

The mathematics that models wavefield physics in

engineering applications - A voyage through

the landscape of fundamentals

by

Adrianus T. de Hoop

Delft University of Technology

Laboratory of Electromagnetic Research

Faculty of Electrical Engineering, Mathematics and Computer Science

Mekelweg 4 ● 2628 CD Delft ● the Netherlands

T: +31 15 2785203 / +31 15 2786620 / +31 15 2788613

Lecture presented at Delft University of Technology, the Netherlands, on 2009 April 09

Synopsis:

- System of wavefield equations in canonical form
- Field compatibility relations
- ullet Constitutive relations in media with relaxation (absorption + dispersion)
- Spatial interface boundary conditions
- The initial-value problem and the time Laplace transformation (causality)
- Computational wavefield discretization
- The space-time integrated field equations + computational properties
- The 3D Perfectly Matched Embedding
- A simple application and benchmark problem

)2

Synopsis

An intimate triangle

Mathematical methods:

- analytical
- computational

Wavefield physics:

- acoustics
- elastodynamics
- electromagnetics

Engineering problems:

- formulation
- computation

03

Mathematics, (Wavefield) Physics, Engineering: An intimate triangle

Structure of any macroscopic physical configuration:

• BACKGROUND + CONTRAST (Lorentz, 1916)

Universal **BACKGROUND**:

empty universe (homogeneous + isotropic) (vacuum)

• observer
$$\left\{ egin{array}{ll} (N\mbox{-dimensional}) & \mbox{space} \\ (1\mbox{-dimensional}) & \mbox{time} \end{array} \right\}$$
 decomposition

• capable of carrying **phenomena** satisfying **Lorentz-invariant** equations (**electromagnetics**, **gravitation** (?))

CONTRAST:

matter interacting with phenomena in empty space (electromagnetics, gravitation (?)) + carrying material phenomena (acoustics, elastodynamics)

Background and contrast in a macroscopic physical configuration

Each (macroscopic) FIELD is represented by:

FOUR FIELD QUANTITIES (FLDQ's):

- {intensive FLDQ 1, intensive FLDQ 2}
- {extensive FLDQ 1, extensive FLDQ 2}

PROPERTIES:

- (intensive FLDQ 1) * (intensive FLDQ 2) =
 - area density of power flow
- (extensive FLDQ 1) * (extensive FLDQ 2) =
 - volume density of flow of momentum

$$\implies \textbf{FLDQ} = \textbf{FLDQ}(\boldsymbol{x},t)$$
 with $\boldsymbol{x} = \{x_1, \dots, x_N\} \in \mathbb{R}^N$ (space), $t \in \mathbb{R}$ (time)

Intensive and extensive field quantities in space-time

FIELD EQUATIONS

couple • RATES OF CHANGE IN SPACE (∂_x) of intensive FLDQ's

with • RATES OF CHANGE IN TIME (∂_t) of extensive FLDQ's

⇒ WAVE MOTION ←

CANONICAL (TENSOR) FORM:

(Poincaré, 1905; Einstein, 1905; Minkowski, 1908)

- $D(\partial_x)$ (intensive FLDQ 1) + ∂_t (extensive FLDQ 2) = 0
- $D(\partial_x)$ (intensive FLDQ 2) + ∂_t (extensive FLDQ 1) = 0
- D: array composed of unit tensors (De Hoop, 1995, 2008)
- COMPATIBILITY RELATIONS: $\partial_{x_1}\partial_{x_2}$ (FLDQ) = $\partial_{x_2}\partial_{x_1}$ (FLDQ)

06

Field equations in canonical (tensor) form + compatibility relations

CONSTITUTIVE RELATIONS:

• extensive FLDQ = CONSTITUTIVE OPERATOR (intensive FLDQ)

CONSTITUTIVE OPERATOR:

- linear
- local ⇒ SPATIAL DISPERSION (⇒ infinite wavespeed)
- time-invariant
- active (field-independent) part (= external sources) +
 passive (field-dependent) part (= medium response)
- medium response = instantaneous response +
 (Boltzmann) relaxation (absorption + dispersion)

Constitutive relations in media with relaxation (absorption + dispersion)

CONSTITUTIVE RELATIONS:

• (extensive FLDQ 1,2)(x,t) =

(COEFF 1,2)(
$$\boldsymbol{x}$$
) * (intensive FLDQ 1,2)(\boldsymbol{x} , t) +

instantaneous response

$$\int_{\tau=0}^{\infty} (\mathsf{RELAXF} \ \mathbf{1,2})(\boldsymbol{x},\boldsymbol{\tau}) * (\mathsf{intensive} \ \mathsf{FLDQ} \ \mathbf{1,2})(\boldsymbol{x},t-\boldsymbol{\tau}) \mathrm{d}\boldsymbol{\tau}$$

Boltzmann relaxation

■ BOLTZMANN RELAXATION (Boltzmann, 1876) ⇒ CAUSALITY

08

Constitutive relations (canonical form)

(PASSIVE) INTERFACE BOUNDARY CONDITIONS:

Across passive interface ∑ between two different media

NO JUMPS ALLOWED in certain FLDQ's: WHICH ONES?

• **DECOMPOSITION OF:** ∂_x about $x \in \Sigma$:

$$\bullet \ \partial_{\boldsymbol{x}} = \underbrace{\nu(\nu \cdot \partial_{\boldsymbol{x}})}_{\text{normal to } \Sigma} + \underbrace{[\partial_{\boldsymbol{x}} - \nu(\nu \cdot \partial_{\boldsymbol{x}})]}_{\text{tangential to } \Sigma}$$

CONTINUITY CONDITIONS:

• D $(oldsymbol{
u})$ (intensive FLDQ 1,2) $\Big|_-^+=0$

INITIAL-VALUE PROBLEM FIELD EQUATIONS: $(t \in \mathbb{R}; t_0 \le t < \infty)$

• UNIQUENESS DATA:

ullet Field on bounded support $\mathcal{D}\subset\mathbb{R}^N$

- Initial field values: FLDQ's (x, t_0) for $x \in \mathcal{D}$
- FIELD EQUATIONS for $x \in \mathcal{D}$; $t_0 < t < \infty$
- BOUNDARY VALUES:
 - $D(\nu)$ (intensive FLDQ 1)(x,t) for $x \in \partial D, t_0 \le t < \infty$ OR
 - D(ν)(intensive FLDQ 2)(x,t) for $x \in \partial \mathcal{D}, t_0 \leq t < \infty$

Time evolution of field (physics) = Initial-value problem field equations (mathematics) (1)

INITIAL-VALUE PROBLEM FIELD EQUATIONS: $(t \in \mathbb{R}; t_0 \le t < \infty)$

• UNIQUENESS DATA:

ullet Field on unbounded support \mathbb{R}^N

- ullet Initial field values: FLDQ's $(oldsymbol{x},t_0)$ for $oldsymbol{x}\in\mathbb{R}^N$
- FIELD EQUATIONS for $m{x} \in \mathbb{R}^N; \ t_0 < t < \infty$
- OUTGOING WAVES in homogeneous, isotropic, lossless embedding

Time evolution of field (physics) = Initial-value problem field equations (mathematics) (2)

INITIAL-VALUE PROBLEM FIELD EQUATIONS: $(t \in \mathbb{R}; t_0 \le t < \infty)$

MATHEMATICAL PROOF:

Via shifted time Laplace transformation: (De Hoop, 2003, 2004)

$$\begin{array}{cccc} \bullet \ \widehat{\mathsf{FLDQ}}(\boldsymbol{x},s) & = & \displaystyle \int_{t=\boldsymbol{t_0}}^{\infty} \exp(-st) \mathsf{FLDQ}(\boldsymbol{x},t) \mathrm{d}t \\ & \mathsf{for} \ s \in \mathbb{C}, \mathrm{Re}(s) > 0 \end{array}$$

•
$$\partial_t \mathsf{FLDQ}(\boldsymbol{x},t) \longmapsto s \ \widehat{\mathsf{FLDQ}}(\boldsymbol{x},s) - \underbrace{\mathsf{FLDQ}(\boldsymbol{x},\boldsymbol{t_0})}_{\text{initial value}}$$

Time evolution of field (physics) = Initial-value problem field equations (mathematics) (3)

INVERSE TIME LAPLACE TRANSFORMATION: $(t \in \mathbb{R}; 0 \le t < \infty)$

• use of Lerch's uniqueness theorem:

•
$$\{\widehat{\mathsf{FLDQ}}(\boldsymbol{x},s)|_{s\in\mathcal{L}}\} \stackrel{\textbf{1-to-1}}{\longmapsto} \mathsf{FLDQ}(\boldsymbol{x},t)H(t)$$

•
$$\mathcal{L} = \{ s \in \mathbb{C}; \operatorname{Im}(s) = 0, \operatorname{Re}(s) = s_0 + nh, s_0 > 0, h > 0, n = 0, 1, 2, 3, \dots \}$$

- via INSPECTION (Tables of Laplace Transforms)
- use of Schouten-Van der Pol theorem: (Schouten, 1934; Van der Pol, 1934)

• For
$$\exp[-\hat{\Phi}(\boldsymbol{x},s)\tau] \longmapsto \Psi(\boldsymbol{x},t,\tau)H(t)$$

• $\widehat{\mathsf{FLDQ}}[\boldsymbol{x},\hat{\Phi}(\boldsymbol{x},s)] \longmapsto \left[\int_{\tau=0}^{\infty} \Psi(\boldsymbol{x},t,\tau)\mathsf{FLDQ}(\boldsymbol{x},\tau)\mathrm{d}\tau\right]H(t)$

Inverse time Laplace transformation

WAVEFIELD COMPUTATION

- Select (bounded) spatial domain of computation $[\mathcal{D}] \subset \mathbb{R}^N$
- Select (bounded) time window of computation $[T] \subset \mathbb{R}$
- Construct (unbounded) Perfectly Matched Embedding (PME) $[\mathcal{D}]^{\infty} = \mathbb{R}^N \setminus [\mathcal{D}]$ via time-dependent orthogonal Cartesian coordinate stretching (De Hoop, Remis, Van den Berg, 2007)
- Terminate PME with periodic boundary conditions
 (De Hoop, Remis, Van den Berg, 2007)
- ullet Discretize $[\mathcal{D}]$ into union of adjacent simplices
- ullet Discretize [T] into union of successive intervals

WAVEFIELD COMPUTATION

- Discretize FLDQ(x, t) using:
 - piecewise linear interpolation on spatial grid
 - piecewise linear interpolation on temporal grid
 - nodal values of CONTINUOUS field components as (nodal, edge, face) expansion coefficients
- Substitute discretized field in space-time integrated field equations
- Compute integrations via simplicial ('trapezoidal') rule
- ullet Discretize constitutive relations (piecewise constant in $[\mathcal{D}]$)
- Solve system of equations in space-time expansion coefficients

CONSTRUCTION OF PERFECTLY MATCHED EMBEDDING (PME)

• Time Laplace-transform Cartesian coordinate stretching:

•
$$\partial_{x_n} \longmapsto \partial_{\hat{X}_n} = \frac{1}{\hat{\chi}_n(x_n, s)} \partial_{x_n} \Longrightarrow$$

$$\hat{X}_n(x_n, s) = \int_{\xi_n = a_n}^{x_n} \hat{\chi}_n(\xi_n, s) d\xi_n$$

$$(n = 1, \dots, N)$$

- $\{\hat{\chi}_n(x_n,s); n=1,\ldots,N\}$ analytic for $s\in\mathbb{C}, \mathrm{Re}(s)>0$, $\boldsymbol{x}\in[\mathcal{D}]^{\infty}$
- $\{\hat{\chi}_n(x_n,s); n=1,\ldots,N\}$ > 0 for $s\in\mathbb{C}, \operatorname{Re}(s)>0, \operatorname{Im}(s)=0, \boldsymbol{x}\in[\mathcal{D}]^{\infty}$
- $\{\hat{\chi}_n(x_n,s); n=1,\ldots,N\}=1$ for $\boldsymbol{x}\in[\mathcal{D}]$ \Longrightarrow field unchanged in $[\mathcal{D}]$

Boundary Conditions \Longrightarrow spurious field (De Hoop, Remis, Van den Berg, 2007)

Perfectly Matched Embedding

THE SPACE-TIME INTEGRATED FIELD EQUATIONS

Apply operators

$$ullet \int_{m{x}\in\mathcal{D}} \ldots \mathrm{d}V$$
 and $ullet \int_{t\in\mathcal{T}} \ldots \mathrm{d}t$ to FIELD EQUATIONS

Use

$$\bullet \int_{\boldsymbol{x} \in \mathcal{D}} \mathbf{D}(\boldsymbol{\partial}_{\boldsymbol{x}}) [\text{intensive } \mathsf{FLDQ}(\boldsymbol{x},t)] \mathrm{d}V = \int_{\boldsymbol{x} \in \partial \mathcal{D}} \mathbf{D}(\boldsymbol{\nu}) [\text{intensive } \mathsf{FLDQ}(\boldsymbol{x},t)] \mathrm{d}A$$
 (Gauss in \mathbb{R}^N)

•
$$\int_{t \in \mathcal{T}} \partial_t [\mathbf{extensive} \ \mathsf{FLDQ}(\boldsymbol{x}, t)] \mathrm{d}t = [\mathbf{extensive} \ \mathsf{FLDQ}(\boldsymbol{x}, t)] \bigg|_{t \in \partial \mathcal{T}}$$
 (Gauss in \mathbb{R})

⇒ In RHS's only continuous quantities occur

17

The space-time integrated field equations

THE SIMPLICIAL INTEGRATION RULE

• Simplicial integration rule in \mathbb{R}^N (= trapezoidal rule in \mathbb{R}):

Let
$$\Sigma^N\subset\mathbb{R}^N=N$$
-simplex on vertices $\{m{x}(0),\ldots,m{x}(N)\}$, then

ullet $\int_{m{x}\in\Sigma^N}[ext{discretized FLDQ}(m{x},t)]\mathrm{d}V\simeq 0$

$$\frac{V^N}{N+1} \bigg[\mathsf{FLDQ}[(\boldsymbol{x}(0),t)] + \ldots + \mathsf{FLDQ}[(\boldsymbol{x}(N),t)] \bigg]$$

• $V^N =$ volume of Σ^N

(De Hoop, 1995, 2008)

UNIT TENSORS IN WAVEFIELD PHYSICS

Symmetrical unit tensor of rank two: (Kronecker tensor)

• $\delta_{i,p} = 1$ for i = p, $\delta_{i,p} = 0$ for $i \neq p$

Unit tensors of rank four:

- $\Delta_{i,j,p,q} = \delta_{i,p}\delta_{j,q}$ (reproduction)
- $\Delta_{i,j,p,q}^- = (1/2)(\Delta_{i,j,p,q} \Delta_{i,j,q,p})$ (electromagnetics)
- $\Delta_{i,j,p,q}^+ = (1/2)(\Delta_{i,j,p,q} + \Delta_{i,j,q,p})$ (elastodynamics)
- $\Delta_{i,j,p,q}^{\delta} = (1/N)\delta_{i,j}\delta_{p,q}$ (acoustics)
- $\Delta_{i,j,p,q}^{\Delta} = \Delta_{i,j,p,q} \Delta_{i,j,p,q}^{\delta}$ (elastodynamics)
- $\Delta_{i,j,p,q}^{\Delta,+} = \Delta_{i,j,p,q}^{+} \Delta_{i,j,p,q}^{\delta}$ (elastodynamics)

(De Hoop, 1995, 2008)

19

Unit tensors in wavefield physics

TEST PULSES IN TIME FOR BENCHMARKING:

The unipolar pulse:

- $f(t) \ge 0$ for $t \ge 0$
- $\partial_t f(t)|_{t=t_r} = 0 \Longrightarrow t_r$ (pulse rise time)
- $A = f(t_r)$ (pulse amplitude)
- $t_{\rm w} = \frac{1}{A} \int_{t=0}^{\infty} f(t) dt$ (pulse time width)

The power exponential pulse:

•
$$f(t) = A \left(\frac{t}{t_{\rm r}}\right)^n \exp\left[-n\left(\frac{t}{t_{\rm r}}-1\right)\right] H(t)$$
 for $n = 1, 2, 3, \dots$

•
$$t_{\rm w} = \frac{n!}{n^{n+1}} \exp(n) t_{\rm r}$$

•
$$\hat{f}(s) = A \frac{n!}{(s+n/t_r)^{n+1}} \frac{\exp(n)}{t_r^n}$$
 for $s \in \mathbb{C}$, $\operatorname{Re}(s) > 0$

Test pulses in time for benchmarking

POWER EXPONENTIAL PULSES:

Power Exponential pulses

1D EM TD benchmark problem:

- Electric-/Magnetic-current source excitation \improx One-sided field
- Propagation across slab with contrasting wave speed, no contrast in wave impedance

 Pulse narrowing in space, no reflection
- Absorptive PML-padding with jump discontinuity at interface Absorption, no reflection
- Periodic boundary condition \Longrightarrow Uniformity in PML absorption
- Discretization data
 - $\Delta z = (\text{spatial pulse width})/10$ $\Delta t = (\text{pulse time width})/9$
 - $N_{\text{cells}} = 681$ $\Gamma_{\text{period}} = 6.17$

1D EM TD benchmark problem (Electric field):

1D EM TD benchmark problem (Magnetic field):

1D EM TD benchmark problem (Poynting vector):

