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Synopsis:
e Introduction and motivation
e Description of the configuration
e EM field equations in strongly heterogeneous media
e EM field equations in the discretized geometry

e EM field expansions in the discretized geometry:

Edge expansions, Face expansions

EM Research

e The 3D Cartesian coordinate-stretched Perfectly Matched Embedding

e Equivalent system of field relations in the (truncated) embedding

0 o

Synopsis
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A Maxwell (EM) field problem consists of the following ingredients:
e Coupled system of field equations interrelating the space-time behavior of

the field quantities

e System of constitutive relations representative of the physical behavior of

vacuum and matter (active and passive)
e Set of initial conditions in accordance with the property of causality

e Set of conditions representing the radiation into an unbounded em-
bedding (universe) in accordance with the property of causality
such that

e | UNIQUENESS HOLDS

03 /

Ingredients of a (uniquely solvable) Maxwell (EM) field problem
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The geometrical structure of space-time (R® x R):

o & = 111y + Tois + 1313 € R® = Cartesian position vector in space

o {11,x9, 23} € R? = Cartesian position coordinates e ¢ € R = time coordinate

+ the physics of EM phenomena imply —>
e Admissible EM field quantities: Piecewise continuous, real-valued,

Cartesian tensors of Rank 1 (vectors)

e Admissible EM source quantities (active part in the constitutive re-
lations):  Piecewise continuous, real-valued, Cartesian tensors of Rank 1

(vectors)

e Admissible EM constitutive functionals (passive part in the constitu-

tive relations): Piecewise continuous, real-valued Cartesian tensors of

Rank 2
01 /

Admissible field quantities, source quantities and constitutive coefficients
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Proof of |UNIQUENESS | implies [DeHoop, 2003] —-

e Admissible constitutive behavior of matter:

e Linear
e [ime invariant
e Locally reacting

e Causally reacting

e Causality can only be handled via the
TIME LAPLACE TRANSFORMATION:

oF(x,s) :/ exp(—st)F(x, t)dt analytic for s € C,Re(s) > 0
t

. o5 /

Admissible constitutive behavior of matter — Time Laplace transformation
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The time Laplace transformation (properties)

o F(x,s) :/ exp(—st)F'(x, t)dt analytic for s € C,Re(s) > 0
t

® s =(s%)" ¢
domain of
analyticity
singularity <~ ho<ho<eh—o<h—>
@ @ @ @ @ o—
S0 Re(s) —
domain of
. ® @ @ Lerch sequence
analytic

continuation
® s*

LERCH'’s uniqueness theorem

AN

\ o {F(x,so+nh);sop>0,h>0n=0,1,2,...} — F(ax,t)H(t — 1) /
06

The time Laplace transformation (properties)
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The geometrical (tensorial) structure of EM fields in space-time R’ x R:

e At any time ¢t € R each EM field quantity or constitutive coefficient is a (Carte-
sian) TENSOR for z,, € R’

e The (Cartesian) components of a tensor are denoted by SUBSCRIPTED
SYMBOLS ('subscript notation’)

e The number of subscripts is equal to the RANK of the tensor

(tensor of rank 0 = scalar; tensor of rank 1 = vector)

e Repeated subscripts in a product indicate SUMMATION over the number of

dimensions ('summation convention')

e LEVI-CIVITA TENSOR ¢; ;. (completely anti-symmetric tensor of rank 3):
€ = 1if {i,7,k} = even permutation of {1,2,3}, €, = —1if {4,7,k} =

\ odd permutation of {1,2,3}, € ;. = 0 if {¢, j, k} are not all different J
07

The geometrical (tensorial) structure of EM fields in space-time
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e C C R’ : Bounded, oriented, closed curve with piecewise continuously turning

e SCR?:

EM field topology in space-time

Un

T

Tm

unit vector along its tangent 7,

oz, =&n(A) for 0 < A < L with §,( A+ L) =&,,(A) (A= arc length)

® Tm = a)\gm()\)

Bounded, oriented, surface with piecewise continuously turning unit

vector along its normal v,, and C as its boundary curve

[ ) Z(xl,xg,xg) = O
:I: 8n2(x1,x2,x3)
(00,51, 29, 23) 0,21, T2, 3)]1/?

®, =

® €, ,mn(& — xp)Tm > 0 (right-handed orientation)

EM Research

08 /

EM field topology in space-time
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Stokes’ theorem:

Un

i

For any piecewise continuously differentiable scalar field ¢(x1, 9, x3,1):

. ]{ T AN = €y / Va0, dA

C S
For any piecewise continuously differentiable vector field F},,(x1, xo, x3,1) (take,

successively: m =1,¢ = Fy; m =2, ¢ = F5; m = 3, ¢ = F; and add the results):

o j{TmFmd)\zem,n,p/VnﬁmedA:/Vnen,p,mamedA
S

N C J/ 8 N 7
circulation of flux of €, 0, Fp,

\ F,, along C across S /
09

Stokes’ theorem
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Global EM field relations for EM field topology and time interval
7 C R with boundary points 97

n

I

Tm

o/ circulation of magnetic field along C] dt = [electric flux across S]|;7
T

o/ circulation of electric field along C] dt = — [magnetic flux across S]|,+
T

Global EM field compatibility relations:

e outward electric flux across closed surface =0

e outward magnetic flux across closed surface = ()

N N
Global EM field relations
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EM Research

The EM field quantities: %
C

Tm

e circulation of electric field along C = %Eﬂ}d)\
C

—> E, = electric field strength (V/m)

e circulation of magnetic field along C = %Hprd)\
C

—> H, = magnetic field strength (A/m)
e electric flux across § = /Diyz-dA

—> D, = electric qudeensity (C/m?)
e magnetic flux across § = /SBjyjdA

—> B, = magnetic flux density (T)

11 J

The electric and magnetic field strengths and flux densities
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Global EM field equations (starting point for EM field computation in

strongly heterogeneous media):

Un

i

® /dt%Hprd)\:/DZVZdA

T C S 0T
o /dt%ErTrd)\:—/BjdeA

T C S 0T

Global EM compatibility relations:

o / D;v;dA=0 (v; = unit vector along outward normal)
closed surface

o / Bv;dA=0 (v; = unit vector along outward normal)
closed surface

.

12 /
The global EM field equations
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—> |NUMBER OF UNKNOWNS = 2 * NUMBER OF EQUATIONS

Local EM field equations for differentiable fields (unsuitable for
EM field computation in strongly heterogeneous media):
® €, Ont,=0D,; forzx, € R*.tc R (Maxwell 1)
¢ €, 0B, =—0:B; forx, cR tecR (Maxwell 2)

—> to be supplemented by | CONSTITUTIVE RELATIONS

Local EM compatibility relations
(existence conditions for Maxwell 1 & Maxwell 2):
¢ 0,D;=0 forz, c R tecR
° 6’ij:0 for x,, € Rg,t eR

1 /

The local EM field equations (differentiable field quantities)
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Local EM constitutive relations in vacuum (SI):

o Di(xm,t) =€, Er(xm,t)  © Bj(xm,t) = pod; pyHy(Tm,t)
o jig=4m %10~ H/m (permeability of vacuum)
o = 1/poc; F/m (permittivity of vacuum)
e ¢y =299792458 m/s (EM wavespeed in vacuum)
e 0; i =41,0} for {i = j,7 # j} (Kronecker tensor)

Macroscopic EM constitutive relations in matter: volume averaging
over Dc (D< = representative elementary domain, x,, = barycenter of D) of the

(causal) response of (classical or quantum) atomic models —>

{Er, Hp}H(m, t/)|t’€(—00<t’§t) ——{D;, Bj}(zm,t) (general)

Er(xma t/> ‘t’e(—oo<t’§t)*—>Di($m7 t) Hp(ilfm t/) |t’€(—oo<t’§t)'—>Bj($ma t)

t terial
\_ (most materials) ” -

EM constitutive relations (vacuum and matter)

Delft University of Technology (© 2006 Laboratory of Electromagnetic Research
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LORENTZ’s theory of electrons:

o D; = E; + P 4 p™
o Bj=poH; + M + M™
o P! — (field-dependent) induced electric polarization (C/m?)
= atomic mechanical response to electric field excitation
(electric force on electric charge)
o PP = (field-independent) external electric polarization (C/m?)
]\411(ld (field-dependent) induced magnetization (T)
= atomic mechanical response to magnetic field excitation

(magnetic force on orbital electric charge and torque on magnetic spin)

o Mth (field-independent) external magnetization (T)

N o

EM constitutive relations in matter (continued)
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UNIQUENESS | — Admissible constitutive behavior of matter:

e Linear

e [ime invariant

—

e Locally reacting

e Causally reacting

oo
° Di(xmv t) — / 77i,r<xma t/>Er(CUm,t — t/>dt/ + PZ-eXt
t
o0
° Bj(xmv t) - Cj,p<xma t/)Hp(xma t — t/)dt/ + M;Xt
=0
e 1), , = permittivity relaxation tensor (F/m*s)

e (;, = permeability relaxation tensor (H/m*s)

N N

EM constitutive relations in matter (continued)
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EM constitutive relations (passive part)
(t)

LT
(* = time convolution, — = time Laplace transformation):

o Dy, 1) = / D (@ ) Bt — ) = 15 (s 1) % (2, 1)
t'=0
LT ® D Ima — 772 r(l'm: S>EAT($m> S)

(T, t / Cip(@my OV Hy(Ty t — At = (G (2, ) (*) Hy(xm,t)

A AN

J(xmv > CJP(IW7S)HP(ZCW78)
Properties of {7}, (Zm, 5), Cjp(Tm, 5)}:
e analytic in Re(s) > 0 e positive definite for Re(s) > 0,Im(s) =0

Padé{n,n} representations of {ﬁi,r(xm,s),éj,p(ﬂim,s)} —

Constitutive relations: e Local ordinary differential operators in time

o

\ (avoids time convolutions)

EM constitutive relations (passive part)

Delft University of Technology (© 2006 Laboratory of Electromagnetic Research
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Interface boundary conditions for EM field strengths

(needed in uniqueness proofs):

interface

o %Hprd)\ =o0(l) ash |0

_C—_\? ei,mmVEal CONTINUOUS across interface
o ]{Eﬂ}d)\ =o(l) ash |0

_C—_>6j,n,TV§ET CONTINUOUS across interface

18 /

EM field interface boundary conditions
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Interface boundary conditions for EM flux densities

(needed as existence conditions):

interface

o / Div;dA=o0(1) ash |0

_8—_\? v>*D; CONTINUOUS across interface
o ]{BjyjdA =o(l) ash |0

Czungj CONTINUOUS across interface

19 /

EM field interface boundary conditions (continued)
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Radiation into unbounded, homogeneous, isotropic, lossless embedding
(universe) via CONTRAST-SOURCE REPRESENTATION:

E.(xm,t)| | Dy DY
Hy(z, 1) D/ DM

EM Research

[op Golttm, @y t) % B, )AV ()

 fo Goltom, ) % Mi(a, )V (2,

e D..(On, 0;) = space-time differential operators

—-1/2

€0, Lo Co = (60M0>

e D — supp(P)
e DY = supp(M;)

Green’s function of the scalar wave equation:

— ¢, %0!Gy = —0(xy, — 2, 1)

® 8m5’mGo
t —
o Go(xpy, x, 1) = i 475%/60) for R>0, ¢ R=[(x,, —

m?

)(@m — a3,)]* 2 0

.

/

20

Radiation into unbounded embedding (contrast-source representation)
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Space-time differential operators in the CONTRAST-SOURCE
REPRESENTATION:
) [fo DEM ] B [golarai — 1002 €O ]

HP nWHM —1 2

. o /

Radiation into unbounded embedding (continued)
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The SIMPLICIAL spatial discretization:

iy « (P(0).P(). P(2).P(3)} =
ordered set of points € R’ (vertices)
B o fanf0), 1), 20(2), 20 (3)} =
(0) Pe) Cartesian position vectors of
{P(0),P(1),P(2),P(3)}
P(1)

Element = ordered 3-simplex X:
e Y = interior of the convex hull of {P(0),P(1),P(2),P(3)}
Facets (ordered 2-faces) {F(0), F(1),F(2),F(3)}:
o F(I)={P(0),....P(I—1),P(I+1),....,P(3)}, I=0,1,2,3
Orientation of ¥ ({x,(J) — . (I);J # I} = edges):
® POSIVE L et (1) — 2n(0), 2(2) — 2n(1), 2 (3) — 2(2)] { = }
_ Urone] )

e negative < 0
22

The simplicial spatial discretization
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Volume V of X:

oV — % detfzn(1) — (0, 2 (2)
_ ; e i) — 2,0 (2)

Outwardly oriented vectorial areas of facets {A;(I); I = 0,1,2,3}:
— 2 ()] [22(3) — zi(2)]
— 2;(0)][1(3) — zi(2)]
— 2j(0)][x(3) — zi(1)]

— 2;(0)][wx(2) — @i (1))

Property:

1

o A;(0)= 5 €.j.k|75(2)
o A;(1) = —% €,j,k17;(2)
o 4;(2) = +% €:jkl7j(1)
o 4;(3) = —% € jklTi(1)

.

EM Research

= Zm(1), 2m(3) — 2m(2)]]

— zj()][22(3) — z1(2)]

(0% is a closed surface)

/

The simplicial spatial discretization (continued)

23
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The barycentric coordinates {A(0), A(1), A(2),A(3)}

of the position vector x,,, € X U 0X::

3
o 2y =3 MIan(I) with0< M) <1; I=0,1,2,3,
1=0

3
and Z)\(I): 1 for x,, € XU —>
=0

1 1

|3
b, = 1 ]ZO r,(I) barycenter of ¥

The local, linear, scalar, spatial expansion function ¢(I, x,,)
on ¥, F(I) and 0F (I):

e ¢(l,x,)=-——(x;, — bp)An(l) for I =0,1,2,3 —=>¢[l,x,,(J)] =1, J)

\ 4 3V o4 /

The barycentric coordinates. Spatial scalar linear interpolation function on a 3-simplex
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Property of edges and outwardly oriented vectorial areas of X::

o (x,(J)— xn(D]ALK)==3V[§(J,K)—0d, K)
for [ =0,1,2,3:J=0,1,2,3K=0,1,23 —>
e At each vertex P(I)(I = 0,1,2,3) the base
e {x,,(J) —xp,(I); I =0,1,2,3;J =0,1,2,3;J # I}
is RECIPROCAL to the base
o {—(1/3V)A(K); K =0,1,2,3; K # I}
e At each vertex P(I)(I = 0,1, 2,3) the base
e {A,(K);K=0,1,2,3; K # 1}
is RECIPROCAL to the base
e {—(1/3V)[xpp(J) — x,,(I)]; I =0,1,2,3;J =0,1,2,3;J # I}

(cf. CRYSTALLOGRAPHY) /

25

Reciprocal, affine, Cartesian base vectors at each vertex of a 3-simplex
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The linear, scalar, expansion functions ¢(I, x,,) on 3:

1 1
o o(1,x,) =1 W@m — b)) Ap(I) for I =0,1,2,3

The linear, vectorial, edge expansion functions w?8*(I, J, z,;,) on X:

¢ widge(]’ J, xm) — —(1/3V>¢([, xm)Ar(‘]>
for 1 =0,1,2,3;,J=0,1,2,3; 1 #J

The linear, vectorial, face expansion functions fwface(I, J, x,,) on X:

o (I, J,x,) = —(1/3V)d(1, 20 [i(J) — :i(])]
for / =0,1,2,3:J=0,1,2,3;1 # J

N o

The linear, vectorial, edge and face expansion functions on a 3-simplex
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The electric field strength linear edge expansion on X::

(T, ) Zza (I, J,6)we (I, J, x,,)

(I, J,t) = Er[a:m(]), tlz,(J) = zr(1))

for 1 =0,1,2,3;,J=0,1,2,3;1 #J
The magnetic field strength linear edge expansion on X::

(T, T ZZ@ (I,J, 6w (I, J, x,,)

I=0 J=0
o!(1,J,8) = Hyfw, (1), ][z, () — (1)

for 1 =0,1,2,3,J=0,1,2,3; 1 #J

N o

The electric and magnetic field strengths linear edge expansions on a 3-simplex
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The electric flux density linear face expansion on X::

o Dj(,t) Zza (I,J, w1, J, z,)

o (I,Jt)= é);f:cin(ol), t] A;(J)

for [ =0,1,2,3:J=0,1,2,3;1 # J
The magnetic flux density linear face expansion on X::

(T, ZZ@ (I, J, )0 (1, J, z,,)

o’ (I,J,t) = 1130[ ;(0[) t|A;(J)

for 1 =0,1,2,3,J=0,1,2,3; 1 #J

N o

The electric and magnetic flux densities linear face expansions on a 3-simplex

Delft University of Technology (© 2006 Laboratory of Electromagnetic Research



o]
T TUDelft

.

The computational procedure:
e Specify INPUT

e Generate SIMPLICIAL MESH that fits piecewise continuously turning interfaces
up to order o(h) (h=mesh size)

e Apply FIELD EQUATIONS IN INTEGRAL FORM to all facets of each element
under the application of the "TRAPEZOIDAL" INTEGRATION RULE

e Invoke CONSTITUTIVE RELATIONS at each vertex of each element

e Invoke INTERFACE FIELD CONTINUITY CONDITIONS on the SIMPLICIAL
STAR of each EDGE (E,, H,) and each FACET (D;, B;)

2 /

The computational procedure
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The computational procedure (continued):
e Simulate radiation into unbounded embedding through CARTESIAN
COORDINATE-STRETCHED PERFECTLY MATCHED EMBEDDING, with

absorptive (and/or time-delaying) layers

e Truncate coordinate-stretched perfectly matched Cartesian embedding by PERI-
ODIC BOUNDARY CONDITION (cf. QUANTUM THEORY OF SOLIDS)

e Apply TRAPEZOIDAL RULE to the TIME INTEGRATIONS
e SOLVE SYSTEM OF EQUATIONS (iteratively)
e Organize OUTPUT

30 /

The computational procedure (continued)
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LT-domain contrast-source field representations with respect to

unbounded, homogeneous, isotropic, lossless embedding:

isotropic, lossless

domain of
computation
(3-rectangle)

Homogeneous,

v

EM Research

’DOO

: : —sR

% o Go(zp,x, ,s) = xp(—sF/co) for R >0
Q. 4T R

& o R=[(wn— ) (@, — )]
-50_167“82' _ MOSQ _er,m,jsam

—1 2

' [op Gol@m, 2, 8) B, 5)AV (2,

m?

_fDM éo(xm, x;m S>Mj<x;m S)dV(iE;n)

5 o

The domain of computation and its homogeneous, isotropic, lossless embedding

Delft University of Technology
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The time-dependent Cartesian coordinate-stretching procedure:

K (Tm, 8) = 1 D Out of the homogeneous, isotropic, loss-
3 domain of % less embedding D> a Cartesian coordinate-
% (C;Tepcl:;?.tglrer; 0% stretched embedding £7 is constructed by car-
rying out the LT-domain operation:
Om — X (T 8) O, = 0T,

o am*[)%m(mma S)]_lﬁm — éa

7 form =1,2,3 (no summation) with

o{x1(x1,5s), X2(x2, $), X3(x3,5)} piecewise continuous in space,
analytic for s € C, Re(s) > 0, and real and positive for s € R, s > 0
(== causality in time + UNIQUENESS)

\ o{x1(x1,5s), X2(x2, 8), x3(x3,8)} = {1,1,1} in domain of computation D /
32

The time-dependent Cartesian coordinate-stretching procedure
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The LT-domain Green'’s function (propagator) G (x,,x’ ,s) of the

Cartesian coordinate-stretched embedding (ég,b = [Xm(Tm, 8)] "1 Om):

AN

é (ajm? Lims S) - <S2/C(%)GA8(:EWL7:C/ S) —

_[X1<ZE 1) S)] [X2<x/27 S)]_l[X?)(xgv 8)]_15<£C1 _ xlla L2 — xl27 L3 — CBé)

GOz, 2! 8) = xp(—sF7/co) for R # 0 with
AT RO

N 1/2
/ 923(53,3)0153] > (]

/
3

2 2

o R = + +

/ (6 )

/
1

/ " olbn, 5)dEs

/
2

for s € R, s > 0 (LT-domain stretched-coordinate distance function)

—> |NO REFLECTIONS NOTWITHSTANDING INHOMOGENEITY

THE CARTESIAN COORDINATE-STRETCHED EMBEDDING
—

IS 3D REFLECTIONFREE ! (De Hoop et. al. 2005) J
33

The scalar Green's function (propagator) of the Cartesian coordinate-stretched embedding
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LT-domain contrast-source field representations with respect to an

unbounded Cartesian coordinate-stretched reflectionless embedding:

o_|
coordinate-stretched | -Ig -

Xm(wma S) =1 D A o / eXp<_SRJ/CO>
g _ o GJ(xp, 2, ,5) = -
% domain of A RO
computation I Do
93 (3-rectangle) : for 2 # 0
e R7 =R (xp,x),$)

Om — X (@my 8) O = BA%

. Lz?r(xm,s) _ _551&?(%’ - 1S° _,\GT’T,jSE)%
Hy(zp, s) | enas0] g '0507 — oS’
fDP é8<xm7 x;m S>}52<x;m S)dV(:IZén)
_fDM éS(:Cm, ZIZ;n, S)Mj<x;nv S)dV(iB%)
\_ — | REPRODUCES ACTUAL FIELD IN D )

34
The domain of computation and its Cartesian coordinate-stretched reflectionless embedding
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f LT-domain contrast-source field representations with respect to a

truncated Cartesian coordinate-stretched embedding:
Xm(Tms 8) =1 D ¢ GO (LUm, Lo s S) —
g domain of _ Z eXp<—8R05per/co)
§§ computation I 4Wég;per
Es (3-rectangle) : A _ _
R7P®" = distance function from
o
By — =1 (T, 8) Doy = D7 periodically repeated source points
= = = : periodic boundary conditions
. B (2, s) _ e 1a0dr - 1108 _ET’T’jSé%
H,(zp, s) epn 507 py 19507 — eos?
po TP (g1l S)Pi(a! s)dV (2]
fDM o Zlfm,CIZ;mS>M]<SC;n,S>dV(ZU;n>
\ —> |ACTUAL FIELD IN D + SPURIOUS CONTRIBUTIONS /
35

The domain of computation and its truncated Cartesian coordinate-stretched embedding
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A class of coordinate-stretching functions controlling excess time delay

and attenuation in the Cartesian coordinate-stretched embedding:
® Xon(Tm, 8) =1+ Ny () + 5 ton(z,) (De Hoop et. al., 2005)
e N, (x,,) = excess time delay coefficient [NV,,(x,,) > —1]
e 0,,(x,,) = absorption coefficient [0, (x,,) > 0]
form =1,2,3 (no summation) ——>
s exp{—T[(s+ A%+ BY'/?}
degT (s + A)2+ B2

Abramowitz & Stegun, Formula 29.3.92, p. 1027 —>:

o GJ = ﬁ ) [exp<—At>J0[B(t2 T — T)}

Joy = Bessel function of the first kind and order zero

o Gj=

e 7' = time delay along propagation path

\ e A = attenuation along propagation path

/
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The LT-domain EM field equations in the Cartesian

coordinate-stretched embedding (original form):
® ei,m,pé%f{p = Sﬁi ® Ej’nﬂ«égEAT — —SB]'

The LT-domain EM field constitutive relations in the Cartesian

coordinate-stretched embedding (original form):

® lA)Z — Eodfé’TEr ® Bj = uoéj,pf]p

IN THE TIME DOMAIN, 8% H, and 97E, —>
= | TIME CONVOLUTIONS
(NUMERICALLY UNWANTED)

g

The EM field equations in the Cartesian coordinate-stretched embedding (original form)
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The LT-domain EM field equations in the Cartesian
coordinate-stretched embedding (equivalent form fitting the

discretization stencil in D):
o ei,mm@mlﬁ[g = sﬁf
o H? = \1H, o Hf = \2H, o HJ = x3H;
e D = xoxsD1 o D = xsx:1D2 o DS = {1xaDs
o €1, 0,7 = —sB?
o B = \1E) o Ef = ok, e B = 3k
o B] = xox3B1 ® B = xsx1B2 © B = x1x2Bs

UNPHYSICAL OPERATIONS ON PHYSICAL FIELDS ARE

——> | REPLACED WITH PHYSICAL OPERATIONS ON

UNPHYSICAL FIELDS (IN EMBEDDING, NOT IN D!)

EM Research

J
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The modified EM field equations in the Cartesian coordinate-stretched embedding
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The LT-domain modified constitutive relations in the Cartesian

coordinate-stretched embedding:

. f)(lf - X2X3 Eg f)g B X3X1 EU ﬁg B X1X2 EJ
Xl X2 X3

. Bg(lj . X2X3 H1 32 _ X3X1 ﬁQ B:’) _ X1X2 ﬁg
X1 X2 X3

IN THE TIME DOMAIN, (NUMERICALLY UNWANTED)
TIME CONVOLUTIONS HAVE BEEN SHIFTED TO THE
CONSTITUTIVE RELATIONS —> CAN BE CIRCUM-
— |VENTED FOR LORENTZ THEORY-OF-ELECTRONS
MODEL FOR CONSTITUTIVE BEHAVIOR OF MAT-
TER IN D AND ABSORPTIVE/DELAY COORDINATE-
STRETCHING MODEL IN &°

\_ 29 /

The modified constitutive relations in the Cartesian coordinate-stretched embedding
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The time-domain EM field equations in the Cartesian

coordinate-stretched embedding:
o ei,m,pﬁmHg = 0,D; ® €n, O] = —(%BJq

The time-domain EM field constitutive relations in the Cartesian
coordinate-stretched embedding (absorptive/delay

coordinate-stretching model) follow from the inverse LT of:
7= (sx2)(sX3)E] e s (sx1)B] = (sx2)(sX3) HY
o s (sx2)D3 = (sx3)(sx1)EJ ® s (sX2)B7 = (sx3)(sx1)H3
5= (sx1)(sx2) £ ° s (sx3)B§

and observing that:

AN

s — O

\ ® S Xm(Tm,s) — |1+ Np(x,)]0 + o(x,,) form =1,2,3 (no summation) /
40
Time-domain field equations and constituitive relations in coordinate-stretched embedding

Delft University of Technology (© 2006 Laboratory of Electromagnetic Research



