,m,p}\hat{\partial}_m^{\sigma}\hat{H}_p = s\hat{D}_i$$
 • $\epsilon_{j,n,r}\hat{\partial}_n^{\sigma}\hat{E}_r = -s\hat{B}_j$

The LT-domain EM field constitutive relations in the Cartesian coordinate-stretched embedding (original form):

•
$$\hat{D}_i = \epsilon_0 \delta_{i,r} \hat{E}_r$$
 • $\hat{B}_j = \mu_0 \delta_{j,p} \hat{H}_p$

 $\Rightarrow \begin{array}{l} \text{IN THE TIME DOMAIN, } \hat{\partial}_{m}^{\sigma} \hat{H}_{p} \text{ and } \hat{\partial}_{n}^{\sigma} \hat{E}_{r} \Longrightarrow \\ \text{TIME CONVOLUTIONS} \\ \text{(NUMERICALLY UNWANTED)} \end{array}$

The EM field equations in the Cartesian coordinate-stretched embedding (original form)

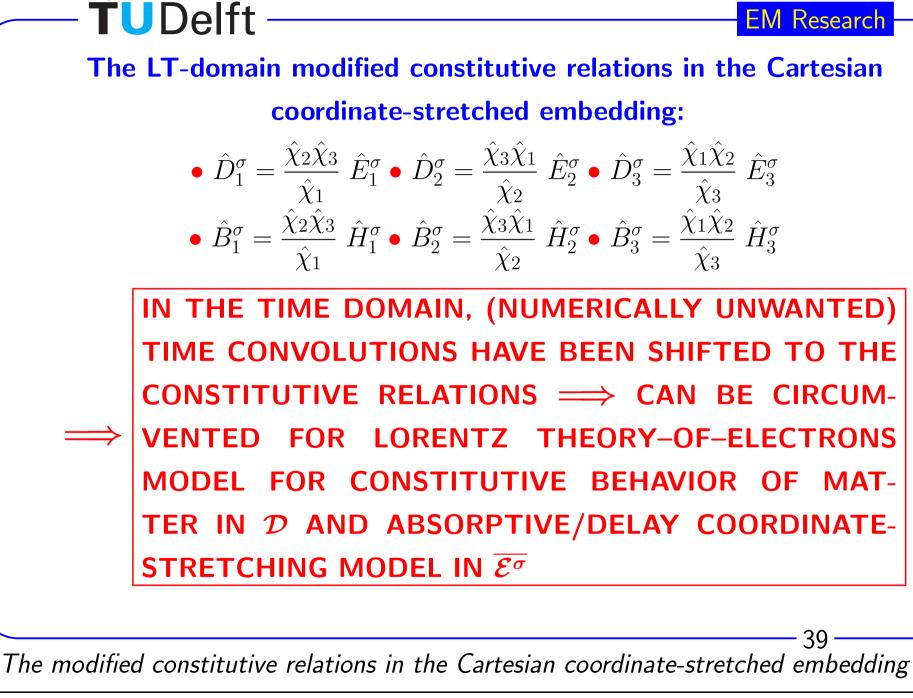
∀ T∪Delft

EM Research

The LT-domain EM field equations in the Cartesian coordinate-stretched embedding (equivalent form fitting the discretization stencil in \mathcal{D}):

• $\epsilon_{i,m,p}\partial_m \hat{H}^\sigma_n = s\hat{D}^\sigma_i$ • $\hat{H}_1^{\sigma} = \hat{\chi}_1 \hat{H}_1$ • $\hat{H}_2^{\sigma} = \hat{\chi}_2 \hat{H}_2$ • $\hat{H}_3^{\sigma} = \hat{\chi}_3 \hat{H}_3$ • $\hat{D}_{1}^{\sigma} = \hat{\chi}_{2}\hat{\chi}_{3}\hat{D}_{1}$ • $\hat{D}_{2}^{\sigma} = \hat{\chi}_{3}\hat{\chi}_{1}\hat{D}_{2}$ • $\hat{D}_{3}^{\sigma} = \hat{\chi}_{1}\hat{\chi}_{2}\hat{D}_{3}$ • $\epsilon_{i,n,r}\partial_n \hat{E}_r^\sigma = -s\hat{B}_i^\sigma$ • $\hat{E}_{1}^{\sigma} = \hat{\chi}_{1}\hat{E}_{1}$ • $\hat{E}_{2}^{\sigma} = \hat{\chi}_{2}\hat{E}_{2}$ • $\hat{E}_{3}^{\sigma} = \hat{\chi}_{3}\hat{E}_{3}$ • $\hat{B}_1^{\sigma} = \hat{\chi}_2 \hat{\chi}_3 \hat{B}_1$ • $\hat{B}_2^{\sigma} = \hat{\chi}_3 \hat{\chi}_1 \hat{B}_2$ • $\hat{B}_3^{\sigma} = \hat{\chi}_1 \hat{\chi}_2 \hat{B}_3$ **UNPHYSICAL OPERATIONS ON PHYSICAL FIELDS ARE REPLACED WITH PHYSICAL OPERATIONS ON** UNPHYSICAL FIELDS (IN EMBEDDING, NOT IN \mathcal{D} !) 38

The modified EM field equations in the Cartesian coordinate-stretched embedding



The time-domain EM field equations in the Cartesian coordinate-stretched embedding:

•
$$\epsilon_{i,m,p}\partial_m H_p^\sigma = \partial_t D_i^\sigma$$
 • $\epsilon_{j,n,r}\partial_n E_r^\sigma = -\partial_t B_j^\sigma$

The time-domain EM field constitutive relations in the Cartesian coordinate-stretched embedding (absorptive/delay coordinate-stretching model) follow from the inverse LT of:

•
$$s \ (s\hat{\chi}_1)\hat{D}_1^{\sigma} = (s\hat{\chi}_2)(s\hat{\chi}_3)\hat{E}_1^{\sigma}$$

• $s \ (s\hat{\chi}_1)\hat{B}_1^{\sigma} = (s\hat{\chi}_2)(s\hat{\chi}_3)\hat{H}_1^{\sigma}$
• $s \ (s\hat{\chi}_2)\hat{D}_2^{\sigma} = (s\hat{\chi}_3)(s\hat{\chi}_1)\hat{E}_2^{\sigma}$
• $s \ (s\hat{\chi}_2)\hat{B}_2^{\sigma} = (s\hat{\chi}_3)(s\hat{\chi}_1)\hat{H}_2^{\sigma}$
• $s \ (s\hat{\chi}_3)\hat{B}_3^{\sigma} = (s\hat{\chi}_1)(s\hat{\chi}_2)\hat{E}_3^{\sigma}$
• $s \ (s\hat{\chi}_3)\hat{B}_3^{\sigma} = (s\hat{\chi}_1)(s\hat{\chi}_2)\hat{H}_3^{\sigma}$

and observing that:

• $s \to \partial_t$

TUDelft

• $s \ \hat{\chi}_m(x_m, s) \rightarrow [1 + N_m(x_m)]\partial_t + \sigma(x_m)$ for m = 1, 2, 3 (no summation)

Time-domain field equations and constituitive relations in coordinate-stretched embedding