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Synopsis:
e System of wavefield equations in canonical form

e Field compatibility relations

EM Research

e Constitutive relations in media with relaxation (absorption + dispersion)

e Spatial interface boundary conditions

e The initial-value problem and the time Laplace transformation (causality)

e Computational wavefield discretization

e The space-time integrated field equations 4+ computational properties

e The 3D Perfectly Matched Embedding

e A simple application and benchmark problem

Synopsis
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An intimate triangle

Mathematical methods:

EM Research

e analytical
e computational

Wavefield physics:

& e acoustics
e elastodynamics

e electromagnetics

e

Engineering problems:

e formulation
e computation

03 /

Mathematics, (Wavefield) Physics, Engineering: An intimate triangle
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Structure of any macroscopic physical configuration:

e BACKGROUND + CONTRAST (Lorentz, 1916)
Universal BACKGROUND:

e empty universe (homogeneous + isotropic) (vacuum)

(N-dimensional) space

e observer { } decomposition

(1-dimensional) time

e capable of carrying phenomena satisfying Lorentz-invariant equations

(electromagnetics, gravitation (?))
CONTRAST:

e matter interacting with phenomena in empty space (electromagnetics,

gravitation (?)) + carrying material phenomena (acoustics, elastody-

\_ namics) 0 )

Background and contrast in a macroscopic physical configuration
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Each (macroscopic) FIELD is represented by:
FOUR FIELD QUANTITIES (FLDQ’s):

e {intensive FLDQ 1, intensive FLDQ 2}
e {extensive FLDQ 1, extensive FLDQ 2}

PROPERTIES:
e (intensive FLDQ 1) * (intensive FLDQ 2) =

e area density of power flow

e (extensive FLDQ 1) * (extensive FLDQ 2) =

e volume density of flow of momentum

— FLDQ = FLDQ(z, t)
\ with x = {x1,..., 2y} € R (space), t € R (time)

Intensive and extensive field quantities in space-time
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FIELD EQUATIONS

couple ¢ RATES OF CHANGE IN SPACE (9) of intensive FLDQ’s
with ¢ RATES OF CHANGE IN TIME (0;) of extensive FLDQ’s
—> WAVE MOTION <«

CANONICAL (TENSOR) FORM:
(Poincaré, 1905; Einstein, 1905; Minkowski, 1908)

e D(9z) (intensive FLDQ 1) + 0; (extensive FLDQ 2) =0

e D(0z) (intensive FLDQ 2) + 0; (extensive FLDQ 1) =0
o m: array composed of unit tensors (De Hoop, 1995, 2008)

e COMPATIBILITY RELATIONS: ¢ 0,,0,, (FLDQ) = 0,,0,,(FLDQ)

\_ 06 /

Field equations in canonical (tensor) form + compatibility relations
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CONSTITUTIVE RELATIONS:

EM Research

e extensive FLDQ = CONSTITUTIVE OPERATOR (intensive FLDQ)

CONSTITUTIVE OPERATOR:

e linear

e local =— SPATHAL DISPERSION (— infinite-wavespeed)

e time-invariant

e active (field-independent) part (= external sources) +

passive (field-dependent) part (= medium response)

e medium response = instantaneous response +

(Boltzmann) relaxation (absorption + dispersion)

o

Constitutive relations in media with relaxation (absorption + dispersion)
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CONSTITUTIVE RELATIONS:

EM Research

e (extensive FLDQ 1,2)(x,t) =

(COEFF 1,2)(z) * (intensive FLDQ 1,2)(x,t) +

/oo
JT=0

instantaneous response

(RELAXF 1,2)(x, 7) * (intensive FLDQ 1,2)(x,t — 7)d7

4

Vo .
Boltzmann relaxation

e BOLTZMANN RELAXATION (Boltzmann, 1876) —> CAUSALITY

Constitutive relations (canonical form)

08 )
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(PASSIVE) INTERFACE BOUNDARY CONDITIONS:

e Across passive interface X between two different media
NO JUMPS ALLOWED in certain FLDQ’s: WHICH ONES?
e DECOMPOSITION OF: 904 about x € >::

v
e Ox = v(v-Og) + Ox — v(v-Og)] T by
norm;Ir to X tangen;iral to X

CONTINUITY CONDITIONS:
o m(v)(intensive FLDQ 1,2)]1r =0

. 0 /

Spatial interface boundary conditions
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INITIAL-VALUE PROBLEM FIELD EQUATIONS: (t € R;t) <t < o0)

e UNIQUENESS DATA:

e Field on bounded support D ¢ RY @ oD

e Initial field values: FLDQ’s(x, ;) for x € D
e FIELD EQUATIONS for x € D; t) <t < o0

e BOUNDARY VALUES:
o PJ(v)(intensive FLDQ 1)(x,t) for & € 9D, t) < t < o0
o PJ(v)(intensive FLDQ 2)(x,t) for & € 9D, t) < t < o0

.

OR

/

Time evolution of field (physics) = Initial-value problem field equations (mathematics) (1)
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INITIAL-VALUE PROBLEM FIELD EQUATIONS: (t € R;t) <t < o0)

e UNIQUENESS DATA:

isotropic

e Field on unbounded support R

SS9|SSO|

homogeneous

embedding
e Initial field values: FLDQ's(x, to) for x € RY

e FIELD EQUATIONS for x ¢ RY; ty <t < o0
e OUTGOING WAVES in homogeneous, isotropic, lossless embedding

. . /

Time evolution of field (physics) = Initial-value problem field equations (mathematics) (2)
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INITIAL-VALUE PROBLEM FIELD EQUATIONS: (t € R;ty <t < 00)

e MATHEMATICAL PROOF:

e Via shifted time Laplace transformation: (De Hoop, 2003, 2004)

—_—

e FLDQ(x,s) =

e O,FLDQ(z, t) — s FLDQ(z, s) — FLDQ(, o)

/ " exp(—st)FLDQ(, £)dt
tzt()

for s € C,Re(s) > 0

- - - V
initial value

Im(s) seC
A
ﬁD\Q(m, s)
analytic
> Re(s)

/

Time evolution of field (physics) = Initial-value problem field equations (mathematics) (3)
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INVERSE TIME LAPLACE TRANSFORMATION: (t € R;0 <t < 00)

Im(s) seC
A
e use of Lerch’s uniqueness theorem: FLDQ(z, 5)
analytic
= N 1-to-1
* {FLDQ(®@, 5)|sec} == FLDQ(z, 1) H(t) B D
L

o L={se€C;Im(s) =0,Re(s) =s¢9 +nh,sy >0,h>0n=0,1,2,3,...}
e via INSPECTION (Tables of Laplace Transforms)

e use of Schouten-Van der Pol theorem: (Schouten, 1934; Van der Pol, 1934)

AN

e For exp|—®(x, s)7| — V(x,t,7)H (1)

©.9)

oﬁD\Q[w,@(a},s)] — [/:O\IJ(w,t,T)FLDQ(w,T)dT H(t)

/

13

Inverse time Laplace transformation
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WAVEFIELD COMPUTATION

e Select (bounded) spatial domain of computation [D] C RY
e Select (bounded) time window of computation [7] C R

e Construct (unbounded) Perfectly Matched Embedding (PME)

[D]>* = R¥\[D] via time-dependent orthogonal Cartesian
coordinate stretching (De Hoop, Remis, Van den Berg, 2007)

e Terminate PME with periodic boundary conditions
(De Hoop, Remis, Van den Berg, 2007)

e Discretize D] into union of adjacent simplices
e Discretize [7] into union of successive intervals

N G

Wavefield computation (1)
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WAVEFIELD COMPUTATION

Discretize FLDQ(x, t) using:

e piecewise linear interpolation on spatial grid

e piecewise linear interpolation on temporal grid

e nodal values of CONTINUOUS field components

as (nodal, edge, face) expansion coefficients

Substitute discretized field in space-time integrated field equations
Compute integrations via simplicial ('trapezoidal’) rule
Discretize constitutive relations (piecewise constant in [D] )

Solve system of equations in space-time expansion coefficients

EM Research

15 /

Wavefield computation (2)
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CONSTRUCTION OF PERFECTLY MATCHED EMB

e Time Laplace-transform Cartesian coordinate stretching:
Boundary

— e e e e e e e e e e e e e o e o e e e e e =y

; Matched E
1 ol o

Y a —_ aA = (9 — - I
Fn Xn R(xn,8) " o 5 g o
X (@, 8) = / Kn(6ns 8)dEn S8 -
En=an O.E o ::
(n=1,...,N) E (D] -

o {xun(zp,s);n=1,..., N} analytic for s € C,Re(s) > 0, & € [D]*

o {xn(zp,s);n=1,...,N}> 0 for s € C,Re(s) > 0,Im(s) =0, x € [D|*

o {xn(xn,s);n=1,..., N}=1for x € [D] — |field unchanged in [D]

\ Boundary Conditions == spurious field (De Hoop, Remis, Van den Berg, 2007) J
16

Perfectly Matched Embedding
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THE SPACE-TIME INTEGRATED FIELD EQUATIONS

e Apply operators
o/ ...dV and o/ ...dt to FIELD EQUATIONS
reD teT
e Use

. )92 )[intensive FLDQ(wx, t)]dV = ) (v )[intensive FLDQ(x, ¢)dA

xreD rcoD
(Gauss in RN)

o/ O;lextensive FLDQ(x, t)|dt = [extensive FLDQ(x, t)]
teT

tedT
(Gauss in R)

— In RHS’s only continuous quantities occur

—

The space-time integrated field equations
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THE SIMPLICIAL INTEGRATION RULE

e Simplicial integration rule in RY (= trapezoidal rule in R):

Let XV c RY = N-simplex on vertices {x(0),...,z(N)}, then

° / [discretized FLDQ(a},t)]dV ~
xrexN

VN
N +1

[FLDQ[(w(O), ] + ...+ FLDQ[(x(N), t)]

o V" = volume of &V

(De Hoop, 1995, 2008)
N o

Simplicial integration rule

Delft University of Technology (© 2009 Laboratory of Electromagnetic Research



<]
— TUDelft

UNIT TENSORS IN WAVEFIELD PHYSICS

Symmetrical unit tensor of rank two : (Kronecker tensor)
®0;,=1fori=p, 6;,=0fori#p

Unit tensors of rank four:

o A;jpq,=0i,0;, (reproduction)

o A = (1/2)(Ajpg — Aijgp) (electromagnetics)
o AT = (1/2)(Aijpg + Aijgp) (elastodynamics)
o Afqu (1/N)d; ;0,, (acoustics)
o A =Nijpe— A (elastodynamics)
A :
o A7 =AL — A (elastodynamics)

\ (De Hoop, 1995, 2008)

Unit tensors in wavefield physics

1 /
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TEST PULSES IN TIME FOR BENCHMARKING:

The unipolar pulse :

e f(t)>0fort>0
o 0:f(t)|i=t, = 0 =t, (pulse rise time)
e A= f(t,) (pulse amplitude)

o {,=— f(t)dt (pulse time width)
A Jig

The power exponential pulse :

. f(t)= A G)nexp [—n (tﬁ _ 1)] H(t) forn=1,2,3, ...

T
n

A |
o f(s)=A v exp(n) for s € C,Re(s) > 0

s+n/t)ntt tr
_ (5 n/t) . Y

Test pulses in time for benchmarking

exp(n)t,

o i, =

Delft University of Technology (© 2009 Laboratory of Electromagnetic Research
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POWER EXPONENTIAL PULSES:

Power Exponential Pulse

Power Exponential Pulse

EM Research

1 1
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\ t/t t/t, /
Power Exponential pulses
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1D EM TD benchmark problem:

EM Research

e Electric-/Magnetic-current source excitation = One-sided field

e Propagation across slab with contrasting wave speed, no contrast in

wave impedance — Pulse narrowing in space, no reflection

e Absorptive PML-padding with jump discontinuity at interface —

Absorption, no reflection

e Periodic boundary condition =—> Uniformity in PML absorption

e Discretization data

e Az = (spatial pulse width)/10 e At = (pulse time width)/9

o cells — 681 ® Fperjod — 617

22 /

1D EM TD benchmark problem
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1D EM TD benchmark problem (Electric field):

Electric field strength
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EM Research
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1D EM TD benchmark problem (Electric field)
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1D EM TD benchmark problem (Magnetic field):

(&= 2w (B = Zmim)
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EM Research
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1D EM TD benchmark problem (Magnetic field)
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EM Research

1D EM TD benchmark problem (Poynting vector):

%10 Power flow density
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1D EM TD benchmark problem (Poynting vector)
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