7

Acoustic reciprocity theorems
and their applications

In this chapter we discuss the basic reciprocity theorems for acoustic wave fields in
time-invariant configurations, together with a variety of their applications. The theorems will
be presented both in the time domain and in the complex frequency domain. In view of the time
invariance of the configurations to be considered, there are two versions of the theorems insofar
as their operations on the time coordinate are concerned: a version that is denoted as the fime
convolution type, and a version that is denoted as the time correlation type. The two versions
are related via a time inversion operation. Each of the two versions has its counterpart in the
complex frequency domain.

The application of the theorems to the reciprocity in transmitting/receiving properties of
acoustic transducers, and to the formulations of the direct (forward) source and inverse source
and the direct (forward) scattering and inverse scattering problems will be discussed.
Furthermore, it is indicated how the theorems lead, in a natural way, to the integral equation
formulation of acoustic wave problems for numerical implementation. Finally, it is shown how
the reciprocity theorems lead to a mathematical formulation of Huygens’ principle and of
Oseen’s extinction theorem.

7.1 The nature of the reciprocity theorems and the scope of their
consequences

A reciprocity theorem interrelates, in a specific manner, the field or wave quantities which
characterise two admissible states that could occur in one and the same time-invariant domain
DR in space. Each of the two states can be associated with its own set of time-invariant
medium parameters and its own set of source distributions. It is assumed that the media in the
two states are linear in their acoustic behaviour, i.e. the medium parameters are independent of
the values of the field or wave quantities. The domain 9 to which the reciprocity theorems
apply, may be bounded or unbounded. The application to unbounded domains will always be
handled as a limiting case where the boundary surface 0D of D recedes (partially or entirely)
to infinity.
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From the pertaining acoustic wave equations, first the local form of a reciprocity theorem
will be derived, which form applies to each point of any subdomain of D where the acoustic
wave-field quantities are continuously differentiable. By integrating the local form over such
subdomains and adding the results, the global form of the reciprocity theorem is arrived at. In
it, a boundary integral over 09 occurs, the integrand of which always contains the unit vector
v, along the normal to 0D, oriented away from D (Figure 7.1-1).

The two states will be denoted by the superscripts A and B. The construction of the
time-domain reciprocity theorems will be based on the acoustic wave equations (see Equations
(2.7-22), (2.7-23), (2.7-26) and (2.7-27))

Oup™ +OC vt =i (7.1-1)

avE+a.C phn =g, ,, (7.1-2)
for state A, and J

P +OC vy 5t) = fis (7.1-3)

Ve +3,C,5 PP =", (7.1-4)

for state B, where C, denotes the time convolution operator (see Equation (B.1-11)) (Figure
7.1-2).

If, in D, either surfaces of discontinuity in acoustic properties or acoustically impenetrable
objects are present, Equations (7.1-1)-(7.1-4) are supplemented by boundary conditions of the
type discussed in Section 2.6, both for state A and for state B. These are either (see Equations
(2.6-2) and (2.6-3))

pA’B is continuous across any interface , (7.1-5)

and

i(2)

i(1)

7.1-1  Bounded domain Dwith boundary surface 0 and unit vector v, along the normal to 9D, pointing
away from D, to which the reciprocity theorems apply.
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7.1-2 Bounded domain D and states A and B to which the time-domain reciprocity theorems apply.

u,vf"B is continuous across any interface , (7.1-6)
where v, is the unit vector along the normal to the interface, or (see Equation (2.6-4))
limy, | o pA’B(x +hv,t)=0 on the boundary of a void, (71.1-7)

where v is the unit vector along the normal to the boundary of the void, pointing away from the
void, or (see Equation (2.6-8))

limy, § o¥,va B e+ hvyg) = 0
on the boundary of an immovable, perfectly rigid object , (7.1-8)

where v is the unit vector along the normal to the boundary of the immovable, perfectly rigid
object, pointing away from the object.

If D is a bounded domain, the boundary surface 9D of D is assumed to be impenetrable
(Figure 7.1-3).

To handle unbounded domains (Figure 7.1-4), we assume that outside some sphere 5(0,4p),
with its centre at the origin of the chosen reference frame and radius A, the fluid is
homogeneous, isotropic and lossless, with the volume density of mass pg and the compressi-
bility #q as constitutive parameters, as well as source-free. In the domain outside the sphere,
the so-called embedding, the asymptotic causal far-field representations are (see Equation
(5.10-5))

WA i ::Ii(f D b, (1.1-9)
where p°° B and Vi <iAB are interrelated through (see Equations (5.10-11) and (5.10-12))

~(&lcg)p™ A8 +p0v:‘ B_o, (7.1-10)

—(E e AR 4 agp™ B =0, (7.1-11)

with
_ s
= (po‘Ko) . (7.1-12)
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7.1-3  Bounded domain 9 for the application of a reciprocity theorem. The boundary surface 0D of D
is assumed to be impenetrable. In D, interfaces between different fluids, voids and immovable perfectly
rigid objects may be present.

The construction of the complex frequency-domain reciprocity theorems will be based on
the complex frequency-domain acoustic wave equations (see Equations (4.5-1) and (4.5-2))

b ™ +EE0 = FE, (1.1-13)

3,0 +7tpA=g" (7.1-14)
for state A, and

Wb +Eed = fi, (7.1-15)

9,98 +4BpB =45, (7.1-16)

for state B. If, in D, either surfaces of discontinuity in acoustic properties or acoustically
impenetrable objects are present, Equations (7.1-13)—(7.1-16) are supplemented by boundary
conditions of the type discussed in Section 4.3, both for state A and for state B. These are either
(see Eqnations (4.3-1) and (4.3-2))

ﬁA’B is continuous across any interface , (7.1-17)
and
~AB . . .
vy, is continuous across any interface , (7.1-18)

where v, is the unit vector along the normal to the interface, or (see Equation (4.3-3))
limy, ;o p*B0e+mv,s)=0 on the boundary of a void , (7.1-19)

where v is the unit vector along the normal to the boundary of the void, pointing away from the
void, or (see Equation (4.3-7))

limh 10 Vrﬁ,:A’B(x + hV,S) =0

on the boundary of an immovable, perfectly rigid object , (7.1-20)
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7.1-4 Unbounded domain 9 for the application of a reciprocity theorem. Outside the sphere $(0,4),
the fluid is homogeneous, isotropic and lossless with constitutive parameters {pg,xq}. Inside S(0,4y),
interfaces between different fluids, voids and immovable perfectly rigid objects may be present.

where v is the unit vector along the normal to the boundary of the immovable, perfectly rigid
object, pointing away from the object.

In the complex frequency domain, too, when handling unbounded domains we assume that
outside some sphere $(0,4p) with its centre at the origin of the chosen reference frame and
radius 4, the fluid is homogeneous, isotropic and lossless, with the volume density of mass pg
and the compressibility x( as constitutive parameters, as well as being source-free. In the
domain outside that sphere, the embedding, the asymptotic causal far-field representations are
(see Equation (5.9-11))

(FAB5AP) = (5=AD AP g ) PEID Iy"l"") as Ixfee, (7.121)
where p <AB and vy <iAB  are interrelated through (see Equations (5.9-17) and (5.9-18))

9ok b AP 4 EpiAB =0, (7.1-22)

~Pok 3, AP 4 g pP =0, (7.1-23)
with

Co=sp0> (7.1-24)

flo= K0 (7.1-25)

Fo=(iolo) ™ = s(pgie) > =slcq - (7.1-26)

As a rule, state A will be chosen to correspond to the actual acoustic wave field in the
configuration, or one of its constituents. This wave field will therefore satisfy the condition of
causality, or, in other words, will be a causal wave field. If state B is another physical state, for
example a state that corresponds to source distributions and/or acoustic medium parameters
that differ from the ones in state A, state B will also be a causal wave field. If, however, state
B is a computational state, i.e. a state that is representative of the manner in which the wave-field
quantities in state A are computed, or a state that is representative of the manner in which the
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T s =Re(s) + j Im(s)
Im(s)
A
0 So Re(s) —
Bromwich path
for inversion

7.1-5  Line Re(s) = s, parallel to the imaginary axis of the complex s plane, at which the time Laplace
transform of a wave field that is neither causal, nor anti-causal, but of a transient nature, exists.

acoustic wave-field data pertaining to state A are processed, there is no need to take state B to
be a causal wave field as well, and it may, for example, be taken to be an anti-causal wave field
(i.e. a wave field that is time reversed with respect to a causal wave field) or no wave field at
all (which happens, for example, if one of the corresponding constitutive parameters is taken
to be zero). No matter how the source distributions and the constitutive parameters are chosen,
the wave-field quantities will always be assumed to satisfy the pertaining acoustic wave
equations and the pertaining boundary conditions.

To accommodate causal, anti-causal and non-causal states in the complex frequency-domain
analysis of reciprocity, the Laplace transform with respect to time of any transient, not
necessarily causal or anti-causal, wave function f=f(x,f) will always be taken as (see Equation
(B.1-5))

f(x,s):J. exp(—sf) f(f)dt  for Re(s) = sq, (7.1-27)
teR.

i.e. the support of the wave function is, in principle, taken to be the entire interval of real values
of time. Whenever appropriate, the support of the wave function will be indicated explicitly.
For wave fields that are neither causal nor anti-causal (but are of a transient nature), for the
transformation to make any sense at all, the right-hand side of Equation (7.1-27) should exist
for some value Re(s) = 5 on a line parallel to the imaginary axis of the complex s plane (Figure
7.1-5).

For causal wave functions with support T+ = {te® ;t > t,}, Equation (7.1-27) yields

fxs) = exp(-st) f(x,f)dt  for Re(s) > sg . ‘ (7.1-28)

=ty :

Here, the right-hand side is regular in some right half Re(s) > s§ of the complex s plane (Figure
7.1-6).
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Im(s)

Bromwich path
for inversion

7.1-6  Right half Re(s) > s§ of the complex s plane, in which the time Laplace transform of a causal
wave function exists.

For anti-causal wave functions with support 7T~ = {teR ¢ < tp}, Equation (7.1-27) yields

t
f(x,s)=J ° exp(st) frpdt  forRe(s)<sp. (7.1-29)
=00

Here, the right-hand side is regular in some left half Re(s) < sp of the complex s plane (Figure
7.1-7).

A consequence of Equation (7.1-29) is that f (x,—s) is regular in the right half Re(s) > —sp
of the complex s plane if f (x,s) is regular in the left half Re(s) < sj. This result will be needed
in reciprocity theorems of the time correlation type.

For the time convolution C, (fy, fo;%.t) of any two transient wave functions we have (see
Equations (B.1-11) and (B.1-12))

G fi o) = 1069 Foxs) . (7.1-30)

This relation only holds in the common domain of regularity of f 1(x,5) and fz(x,—s). If, in
particular, both f; = f;(x,£) and f = f,(x,}) are causal wave functions, they have a certain right
half of the complex s plane as the domain of regularity in common. (Note that in this case f(x,s)
is regular in some right half of the complex s plane, while f 2(x,s) is also regular in some right
half of the complex s plane.) If, on the other hand, f; = f1(x,?) is a causal wave function and f>
= f5(x,?) is an anti-causal wave function, the common domain of regularity where Equation
(7.1-30) holds is at most a strip of finite width paralle] to the imaginary axis of the complex s
plane. (Note that in this case f1(x,s) is regular in some right half of the complex s plane, while
fa(x,s) is regular in some left half of the complex s plane.)

For the time correlation R f;, f»:%,s) of any two transient wave functions we have (see
Equations (B.1-14) and (B.1-15))

R,(f1 for%:8) = f1(x,8) fo(e-s) . (7.1-31)
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s = Re(s) + j Im(s)

7.1-7  Lefthalf Re(s) < sj of the complex s plane, in which the time Laplace transform of an anti-causal
wave function exists.

This relation only holds in the common domain of regularity of fl (x,s) and fz(x,—s). If, in
particular, both f; = fi(x,f) and f5 = f>(x,¢) are causal wave functions, the common domain of
regularity where Equation (7.1-31) holds, is at most a strip of finite width parallel to the
imaginary axis of the complex s plane. (Note in this case that f 1(x,s) is regular in some right
half of the complex s plane, and that £ o(%,—s) is regular in some left half of the complex s plane.)
If, on the other hand, fj = f;(x,?) is a causal wave function and f; = f5(x,¢) is an anti-causal wave
function, the common domain of regularity where Equation (7.1-31) holds is some right half
of the complex s plane. (Note that in this case f 1(e,s) is regular in some right half of the complex
s plane, and that f »(x,—s) is also regular in some right half of the complex s plane.)

In subsequent calculations the time correlation will, whenever appropriate, be replaced by
(see Equation (B.1-18))

R/(f1, .0 = C(f1.3,(f2)ix.0) (7.1-32)

where I, is the time reversal operator. The latter operator changes causal wave functions into
anti-causal ones, and vice versa.

Exercises

Exercise 7.1-1

Of what type is the domain of regularity of the Laplace transform of the time convolution
C,(f1, foix.,t) of two wave functions f] = f1(x,f) and f, = f,(x,¢) that are both anti-causal?

Answer:  Some left half of the complex s plane.
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Exercise 7.1-2

Of what type is the domain of regularity of the Laplace transform of the time correlation
R,(fi, f3x.1) of the anti-causal wave function f; = f;(x.?) and the causal wave function f; =

Hlx,0)?
Answer:  Some left half of the complex s plane.

7.2 The time-domain reciprocity theorem of the time convolution type

The time-domain reciprocity theorem of the time convolution type follows upon considering

the local interaction quantity 0, [C,(pA,v,%;x,t) —C,(pB,vﬁ;x,t)]. Using standard rules for

spatial differentiation and adjusting the subscripts to later convenience, we obtain
O [C,(pA, vﬁ;x,t) - C,(pB, va;x,t)]
=3 Cp Vi - 3., V)
= C,@p™ VB + C(pR Bpbint) - C@, PPyt — C(p5 dpiwn) . (7.2-D)

With the aid of Equations (7.1-1)—(7.1-4), the different terms on the right-hand side become

CL@ep™ VEmt) = =3,y o) + CfiWiest) (722)
Ci(p" dpkmd) = -, 2B PPt + Ciph d i) (7.23)
0, P8 vRit) = -, CUE e ) + C( P v (7.2-4)
C,(pB, arvf‘;x,t) = —B,C,(pB,XA, pA;x,t) + C,(pB, qA;x,t) , (7.2-5)

in which the convolution of three functions is a shorthand notation for the convolution of a
function with the convolution of two other functions. (Note that in the convolution operation
the order of the operators is immaterial.) Combining Equations (7.2-2)(7.2-5) with Equation
(7.2-1), it is found that

A B B A
3 [CL(P™ viimt) — Cip5s Vi)
B A A B B A A B
=0,Cillrk = HhorVr Vi) = 0,C(X ™ =X 5P"5p %)
A A
+CUA VR + ™ Pt - CUAS VD) - CpS g ) (7.2-6)

Equation (7.2-6) is the local form of the acoustic reciprocity theorem of the time convolution
type. The first two terms on the right-hand side are representative of the differences (contrasts)
in the acoustic pr(;aperties of the fluids present in the two states; these terms vanish at those
locations where p,f (x,0) = yﬁ, (x,f) and yB(x,p) = xA (x,?) for all zeR. In case the latter
conditions hold, the two media are referred to as each other’s adjoint. Note is this respect that
the adjoint of a causal (anti-causal) medium is causal (anti-causal) as well. The last four terms
on the right-hand side of Equation (7.2-6) are representative of the action of the sources in the
two states; these terms vanish at those locations where no sources are present.
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To arrive at the global form of the reciprocity theorem for some bounded domain D, it is
assumed that 9 is the union of a finite number of subdomains in each of which the terms
occurring in Equation (7.2-6) are continuous. Upon integrating Equation (7.2-6) over each of
these subdomains, applying Gauss’ divergence theorem (Equation (A.12-1)) to the resulting
left-hand side, and adding the results, we arrive at (Figure 7.2-1)

A B B A
J' Y [C(p"s viiot) = C(ps Vi) dA
x€0D

B A A B B A A B
=J‘ [atct(,ur,k = Mpe,rsVr sVk X.t) — atCt(X X PP ;x’t)} av
xeD

A B A B B A B A
+J' [Cfe vt +Cp g st - AP i - CoB M) av. (7.2-7)
xeD

Equation (7.2-7) is the global form, for the bounded domain D, of the acoustic reciprocity
theorem of the time convolution type. Note that in the process of adding the contributions from
the subdomains of 9, the contributions from common interfaces have cancelled in view of the
boundary conditions of the continuity type (Equations (7.1-5) and (7.1-6)), and that the
contributions from boundary surfaces of acoustically impenetrable parts of the configuration
have vanished in view of the pertaining boundary conditions of the explicit type (Equation
(7.1-7) or (7.1-8)). On the left-hand side, therefore, only a contribution from the outer boundary
0D of D remains, insofar as parts of this boundary do not coincide with the boundary surface
of an acoustically impenetrable object. On the right-hand side, the first integral is representative
of the differences (contrasts) in the acoustic properties of the fluids present in the two states;
this term vanishes if the media in the two states are, throughout D, each other’s adjoint. The
second integral on the right-hand side is representative of the action of the sources present in
Din the two states; this term vanishes if no sources are present in D,

The limiting case of an unbounded domain

In quite a number of cases the reciprocity theorem (Equation (7.2-7)) will be applied to an
unbounded domain. To handle such cases, the embedding provisions described in Section 7.1
are made and Equation (7.2-7) is first applied to the domain interior to the sphere 5(0,4) with
its centre at the origin and radius 4, after which the limit A—oo is taken (Figure 7.2-2).
Whether or not the surface integral contribution over 5(0,4) does vanish as A—yoo depends
on the nature of the time behaviour of the wave fields in the two states. When the wave fields
in states A and B are both causal in time (which is the case if both states apply to physical wave
fields), the far-field representations of Equations (7.1-9)—(7.1-11) apply for sufficiently large
values of 4. Then, the time convolutions occurring in the integrands of Equation (7.2-7) are
also causal in time, and at any finite value of ¢, A can be chosen so large that on $(0,4) the
integrand vanishes. In this case, the contribution from $(0,4) vanishes. If, however, at least
one of the two states is chosen to be non-causal (which, for example, can apply to the case
where one of the two states is a computational one), the time convolutions occurring in Equation
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7.2-1 Bounded domain 2 with boundary surface 0 to which the reciprocity theorems apply.

(7.2-7) are non-causal as well and the contribution from $(0,4) does not vanish, no matter how
large a value of A is chosen. As outside the sphere S(0,4) that is used to define the embedding
(see Section 7.1) the media are each other’s adjoint and no sources are present, the surface
integral contribution from 5(0,4) is, however, independent of the value of 4 as long as 4> 4,
(see Exercise 7.2-2).

The time-domain reciprocity theorem of the convolution type is mainly used for investigat-
ing the transmission/reception reciprocity properties of acoustic transducers (see Sections 7.6
and 7.7) and for modelling direct (forward) source problems (see Section 7.8) and direct
(forward) scattering problems (see Section 7.9). References to the earlier literature on the
subject can be found in a paper by De Hoop (1988).

7.2-2  Unbounded domain D to which the reciprocity theorems apply. S(0,4) is the bounding sphere
that recedes to infinity; S(0,4,) is the sphere outside which the fluid is homogeneous, isotropic and
lossless.
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Exercises

Exercise 7.2-1

To what form do the contrast-in-media terms in the reciprocity theorems Equations (7.2-6) and
(7.2-7) reduce if the fluids in states A and B are both instantaneously reacting?

Answer:
B A A B B A A B
Ct(/f‘r,k — Mk, Vr sV X0 = [pr,k(x) - pk,r(x)] Ci(vy v sxt)
and

A A
C® - xS pp ) = [KB(x) - KA(x)] Cp™ PP .

Exercise 7.2-2

Let Dbe the bounded domain that is internally bounded by the closed surface 51 and externally
by the closed surface §,. The unit vectors along the normals to 5] and .5, are chosen as shown
in Figure 7.2-3. The reciprocity theorem Equation (7.2-7) is applied to the domain . In D, no
sources are present, neither in state A nor in state B, and the fluid in 2D 1in state B is in its acoustic
properties adjoint to the one in state A. Prove that

A A
J Vs [Co(p"s Vi) = Cy(p1 vix,t)] dA
X€ES

1

= J' V[ CP A Vi) — C(P% Vi) A, (7.2-8)
XES.

2

i.e. that the surface integral is an invariant.

7.3 The time-domain reciprocity theorem of the time correlation type

The time-domain reciprocity theorem of the time correlatlon type follows upon considering the
localinteraction quantity 9,,, [R,(p L vEix ) + R,(p vm,x, £)]. On account of Equations (B.1-14)
and (B.1- 18) and the symmetry of the convolution operator, this quantity can be rewritten as
) [C,(p J (vm) x,t) + C,(J,(p )s vm,x )]. Using standard rules for spatial differentiation and
adjusting the subscripts to later convenience, we obtain

0, [CHPA T vm)t) + C TP ) i)
= 9,y (P TR)x) +3,C T, (PP Vi ,t)
= C,@p" T D)0 + C, (0™ T,@p)ix)

+ GG, POV + CUIEPvE ) . (7.3-1)
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Vm

7.2-3 Domain D bounded internally by the closed surface §; and externally by the closed surface .5,

With the aid of Equations (7.1-1)—(7.1-4) and the rule J,(9, f) = —0,(J;(f)), the different terms
on the right-hand side become

C@ep™ OB = 0ol v T R)M + Col fit T R)%0) (7.3-2)

Cp™ T @Rt = H.CP™ TP () + Co™ TP (7.3-3)

C,@, PP ) = R C O ED TRV + CO VD, (7.3-4)
B A B, A A B, A

Ct(Jl(p )9arvr ;x7t) =~atct(Jt(p )9x »P ;x9t) +Ct(Jt(P )’q ;x’t) ’ (7‘3'5)

in which the convolution of three functions is a shorthand notation for the convolution of a
function with the convolution of two other functions. (Note that in the convolution operation
the order of the operators is immaterial.) Combining Equations (7.3-2)—«(7.3-5) with Equation
(7.3-1), it is found that

O [Ry(p" Vi) + Ry(pP, Vi)
= 3 [CUp " L) + CT PP Vs
=0,CT(krp) — i T VD))
+3C0R) - 15 10yt + CUAT )
+ PN TG + CUF D + CO P g ) (7.3-6)
Equation (7.3-6) is the local form of acoustic reciprocity theoremn of the time correlation type.
The first two terms on the right-hand side are representative of the differences (contrasts) in the

acoustic properties of the fluids present in the two states; these terms vanish at those locations
where J,(ugk)(x,t) = y,"ér(x,t) and J,(XB)(x,t) = xA(x,t) for all te® . When the latter conditions
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hold, the two media are referred to as each other’s time-reverse adjoint. Note is this respect that
the time-reverse adjoint of a causal (anti-causal) medium is an anti-causal (causal) medium.
The last four terms on the right-hand side of Equation (7.3-6) are representative of the action
of the sources in the two states; these terms vanish at those locations where no sources are
present.

To arrive at the global form of the reciprocity theorem for some bounded domain D, it is
assumed that 2 is the union of a finite number of subdomains in each of which the terms
occurring in Equation (7.3-6) are continuous. Upon integrating Equation (7.3-6) over each of
these subdomains, applying Gauss’ divergence theorem (Equation (A.12-1)) to the resulting
left-hand side, and adding the results, we arrive at (Figure 7.3-1)

A B B A
J. Vs [RP A Vi) + Ry(p5 Vi) dA
xedD

A
= J v [Co D Ti0mmt) + C (P ) Vi) dA
x€dD

B A A B A A B
=J. [0CLT, (ki) — v TR0 + 3,C, 0GP = P T (0P| av
xeD

+j [CA TR0 + Clp™ TPy
XeD

+ G vimn + CA (%) g™ ] v (7.3-7)

Equation (7.3-7) is the global form, for the bounded domain D, of the acoustic reciprocity
theorem of the time correlation type. Note that in the process of adding the contributions from
the subdomains of D, the contributions from common interfaces have cancelled in view of the
boundary conditions of the continuity type (Equations (7.1-5) and (7.1-6)), and that the
contributions from boundary surfaces of acoustically impenetrable parts of the configuration
have vanished in view of the pertaining boundary conditions of the explicit type (Equation
(7.1-7) or (7.1-8)). On the left-hand side, therefore, only a contribution from the outer boundary
0D of D remains, insofar as parts of this boundary do not coincide with the boundary surface
of an acoustically impenetrable object. On the right-hand side, the first integral is representative
of the differences (contrasts) in the acoustic properties of the fluids present in the two states;
this term vanishes if the media in the two states are, throughout D, each other’s time-reverse
adjoint. The second integral on the right-hand side is representative of the action of the sources
present in D in the two states; this term vanishes if no sources are present in 2.

The limiting case of an unbounded domain

In a number of cases the reciprocity theorem (Equation (7.3-7)) will be applied to an unbounded
domain. To handle such cases, the embedding provisions given in Section 7.1 are made and
Equation (7.3-7) is first applied to the domain interior to the sphere 5(0,4) with its centre at
the origin and of radius 4, after which the limit A—-eo is taken (Figure 7.3-2).
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7.3-1 Bounded domain P with boundary surface 39 to which the reciprocity theorems apply.

Since outside the sphere 5(0,4p) that is used to define the embedding (see Section 7 .1) the
media are each other’s time-reverse adjoint and no sources are present, the surface integral
contribution from $(0,4) is, in any case, independent of the value of A for 4> 4 (see Exercise
7.3-2). Whether or not this contribution vanishes as A—eo, depends on the nature of the time
behaviour of the wave fields in the two states. When the wave fields in states A and B are both
causal in time (which is the case if both states apply to physical wave fields), the contribution
of $(0,4) is a non-vanishing function that is independent of the value of 4. If, however, state
A is chosen to be causal and state B is chosen to be anti-causal (which, for example, can apply
to the case where state B is a computational one), the contribution from $(0,4) vanishes for
sufficiently large values of 4.

7.3-2 Unbounded domain D to which the reciprocity theorems apply. S(0,4) is the bounding sphere
that recedes to infinity; S(0,4) is the sphere outside which the fluid is homogeneous, isotropic and
lossless.
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The time-domain reciprocity theorem of the correlation type is mainly used in modelling
inverse source problems (see Section 7.10) and inverse scatttering problems (see Section 7.11).
References to the earlier literature on the subject can be found in a paper by De Hoop (1988).

Exercises

Exercise 7.3-1

To what form do the contrast-in-media terms in the reciprocity theorems Equations (7.3-6) and
(7.3-7) reduce if the fluids in states A and B are both instantaneously reacting?

Answer:
B A A B B A A B
O C(T(r ) = MgV T (Vi i) = [Pr,k(x) - Pk,r(x)] oC,(vy Ty (Vi )i 0)
and

AC®) - xS P 0Pty =[P ) ~ )] 90" 1 (PPt

Exercise 7.3-2

Let Dbe the bounded domain that is internally bounded by the closed surface S1 and externally
by the closed surface .5,. The unit vectors along the normals to §; and $, are chosen as shown
in Figure 7.3-3. The reciprocity theorem Equation (7.3-7) is applied to the domain 2. In D, no
sources are present, in either state A or state B, and the fluid in 9 in state B is in its acoustic
properties the time-reverse adjoint of the one in state A. Prove that

j i [CP™ Tivmint) + C, () Vi )] dA
xXe$

1
=f Vi [CP"S T m0) + CLO(P ) vimn) A (7.3-8)
szZ

i.e. that the surface integral is an invariant.

7.4 The complex frequency-domain reciprocity theorem of the time
convolution type

The complex frequency-domain reciprocity theorem of the time convolution type follows upon
considering the local interaction quantity 0,,[p A(x,s)ﬁ”?(x,s) — 5 B(x,5)0,2(x,5)]. Using standard
rules for spatial differentiation and adjusting the subscripts for later convenience, we obtain
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7.3-3  Domain 9 bounded internally by the closed surface S, and externally by the closed surface S,.

A [P A ) - PR8I0 (x,5)]
=0 [p AP s)] - 0, [p B9, )
=[0up )| 9w + 51 09) [90P 9)

—[0:5 %) |9 s ~ 5P [0, ). (7.4-1)

With the aid of Equations (7.1-13)—(7.1-16), the different terms on the right-hand side become

(01 “.9) |9 (x5) = £y 69, 6508 ) + Fi (s ws), (7.4-2)
5A0) [0 09)] = =5 405 P 5) B 0es) + A ) Pns) (7.4-3)
(0,520 92 5) = ~E B 6D, ) + £ (59, ) (7.4-4)
529 0,9, )| =—p P.) Ses) 5 Aws) + 5 ws)g Aexs) (7.4-5)

Combining Equations (7.4-2)-(7.4-5) with Equation (7.4-1), it is found that
~A, \aB B, \aA
Oy [ B 68)0 (65) = B2 (1,5)9,1 (5,5))

=[E509) - £ w0 0es)
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~B A A A A A
~[ABs) - 7w p A 5 B xs)
2A A A A 2 A A A
+ FRPws) + pA0s)d Beesy £ R0 ) - pPw9d M) (7.4-6)

Equation (7.4-6) is the local form of the complex frequency-domain counterpart of the acoustic
reciprocity theorem of the time convolution type. The first two terms on the right-hand side are
representative of the differences (contrasts) in the acoustic properties of the fluids present in
the two states; these terms vanish at those locations where f ,?k(x,s) = f k“}r(x,s) and ﬁB(x,s) =
ﬁA(x,s) for all s in the domain in the complex s plane where Equation (7.4-6) holds. When the
latter conditions hold, the two media are referred to as each other’s adjoint. The last four terms
on the right-hand side of Equation (7.4-6) are representative of the action of the sources in the
two states; these terms vanish at those locations where no sources are present.

To arrive at the global form of the reciprocity theorem for some bounded domain 9, it is
assumed that 9 is the union of a finite number of subdomains in each of which the terms
occurring in Equation (7.4-6) are continuous. Upon integrating Equation (7.4-6) over each of
these subdomains, applying Gauss’ divergence theorem (Equation (A.12-1)) to the resulting
left-hand side, and adding the results, we arrive at (Figure 7.4-1)

J- Vi [ B 20,80 (5) = B P(0,5)0m ()] dA
xe0D

=_[ [ERes9 - Edms] s woPes
xeD
~ [P0 - 14 09] 5 A )P} av
+_[ [Ff o9l ees) + pAwsg ®ees)
xeD

~ P s - pPesd M) av. (7.4-7)

Equation (7.4-7) is the global form, for the bounded domain 9, of the complex frequency-
domain counterpart of the acoustic reciprocity theorem of the time convolution type. Note that
in the process of adding the contributions from the subdomains of D, the contributions from
common interfaces have cancelled in view of the boundary conditions of the continuity type
(Equations (7.1-17) and (7.1-18)), and that the contributions from boundary surfaces of
acoustically impenetrable parts of the configuration have vanished in view of the pertaining
boundary conditions of the explicit type (Equation (7.1-19) or (7.1-20)). On the left-hand side,
therefore, only a contribution from the outer boundary 0D of 2 remains insofar as parts of this
boundary do not coincide with the boundary surface of an acoustically impenetrable object. On
the right-hand side, the first integral is representative of the differences (contrasts) in the
acoustic properties of the fluids present in the two states; this term vanishes if the media in the
two states are, throughout D, each other’s adjoint. The second integral on the right-hand side
is representative of the action of the sources in 9 in the two states; this term vanishes if no
sources are present in D,
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7.4-1 Bounded domain D with boundary surface 9 to which the reciprocity theorems apply.

The limiting case of an unbounded domain

In quite a number of cases the reciprocity theorem (Equation (7.4-7)) will be applied to an
unbounded domain. To handle such cases, the embedding provisions described in Section 7.1
are made and Equation (7.4-7) is first applied to the domain interior to the sphere §( 0,4) with
its centre at the origin and of radius 4, after which the limit A—eo is taken (Figure 7.4-2).
Whether or not the surface integral contribution over 5(0,4) does vanish as 4—eo, depends on
the nature of the time behaviour of the wave fields in the two states. When the wave fields in
states A and B are both causal in time (which is the case if both states apply to physical wave
fields), the far-field representations of Equations (7.1-21)—(7.1-23) apply for sufficiently large
values of A. Then, the contribution from $(0,4) vanishes in the limit A—eo. If, however, at least
one of the two states is chosen to be non-causal (which, for example, can apply to the case
where one of the two states is a computational one), the contribution from $(0,4) does not
vanish, no matter how large a value of A is chosen. However, since outside the sphere $(0,4,)
that is used to define the embedding (see Section 7.1) the media are each other’s adjoint and
no sources are present, the surface integral contribution from $(0,4) is independent of the value
of A as long as 4> A (see Exercise 7.4-4).

The complex frequency-domain reciprocity theorem of the time convolution type is mainly
used for investigating the transmission/reception reciprocity properties of acoustic transducers
(see Sections 7.6 and 7.7) and for modelling direct (forward) source problems (see Section 7.8)
and direct (forward) scattering problems (see Section 7.9).

Exercises

Exercise 7.4-1

Show, by taking the Laplace transform with respect to time, that Equation (7.4-6) follows from
Equation (7.2-6).
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PoXo

7.4-2  Unbounded domain P to which the reciprocity theorems apply. S(0,4) is the bounding sphere
that recedes to infinity; 5(0,4,) is the sphere outside which the fluid is homogeneous, isotropic and
lossless.

Exercise 7.4-2

Show, by taking the Laplace transform with respect to time, that Equation (7.4-7) follows from
Equation (7.2-7).

Exercise 7.4-3

To what form do the contrast-in-media terms in the reciprocity theorems Equations (7.4-6) and
(7.4-T) reduce if the fluids in states A and B are both instantaneously reacting?

Answers:
~B 2 A A~ A ~B B A, \1AA AB
[Erks) - £ @.9)] 9 050 (.5) = s [p,30x) - o) 92 59 B )
and

[71°0s) - 71 29)] B2 9) B Ps) = s [1200) = 1A )] A ) 5 Piws)

Exercise 7.4-4

Let Dbe the bounded domain that is internally bounded by the closed surface §; and externally
by the closed surface .S,. The unit vectors along the normals to $; and S, are chosen as shown
in Figure 7.4-3. The reciprocity theorem Equation (7.4-7) is applied to the domain . In D, no
sources are present, in either state A or state B, and the fluid in D in state B is in its acoustic
properties the adjoint of the one in state A. Prove that

_[ Y [B 009 () — P Bx,8)0, 5)] dA

xESl

=f V|5 005)0m (5) = B P 0,5)Pm 00,5)] dA (7.4-8)
XES.

2
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7.4-3 Domain D bounded internally by the closed surface §; and externally by the closed surface .55,

i.e. that the surface integral is an invariant.

7.5 The complex frequency-domain reciprocity theorem of the time
correlation type

The complex frequency-domain reciprocity theorem of the time correlation type follows upon
considering the local interaction quantity d,, [13 Aw,s)0B(x,-s)+ p B(x,—s)ﬁ,,“:“(x,s)]. Using
standard rules for spatial differentiation and adjusting the subscripts to later convenience, we
obtain
AA ~B ~B AA
O [P0 0t=s) + B P x=5)Pp (5,5)]
A A A B A B A A
= ak [p (x,S)Vk (x,—s)] + ar [P (x,——s)vr (x,s)]
A A ~B A A ~B
=[98 A9 =) + A ws) (39 (6,-5)]
+[0,8 =99 5) + 5 Px-s) [0,9 0x9)]. (7.5-1)
With the aid of Equations (7.1-13)—(7.1-16), the different terms on the right-hand side become
~A ~B A AA ~B 2A ~B
[&)k D (x,s)} Vi (0,=8) = =L n(x,8)0, (0,8)0; (x,=5) + fi (x,8)0 (x,-5) , (7.5-2)

7 4s) [0 06-5)] = =5 .57 B0r=5) B eims) + B A 0)G Bs) (7.5-3)

[8,5%06-9)] 9 (5.5) = L Br 008 (55092 0) + £ P (=909 9) (7.5-4)
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526-5) [9,9,009)] =5 P =9) A .5) A 05) + p B x—9)d Axs) (7.5-5)
Combining Equations (7.5-2)—(7.5-5) with Equation (7.5-1), it is found that
O [ 5P (6-5) + B P50 (2,
=[-£5009) - £ w9 9 0P e —s)
+ [ Pems) = 7 40)] A 06) B B-)
+ @ @) + A9 P £ P59 M) + PP9)d M) . (7.5-6)

Equation (7.5-6) is the local form of the complex frequency-domain counterpart of the acoustic
reciprocity theorem of the time correlation type. The first two terms on the right-hand side are
representative of the differences (contrasts) in the acoustic properties of the fluids present in
the two states; these terms vanish at those locations where { r}?k(x,—s) = - k‘;\,(x,s) and
#B(x,—s) =—# A(x,5) for all s in the domain in the complex s plane where Equation (7.5-6) holds.
When the latter conditions hold, the two media are referred to as each other’s time-reverse
adjoint. The last four terms on the right-hand side of Equation (7.5-6) are representative of the
action of the sources in the two states; these terms vanish at those locations where no sources
are present.

To arrive at the global form of the reciprocity theorem for some bounded domain D, it is
assumed that D is the union of a finite number of subdomains in each of which the terms
occurring in Equation (7.5-6) are continuous. Upon integrating Equation (7.5-6) over each of
these subdomains, applying Gauss’ divergence theorem (Equation (A.12-1)) to the resulting
left-hand side, and adding the results, we arrive at (Figure 7.5-1)

A A A B A B A A
j Vi [ B 2 06,5)0 (6-5) + P (e=5)m (x,5)] dA
x€0D

- J (e8] 9B esms
xeD
+ [P 0m9) 809 5 A6 B} av
+ _[ [l + b Ax0)d Bx-s)
xeD

+ £ ) + 5 P )d M) av. (1.5-7)

Equation (7.5-7) is the global form, for the bounded domain D, of the complex frequency-
domain counterpart of the acoustic reciprocity theorem of the time correlation type. Note that
in the process of adding the contributions from the subdomains of D, the contributions from
common interfaces have cancelled in view of the boundary conditions of the continuity type
(Equations (7.1-17) and (7.1-18)), and that the contributions from boundary surfaces of
acoustically impenetrable parts of the configuration have vanished in view of the pertaining



Acoustic reciprocity theorems and their applications 171

7.5-1 Bounded domain D with boundary surface 9D to which the reciprocity theorems apply.

boundary conditions of the explicit type (Equation (7.1-19) or (7.1-20)). On the left-hand side,
therefore, only a contribution from the outer boundary 0D of D remains, insofar as parts of this
boundary do not coincide with the boundary surface of an acoustically impenetrable object. On
the right-hand side, the first integral is representative of the differences (contrasts) in the
acoustic properties of the fluids present in the two states; this term vanishes if the media in the
two states are, throughout D, each other’s time-reverse adjoint. The second integral on the
right-hand side is representative of the action of the sources in D in the two states; this term
vanishes if no sources are present in D.

The limiting case of an unbounded domain

In a number of cases the reciprocity theorem (Equation (7.5-7)) will be applied to an unbounded
domain. To handle such cases, the embedding provisions given in Section 7.1 are made and
Equation (7.5-7) is first applied to the domain interior to the sphere $(0,4) with its centre at
the origin and of radius 4, after which the limit 4—o- is taken (Figure 7.5-2).

Since outside the sphere 5(0,4,) that is used to define the embedding (see Section 7.1) the
media are each other’s time-reverse adjoint and no sources are present, the surface integral
contribution from 5(0,4) is, in any case, independent of the value of A for A> A (see Exercise
7.5-4). Whether or not this contribution vanishes as 4—eo depends on the nature of the time
behaviour of the wave fields in the two states. When the wave fields in states A and B are both
causal in time (which is the case if both states apply to physical wave fields) the contribution
of $(0,4) is a non-vanishing function that is independent of the value of 4. If, however, state
A is chosen to be causal and state B is chosen to be anti-causal (which, for example, can apply
to the case where state B is a computational one) the contribution from $(0,4) vanishes for
sufficiently large values of 4.



172 Acoustic waves in fluids

Po¥o

7.5-2  Unbounded domain 9 to which the reciprocity theorems apply. S(0,4) is the bounding sphere
that recedes to infinity; 5(0,4p) is the sphere outside which the fluid is homogeneous, isotropic and
lossless.

The complex frequency-domain reciprocity theorem of the time correlation type is mainly
used in modelling inverse source problems (see Section 7.10) and inverse scattering problems
(see Section 7.11).

Exercises

Exercise 7.5-1

Show, by taking the Laplace transform with respect to time, that Equation (7.5-6) follows from
Equation (7.3-6).

Exercise 7.5-2

Show, by taking the Laplace transform with respect to time, that Equation (7.5-7) follows from
Equation (7.3-7).

Exercise 7.5-3

To what form do the contrast-in-media terms in the reciprocity theorems Equations (7.5-6) and
(7.5-7) reduce if the fluids in states A and B are both instantaneously reacting?

Answer:

[-Erks) - £y 9) | @D ems) = 5[50 - B @] v, v (ms)
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and

[P ee=5) = 7 2 0e)] B2 06) 5 B xms) = s [1P ) — )] 5 A ) PP xs)

Exercise 7.5-4

Let Dbe the bounded domain that is internally bounded by the closed surface $; and externally
by the closed surface S,. The unit vectors along the normals to $; and $, are chosen as shown
in Figure 7.5-3. The reciprocity theorem (Equation (7.5-7)) is applied to the domain D. In D,
no sources are present either in state A or in state B, and the fluid in ©1in state B is in its acoustic
properties the time-reverse adjoint of the one in state A. Prove that

J Vo [P 2 0,8)m 6m5) + P Blt,=5)Dm (6,5)] dA
xes)

= J Vi [B A5 tms) + P (e (,5)| dA (7.5-8)
XES.

2

i.e. that the surface integral is an invariant.

7.6 Transmission/reception reciprocity properties of a pair of acoustic
transducers

The transmission and the reception of acoustic waves take place through the use of acoustic
transducers (which can be, for example, of piezoelectric, magnetoelastic or electrodynamic
type). Different representations exist to model the action of the transducers. In this respect we
shall discuss the volume action model and the surface action model. To analyse the correspond-
ing reciprocity properties, we consider the fundamental configuration of two transducers that
are surrounded by a fluid. The entire configuration occupies a bounded or unbounded domain
D. Transducer A occupies the bounded domain Try with boundary surface dTry, and a unit
vector along the normal v,, oriented away from Tr 5. Transducer B occupies the bounded domain
Trg with boundary surface 0Trg, and a unit vector along the normal v,, oriented away from Trg.
The domain exterior to TraUdTry is denoted by Try; the domain exterior to TrgUdTrg is
denoted by Trg. The domains Try and Trg are disjoint (Figure 7.6-1).

As to the boundary conditions across the interfaces between fluid parts with different
acoustic properties and the boundary conditions at the boundary surfaces of acoustically
impenetrable objects, the provisions necessary for the global reciprocity theorems to hold are
made. If the immersing fluid occupies a bounded domain, the exterior of this domain is assumed
to be acoustically impenetrable. If the immersing fluid occupies an unbounded domain, the
standard limiting procedure described in Section 7.1 for handling an unbounded domain is
applied. Since transmission and reception are both causal phenomena, the transmission/recep-
tion reciprocity properties are based on the reciprocity theorems (Equations (7.2-7) and (7.4-7))
of the time convolution type in which theorem causality is preserved.
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7.5-3 Domain D bounded internally by the closed surface S 1 and externally by the closed surface S,.

Volume action transducers

A volume action transducer is characterised by the property that in the transmitting mode its
action can be accounted for by prescribed values of the volume source densities of volume
injection rate and/or force, whose common support is the domain occupied by that transducer,
while in the receiving mode it is sensitive to the acoustic pressure and/or the particle velocity
over the domain it occupies. To investigate the transmission/reception reciprocity properties of
a pair of such transducers, we take state A to be the causal acoustic state for which the volume
source densities have the support Tra (i.e. in state A, transducer A is the transmitting transducer
and transducer B is the receiving transducer). In addition, we take state B to be the causal
acoustic state for which the volume source densities have the support Trg (i.e. in state B,
transducer B is the transmitting transducer and transducer A is the receiving transducer).
Application of the global time-domain reciprocity theorem of the time convolution type
(Equation (7.2-7)), to the entire domain D occupied by the configuration, assuming the fluid to
be self-adjoint, yields

A B A
J- [Ct(fk Vi ;x’t) - Ct(pB’ q ;x,t)} dav
xelr

A

= j [P vt = Cuph P av. (7.6-1)
xeTry

The complex frequency-domain counterpart of Equation (7.6-1) follows from Equation (7.4-7)
as

j s ws - wad Aws) v
xeTr,

= j [£P )9 0es) - pAws)d Pos)] av. (7.6:2)
xeTrg
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7.6-1 Configuration of the transmission/reception reciprocity properties of a pair of acoustic trans-
ducers (Try and Trg) surrounded by a fluid.

In Equations (7.6-1) and (7.6-2), the terms containing the source densities of volume injection
rate are representative of the action of the transducer as a (volume distributed) transmitting
monopole transducer, while the terms containing the volume densities of force are repre-
sentative of the action of the transducer as a (volume distributed) transmitting dipole
transducer. Furthermore, the terms containing the acoustic pressure quantify the sensitivity of
the transducer as a (volume distributed) receiving monopole transducer, while the terms
containing the particle velocity quantify the sensitivity of the transducer as a (volume
distributed) receiving dipole transducer. From Equations (7.6-1) and (7.6-2) itis concluded that
a spatially distributed monopole transducer is only sensitive to the acoustic pressure (and
insensitive to the particle velocity), while a spatially distributed dipole transducer is only
sensitive to the particle velocity (and insensitive to the acoustic pressure). The reciprocity
relations imply that the different sensitivities are related (i.e. through Equations (7.6-1) and
(7.6-2)).

Surface action transducers

A surface action transducer is characterised by the property that in its transmitting mode its
action can be accounted for by prescribed values of the normal component of the particle
velocity and the acoustic pressure at its boundary surface, while in its receiving mode it is
sensitive to the normal component of the particle velocity and the acoustic pressure at that
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surface. This description of the action of the transducer is employed when the description of its
action by volume sources is either inapplicable or irrelevant. To investigate the reciprocity
properties of a pair of such transducers, we take state A to be the causal acoustic state for which
the prescribed surface source densities have the support 0Try (i.e. in state A, transducer A is
the transmitting transducer and transducer B is the receiving transducer). In addition, we take
state B to be the causal acoustic state for which the prescribed surface source densities have the
support oTrg (i.e. in state B, transducer B is the transmitting transducer and transducer A is the
receiving transducer). Application of the global time-domain reciprocity theorem of the time
convolution type, (Equation (7.2-7)), to the entire domain LDmTr‘; mTr{; exterior to the
transducers yields, assuming the fluid to be self-adjoint,

A B B _A
J Ym [Cz(P sV xt) — Cop ,vm;x,t)] dA
xe0Tr,

B

= J Von [CeP" vt) = Ci (P vise) | dA . (7.6-3)
xe0Try

The complex frequency-domain counterpart of Equation (7.6-3) follows from Equation (7.4-7)

as

AA A A A~
_[ V| B 5)0 (0,5) — P (e, )0m (5,5)] dA
xe0Tr,

= J Vo [ B P 5)0 (0,5) — P A 0) )] A (7.6-4)
xe0Try

In Equations (7.6-3) and (7.6-4), the terms containing the source densities of surface injection
rate (i.e. v,9,) are representative of the action of the transducer as a (surface distributed)
transmitting monopole transducer, while the terms containing the surface densities of force
(i.e. v p) are representative of the action of the transducer as a (surface distributed) transmitting
dipole transducer. Furthermore, the terms containing the acoustic pressure quantify the
sensitivity of the transducer as a (surface distributed) receiving monopole transducer, while the
terms containing the particle velocity quantify the sensitivity of the transducer as a (surface
distributed) receiving dipole transducer. From Equations (7.6-3) and (7.6-4) it is concluded that
a surface distributed monopole transducer is only sensitive to the acoustic pressure (and
insensitive to the particle velocity), while a surface distributed dipole transducer is only
sensitive to the (normal component of the) particle velocity (and insensitive to the acoustic
pressure). The reciprocity relations imply that the different sensitivities are related (i.e. through
Equations (7.6-3) and (7.6-4)).

Exercises

Exercise 7.6-1

Use Equation (7.2-7) to derive the time-domain transmission/reception reciprocity theorem for
a pair of transducers (A and B) if transducer A is a volume action transducer and transducer B
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is a surface action transducer. (Note the orientation of the unit vector v, along the normal to
aTrB.)

Answer:

_[ [l vemn - CipP g ) dv
X

eTry

= J V[P vimnit) = Ci(p Vi) dA. (7.6-5)
x0Ty

Exercise 7.6-2

Use Equation (7.4-7) to derive the complex frequency-domain transmission/reception reciproc-
ity theorem for a pair of transducers (A and B) if transducer A is a volume action transducer
and transducer B is a surface action transducer. (Note the orientation of the unit vector v,, along
the normal to oTrg.)

Answer:

_[ [ AP es) - pPs)d )] av
xeTr

A

= J' V| BP0 (0,5) = B 08) P (5] A (1.6-6)
xe0Trg

Exercise 7.6-3

If in the interior of Trp and Trp the acoustic wave-field quantities would be set equal to zero
and these wave-field quantities would on dTr, and 0Trg jump to their respective boundary
values, the jumps would, on account of Equations (7.1-1)—(7.1-4), give rise to surface force
sources with volume dens1t1cs f = VkpA BéaTr (%) and surface injection rate sources
with volume densities ¢*B = v,/ BdaTr 20, ‘Where 0 () is the surface Dirac delta
distribution opcratlvc on the surface .S Show by taking the time convolution of the inner
products of fk B with v A and of q B with pB+A, that in this physical picture Equation (7.6-3)
is compatible with Equatlon (7.6-1).

Exercise 7.6-4

Show, in a manner similar to Exetcise 7.6-3, that Equation (7.6-4) is compatible with Equation
(7.6-2).

7.7 Transmission/reception reciprocity properties of a single acoustic
transducer

To analyse the transmission/reception reciprocity properties of a single transducer, we consider
the fundamental configuration of a single transducer surrounded by a fluid. The entire
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configuration occupies a, bounded or unbounded, domain . The transducer occupies the
bounded domain Tr with boundary surface 9Tr and a unit vector along the normal v,, oriented
away from Tr (Figure 7.7-1). The domain exterior to TrdTr is denoted by Tr’.

As to the boundary conditions across interfaces between fluid parts with different acoustic
properties and the boundary conditions at the boundary surfaces of acoustically impenetrable
objects, the provisions necessary for the global reciprocity theorems to hold are made. If the
immersing fluid occupies a bounded domain, the exterior of this domain is assumed to be
acoustically impenetrable. If the immersing fluid occupies an unbounded domain, the standard
limiting procedure described in Section 7.1 for handling an unbounded domain is applied. Since
transmission and reception are both causal phenomena, the transmission/reception reciprocity
properties are based on the reciprocity theorems (Equations (7.2-7) and (7.4-7)) of the time
convolution type, in which causality is preserved.

Volume action transducer

If Tr is a volume action transducer, its action in the transmitting mode is accounted for by
prescribed values of the volume source densities of injection rate and/or force, whose support
is the domain occupied by the transducer, while in the receiving mode it is sensitive to the
acoustic pressure and/or the particle velocity over the domain it occupies. To investigate the
transmission/reception reciprocity properties of a single transducer of this kind, state A is taken
to be the causal state assocxated with the wave field { D vy } generated by the prescribed volume
source densities {q fk } whose support is Tr. This state is referred to as the transmitting state
and will be denoted by the superscript T. Next, state B is taken to be the causal state associated
with the wave field that is generated by unspecified sources located in the domain Tr” exterior
to the transducer. In the surrounding fluid these sources would generate an incident wave field
{p ,v,} if the transducer were not activated. The total wave field { DV, R} in the presence of the
transducer is then the superposition of the incident wave field and the scattered wave field

P’y ie.
PR = (0 P+ (7.7-1)

The relevant state is referred to as the receiving state and will be denoted by the superscript R.
Note that in the receiving state the domain Tr occupied by the transducer is source-free and that
the scattered wave field in this state is source-free in the domain Tr” exterior to the domain
occupied by the transducer. Application of the time-domain reciprocity theorem of the time
convolution type (Equation (7.2-7)) to the transmitted and the scattered wave fields and to the
domain Tt” exterior to the transducer yields, assuming the fluid to be self-adjoint,

j Vs [P Vi) = C(pS vmnt)| dA = 0. (1.7-2)
xedTr

Here, we have used the property that the total wave field in the transmitting state and the
scattered wave field in the receiving state are both source-free in the domain Tr” exterior to the
transducer and causally related to the action of (primary or secondary) source distributions with
the domain Tr occupied by the transducer as their supports, on account of which both the volume
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7.7-1 Configuration for the transmission/reception reciprocity properties of a single acoustic
transducer Tr surrounded by a fluid.

integral over the domain exterior to the transducer and the surface integral over the outer
boundary of the domain of application of Equation (7.2-7) vanish. Using Equation (7.7-1), it
follows from Equation (7.7-2) that

T R R T
I Ym [CI(P Vs Xot) = C(p ,vm;x,t)] dA
xeoTr

= J Y [CoP  Viiit) = C(p v )] dA . (7.7-3)
xedTr

Next, Equation (7.2-7) is applied to the total wave fields in the transmitting and the receiving
states and to the domain Tr occupied by the transducer. This yields, again assuming the fluid
to be self-adjoint,

T R R T
J‘ Vin [Ct(p s VmsXot) = C,(P s vm;x,t)] da
xedTr

=f [CifevEmn) = Cp" g V. (7.7-4)
xeTr

Combining Equations (7.7-3) and (7.7-4), and using the continuity of the acoustic pressure and
the normal component of the particle velocity across Tr in both states, we arrive at

T i i T
J‘ [Cr(P ,Vot) — Cy(p) vm;x,t)] dA
xeoTr
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= J [Cz(fkT: vet) = Ci(pS qT;x,t)] dv. (7.7-5)
xeT

I

The complex frequency-domain counterpart of Equation (7.7-5) follows, in a similar manner,
from Equation (7.4-7) as

J' U [P 5P m(x5) = ()0 (5,5)] dA
xedTr

- j [F o)) - pR0s)d T v, (1.7-6)
xeT

r

In view of what has been found in Section 7.6, the right-hand sides of Equations (7.7-5) and
(7.7-6) are representative of the sensitivity of the transducer to a received acoustic wave field
generated elsewhere in the domain exterior to the transducer. The left-hand sides express that
the transducer can, in the receiving state, be conceived of as being excited, across its boundary
surface, by the incident wave field. Equations (7.7-5) and (7.7-6) relate these two aspects
quantitatively.

Surface action transducer

If Tr is a surface action transducer, its action in the transmitting mode is accounted for by
prescribed values of the normal component of the particle velocity and the acoustic pressure at
its boundary surface, while in the receiving mode it is sensitive to the normal component of the
particle velocity and the acoustic pressure at that surface. This description of the action of the
transducer is employed when the description of its action by volume sources is either
inapplicable or irrelevant. To investigate the transmission/reception reciprocity properties of a
single transducer of this kind, state A is, as above, taken to be the causal state associated with
the wave field {p ,vr} generated by the prescribed surface source densities of injection rate
G.e. Vrvr) and force (i.e. v;p), whose support is oTr. This state is referred to as the transmitting
state and will be denoted by the superscript T. Next, state B is taken to be the causal state
associated with the wave field that is generated by unspecified sources located in the domain
Tr” exterior to the transducer. In the surrounding fluid these sources would generate an incident
wave field {p ,v,} if the transducer were not activated. The total wave field {p®,vR} in the
presence of the transducer is again the superposition of the incident wave field and the scattered
wave field {p’,v S}, ie.

PN = P i) (1.7-7)

The relevant state is referred to as the receiving state and will be denoted by the superscript R.
Note that in the receiving state the domain Tr occupied by the transducer is source-free insofar
as the total field is concerned and that the scattered wave field in this state is source-free in the
domain Tr” exterior to the domain occupied by the transducer. Application of the time-domain
reciprocity theorem of the time convolution type (Equation (7.2-7)), to the transmitted and the
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scattered wave fields and to the domain Tr” exterior to the transducer, assuming the fluid to be
self-adjoint, yields

_f Vs |CUp Vysit) = C(p vmsit) | dA = 0. (7.7-8)
xeoTr
Now, using Equation (7.7-7), it follows that

T R R T
J Vi [C,(p Y Vmit) — Cy(p ,vm;x,t)]dA
xedTr

= j Vs | P Vi) = C(phvmaxit) dA . (1.7:9)
xedTr

The complex frequency-domain counterpart of Equation (7.7-9) follows, in a similar manner,
from Equation (7.4-7) as

J V[ e8P 5) = B R O68)0 01,5) ] dA
xed

Tr

- j V| BT ) Om) = B (5)0 ()] dA . (7.7-10)
xedTr

In view of what has been found in Section 7.6, the left-hand sides of Equations (7.7-9) and
(7.7-10) are representative of the sensitivity of the transducer to a received acoustic wave field
generated elsewhere in the domain exterior to the transducer. The right-hand sides express that
the transducer can, in the receiving state, be conceived of as being excited, across its boundary
surface, by the incident wave field. Equations (7.7-9) and (7.7-10) relate these two aspects
quantitatively.

7.8 The direct (forward) source problem; point-source solutions and Green’s
functions

In the direct (or forward) source problem we want to express the acoustic wave-field quantities
in a configuration with given acoustic properties in terms of the source distributions that
generate the wave field. Let D be the domain in which expressions for the generated acoustic
wave field { p WV, Ty ={ pT,v }(x,£) are to be found. If Dis a bounded domain, its boundary surface
0D is assumed to be acoustically impenetrable. If D is an unboundéd domain, the standard
prov1sxons described in Section 7.1 for handling an unbounded domain are made. Since
(P~ p ,vr } isa physwal wave field, it satisfies the condition of causality. The source distributions
{q fk } = {q , fk }(x,?) that generate the wave field, have thé bounded support DT that is a
proper subdomain of © (Figure 7.8-1).

The acoustic properties of the fluid present in Dare characterised by the relaxation functions
{#krx} = {tt 3} (x,2), which are causal functions of time. The case of an instantaneously
reacting fluid easily follows from the more general case of a fluid with relaxation.



182 Acoustic waves in fluids

7.8-1(a1)

l{m
L1

7.8-1(b)

7.8-1  Configuration of the direct (forward) source problem. D7 is the bounded support of the source
distributions. (a) The fluid occupies the bounded domain D with acoustically impenetrable boundary 9.
(b) The fluid occupies the unbounded domain D; $(0,4) is the bounding sphere that recedes to infinity.
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Tirne-domain analysis

For the time-domain analysis of the problem the global reciprocity theorem of the time
convolution type (Equation (7.2-7)) is taken as the point of departure. In it, state A is taken to
be the generated acoustic wave field under consideration, i.e.

{pA,vf*} = {pT,vf}(x,t) for xeD, (7.8-1)

@Y =g i Hwn  forxed, (7.82)
and

{#kA,r ) = {te o)) forxeD. (7.8-3)

Next, state B is chosen such that the application of Equation (7.2-7) to the domain D leads to
the values of { pT,v?} at some arbitrary pointx’eD . Inspection of the right-hand side of Equation
(7.2-7) reveals that this is accomplished if we take for the source distributions of state B a point
source of volume injection rate at x” when we want an expression for the acoustic pressure at
x’, and a point source of force at x’ when we want an expression for the particle velocity at x’,
while the fluid in state B must be taken to be the adjoint of the one in state A, i.e.

(U x5} = (gepx) (t)  for all xe., (7.8-4)

Furthermore, if D is bounded, the acoustic wave field in state B must satisfy on 9 the same

boundary conditions for an acoustically impenetrable boundary as in state A, while if D is

unbounded the acoustic wave field in state B must be causally related to the action of its (point)

sources. The two possible choices of the source distributions will be discussed separately below.
First, we choose

& =adx-x,f) and £2=0, (7.8-5)

where d(x — x',) represents the four-dimensional unit impulse (Dirac distribution) operative at
the point x =x’ and at the instant ¢ = 0, while a is an arbitrary constant scalar. The acoustic wave
field causally radiated by this source is given by

PPVB) = PPB B ), (7.8-6)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. Now, Equation (7.2-7) is applied to the
domain 9. When D is bounded, we have for the integral over its boundary surface

A B B A

j Vs [Cop™ viiit) = C(p5 vinsit) | dA

xe0D :

= J' V| Cp VP 2 0) = C(p ™D v )] dA =0, (7.8-7)
x€0D

while if Dis unbounded the standard provisions given in Section 7.1 for handling an unbounded

domain yield

A B B A
J V[0 Vi) = Ci(p5 Vimsit) | dA
xe$5(0,4)
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= '[ Vi [Ct(PT, VﬁB;x,x’, - C,(pq;B, v;;x,x', t)] dA50  asd —oeo, (7.8-8)
xe5(0,4) :

Furthermore, in view of Equation (7.8-5) and the properties of d(x — x,£),

B _A A B
J [~Ci P wimn + c0’ Pxn)av
xeD

=J. [Cip" adte -\ xn)dv=ap' (1) , (7.8-9)
xeD
and, as the sources have the support o,

A B B A
J [Ct(fk Vi) —Cp g ;x,t)] av
xeD

= J [Ctfe BP0 - Cp™ g )] av (7.8-10)
xeD"
Collecting the results, we arrive at

ap (¢, = J [C,( pPR g x 1) — Co0B, £l x, t)] v forx’eo, (7.8-11)
xeD”

where, in the second term on the right-hand side, we have used the symmetry of the convolution
in its functional arguments. From Equation (7.8-11) a representation for p’ (x'¢) is obtained by
taking into account that p%B and v@PB are linearly related to a. The latter relationship is
expressed as

{pq;B’ . kq;B} (x1) = {qu;B, G I:q;B} o0 . (7.8-12)
However, as for the right-hand side the reciprocity relations (see Exercises 7.8-1 and 7.8-3)
(GPTR GPPY 1) = (GPL -G x,t) (7.8-13)

hold, Equation (7.8-11) leads, with Equations (7.8-12) and (7.8-13), and invoking the condition
that the resulting equation has to hold for arbitrary values of 4, to the final result

P = J' [CGP.q"wxty+ CGE, flw'xn)dv  forxeD. (7.8-14)
xeD”

Equation (7.8-14) expresses the acoustic pressure pT of the generated acoustic wave field at
x’ as the superposition of the contributions from the elementary distributed sources g dV and
f,;r dV at x. The intervening kernel functions are the acoustic pressure/volume injection source
Green’s function GP? = GP(x'x,t) and the acoustic pressure/force source Green’s function
G{f = G{f (x"x,t). These Green’s functions are the acoustic pressure at x’, radiated in the actual
fluid with constitutive parameters {u ,,x } = {ux r-x } (%,1), by a point source of volume injection
atx and a point source of force at x, respectively.
Secondly, we choose

=0 and f2=p00-x1), (7.8-15)
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where b, is an arbitrary constant vector. The acoustic wave field causally radiated by this source
is given by

o) = PPy xn (7.8-16)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. Now, Equation (7.2-7) is applied to the
domain D. In case Dis bounded, we have for the integral over its boundary surface

A B B_A
J‘ Vin [C,(p S Vmt) — Cy(p ,vm;x,t)]dA
x€0D

= J. v [CiP P, 0) - Cip B v dA =0, (7.8-17)
xe0D

while, if D is unbounded, the standard provisions given in Section 7.1 for handling an
unbounded domain yield

A B B _A
j Ym [Ct(p s Vm 3 X%8) = Cy(p ,vm;x,t)]dA
xe$(0,4)

= J Vi [Ct(pT, v{,;,B X, X51) — C,(pf ;B, v;;x,x’, t)] dA—-0 as 4—oo,  (7.8-18)
xes(0,4)

Furthermore, in view of Equation (7.8-15) and the properties of d(x — x’,1),

B A
j [-C( P + @’ ] av
xeD

=- J. [Cb, 80 = X,y )| AV ==byy (1) . (7.8-19)
xeD

Furthermore, as the sources have the support DT,

A B B A
J [C;(fk Vi) —Clp g ;x,t)] dv
xeD

= J T[c,( FEwBax, ) - Cp" g ] v (7.8-20)
xeD

Collecting the results, we arrive at

b, (x H= J —C,(pf ’ ,q XX 1) +C,(v,c fkT;x,x', t)] dv  forx’em, (7.8-21)

where, in the second term on the right-hand side, we have used the symmetry of the convolution
in its functional arguments. From Equation (7.8-21) a representation for v, T(x f) is obtained by
taking into account that pf B and ka B are linearly related to b,. The latter relationship is
expressed by

BBy, = (GHP.GIP) eax' b, (7.8-22)
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However, as for the right-hand side the reciprocity relations (see Exercises 7.8-2 and 7.8-4)
(GPP.GIP ) = (-GG ) (7.8-23)

hold, Equation (7.8-21) leads with Equations (7.8-22) and (7.8-23), and invoking the condition
that the resulting equation has to hold for arbitrary values of b,, to the final result

v;r(x’,t)zj [C/G g W) + CAG A 5w xp]dV  forx'e. (7.8-24)
xeD"

Equation (7.8-24) expresses the particle velocity v;r of the generated acoustic wave field at x’
as the superposition of the contributions from the elementary distributed sources qT dV and
fkT dV at x. The intervening kernel functions are the particle velocity/volume injection source
Green’s function G}¥ = GY4(x’,x,t) and the particle velocity/force source Green’s function
G,‘:{ = G,‘f{(xﬁx,t). These Green’s functions are the particle velocity at x’, radiated in the actual
fluid with constitutive parameters {z ,,x } = {14 »»x } (x,£), by a point source of volume injection
at x and a point source of force at x, respectively.

Complex frequency-domain analysis

For the complex frequency-domain analysis of the problem the complex frequency-domain
global reciprocity theorem of the time convolution type, Equation (7.4-7), is taken as the point
of departure. In it, state A is taken to be the generated acoustic wave field under consideration,
ie.

AAAA AT AT

(BN =(p 9, Jxs)  forxeD, (7.8-25)

@A =17 FDws)  forxen, (7.8-26)
and

{fk’f‘r,ﬁA} = {fk,,,ﬁ}(x,s) forxeD. (7.8-27)

Next, state B is chosen such that the application of Equation (7.4-7) to the domain 9 leads to
the values of {7, ﬁrT} at some arbitrary point x’€D. Inspection of the right-hand side of
Equation (7.4-7) reveals that this is accomplished if we take for the source distributions of state
B a point source of volume injection rate at x” when we want an expression for the acoustic
pressure at x’, and a point source of force at x” when we want an expression for the particle
velocity at x’, while the fluid in state B must be taken to be the adjoint of the one of state A, i.e.

{7 ®) = (Ei i) () forallxed. (7.8-28)

Furthermore, if 2 is bounded, the acoustic wave field in state B must satisfy on 9 the same

boundary conditions for an acoustically impenetrable. boundary as in state A, while if D is

unbounded the acoustic wave field in state B must be causally related to the action of its (point)

sources. The two choices for the source distributions will be discussed separately below.
First, we choose

G =d(s)0(-x) and fB=0, (7.8-29)
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where d(x — x”) represents the three-dimensional unit impulse (Dirac distribution) operative at

the point x = x’, while d=d(s) is an arbitrary scalar function of s. The acoustic wave field
causally related to this source is given by

AB 2B ~q;B Ag; ,
(85 78 = 8P wxls) (7.8-30)
where the first spatial argument indicates the position of the field point and the second spatial

argument indicates the position of the source point. Now, Equation (7.4-7) is applied to the
domain 9. When 2 is bounded, we have for the integral over its boundary surface

I Vi [ﬁ A(x,s)ﬁ,s (xs)—p B(x,s)ﬁ,ﬁ(x,s)] dA
x€0D

= J. V[P TP, 5) ~ B PP, )P (x)] dA =0, (7.8-31)
x€0D

while if Dis unbounded the standard provisions given in Section 7.1 for handling an unbounded
domain yield

AAL s 2B, \aA
j Vi [ 250 (5,5) = B P (5,539, (x,5)] dA
xe$(0,4)
= J- Y [P TR, 5) = P I (5)Pm () 5)| dA > 0 as A—seo.  (7.8-32)
xe5(0,4)
Furthermore, in view of Equation (7.8-29) and the properties of d(x — x”),
*B aA ~A AB
_[ £ 259 s + A ws)g P av
xeD
= J p T(.\:,s)ci(s)é(.xc ~x) dV=a(s)p T(x’, s). (7.8-33)
xeD
In addition, since the sources have the support T,
j [fl s ws) - pPwsg A av
xeD
= J- [l s wxss) - B PP, 5)d Tws)]dv. (7.8-34)
xeD"

Collecting the results, we arrive at

a(s)p L)) = [ 7P x, )4 "(0s) - P fl (s)]dV forx'en. (7.8-35)
xeD”

From Equation (7.8-35) a representation for p T(x’s) is obtained by taking into account that
P 9B and 9 are linearly related to d(s). The latter relationship is expressed by
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p @B 5 Ig;B} (,x,s) = {épq:B, é kvq;B)(x,x', $)A(s) . (7.8-36)
However, since for the right-hand side the reciprocity relations (see Exercises 7.8-5 and 7.8-7)
{GPTB GYTBY (x,x5) = {(GPL -Gy (x',x,9) (7.8-37)
hold, Equation (7.8-35) leads, with Equations (7.8-36) and (7.8-37) and invoking the condition

that the resulting equation has to hold for arbitrary values of d(s), to the final result

s = J' (6P, %) s) + G ) )] dv  forx'eD.  (7.8-38)
xeD’

Equation (7.8-38) expresses the acoustic pressure 5T of the generated acoustic wave field at
x’ as the superposition of the elementary contributions 4 T dV and fkT dV from the distributed
sources atx. The intervening kernel functions are the acoustic pressure/volume injection source
Green’s function GP? = GPI(x'x,s) and the acoustic pressure/force source Green’s function
Gé’f = G{f (x'x,s). These Green’s functions are the acoustic pressure at x’, radiated in the actual
fluid with constitutive parameters {{y .7} = { k,11(x,5), by a point source of volume injection
at x and a point source of force at x, respectively.
Secondly, we choose

§%=0 and fP=5(0(x-x), (7.8-39)

where 5, = 5,(s) is an arbitrary vector function of s. The acoustic wave field causally radiated
by this source is given by

(5% A8 = (6"B By wx's) (7.8-40)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. Now, Equation (7.4-7) is applied to the
domain . When D is bounded we have for the integral over its boundary surface

~A A ~B AA
J- Vm [p (x,S)V,E(x,S) -D (x,S)vm (x,S)] dA
x€0D

= J V| BT 505 ) 5) - BB Ge, )Dm(,s)| dA = 0, (7.8-41)
xe0D

while if Dis unbounded the standard provisions given in Section 7.1 for handling an unbounded
domain yield

A A A A A
j VD As)0me,s) = B 0es)o (x,5)] d4
xe$(0,4)
= j V[ B )05, 5) - BB, )0 (6,5) | dA o 0 as dseo.  (7.8-42)
xe5(0,4)

Furthermore, in view of Equation (7.8-39) and the properties of d(x — x*),

j £ 95w + A0 s av
xXeD
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== J b,(5)8(x —x') 9, (x,5) AV = —b ()9, T(x’ ) . (7.8-43)
xeD

In addition, as the sources have the support D7,

J [/l @ws)pd s - pPws)d A av
xeD

= J [fk (x,s)v,c (xx s5) - p (x,x’,s)cj T(.x,s)] dv. (7.8-44)
xe"

Collecting the results, we arrive at

b(syl(x)s) = J' [5x4 T@s) + 9P’ il ()] AV forx'en. (7.8-45)
T

From Equation (7.8-45) a representation for ¥, (x 5) is obtained by taking into account that
pFB and ka B are linearly related to b (s). The latter relationship is expressed by

{1578 9[B)ex)s) = (GPB G ) (v, 9)b,(s) . (7.8-46)
However, since for the right-hand side the reciprocity relations (see Exercises 7.8-6 and 7.8-8)
(GH 6B x's) = (=G4 G (' xs) (7.8-47)

hold, Equation (7.8-45) leads with Equations (7.8-46) and (7.8-47), and invoking thé condition
that the resulting equation has to hold for arbitrary values of b,(s), to the final result

Is) = G, ey Tws) + Gl xs)fles))dv  forx'en.  (7.8-48)

xeD"

Equation (7.8-48) expresses the particle velocity ¥, T of the generated acoustic wave field at x’

as the superposition of the elementary contnbunons §Tdvand f kT dV from the distributed
sources at x. The mtervemng kernel functions are the particle velocity/volume injection source
Green’s function G = GY(x' x,s) and the particle velocity/force source Green’s function
G "{ G V{(x X,5). These Green’s functions are the particle velocity atx’, radiated in the actual
fluid with constitutive parameters {C k, W)= {Q k,11) (x,5), by a point source of volume injection
at x and a point source of force at x, respectxvely

Exercises

Exercise 7.8-1

Let {pA vrA} = {p A}(x X t) be the acoustic wave ﬁeld atx that is causally radiated by the
pomt source at ¥’ with volume source density {q fk } = {a 6(x —x'1),0} and let {pB vk} =
{p® vB}(x,x",1) be the acoustic wave field at x that is causally radiated by the point source at
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x” with volume source density {g®, fB} = {aBd(x —-x",0),0}, with x” # x”. The two sources
radiate in adjoint fluids occupying the domain 2. If D is bounded, its boundary surface 9 is
assumed to be acoustically impenetrable; if D is unbounded, the standard provisions given in
Section 7.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (7.2-7)) to the domain D. (b) Write

=GP wxnat, VA =G wx)at,

B

. ‘B
pB = qu’B(xvx”s t)aB’ Vi = Gkvq’ (x,x”, t)aB )

invoke the condition that the result should hold for arbitrary a® and aB, and show that
qu;A(x”,x’, H)=GP? ;B(x',x”, 0.

Exercise 7.8-2

Let { pA, vrA} = { pA, vrA}(x,x’,t) be the acoustic wave field at x that is causally radiated by the
point source at x” with volume source density {g*, f,f‘} = {a®6(x - x0),0} and let {pB,v,]?} =
{pB,vB)(x,x",9) be the acoustic wave field at x that is causally radiated by the point source at
x” with volume source density {gB, 2} = {0,bB5(x - x”,f)} withx’ #x”. The two sources radiate
in adjoint fluids occupying the domain 9. If D is bounded, its boundary surface 9D is assumed
to be acoustically impenetrable; if © is unbounded, the standard provisions given in Section
7.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem (Equation
(7.2-7)) to the domain . (b) Write

pA =GP q;A(x,x', t)aA, v‘,A = G,vq;A(x,x’, t)aA,

PP =GP nb?, VB =GBt
invoke the condition that the result should hold for arbitrary a® and bB, and show that
GYFAx" X', 1) = -GPIBx, x", 1),

Exercise 7.8-3

Let { pA, vrA} ={ pA, v‘:‘}(x,x’,t) be the acoustic wave field at x that is causally radiated by the
point source at x” with volume source density {g*, 2 = (0,605 -x'f)} and let {pB v} =
{ pB, v,]?}(x,x”,t) be the acoustic wave field at x that is causally radiated by the point source at
x” with volume source density {g®, frB } = {aBd(x - x”,1),0} withx’ #x”. The two sources radiate
in adjoint fluids occupying the domain D. If D is bounded, its boundary surface 0D is assumed
to be acoustically impenetrable; if © is unbounded, the standard provisions given in Section
7.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem (Equation

(7.2-7)) to the domain D. (b) Write
=GP wx b, V=Gl A b,
pB =G? q;B(x,x”, t)aB, v,f,3 =Gy q;B(x,x”, t)atB ,

invoke the condition that the result should hold for arbitrary b and 4P, and show that
GPAR" xf) = ~GP9B (', x",1). (Note that this result is consistent with the result of Exercise
7.8-2.)
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Exercise 7.8-4

Let {pA, v,A} = {pA, vf}(x,xﬁt) be the acoustic wave field at x that is causally radiated by the
point source at x” with volume source density { qA, ka) = {O,b,‘?é(x —x)} and let { pB, v?} =
{pB,vE}(x,x",1) be the acoustic wave field at x that is causally radiated by the point source at
x” with volume source density {g®, 2} = {0,6Bd(x — x”,)} withx’ #x”. The two sources radiate
in adjoint fluids occupying the domain ©. If 2 is bounded, its boundary surface 0D is assumed
to be acoustically impenetrable; if 2 is unbounded, the standard provisions given in Section
7.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem (Equation
(7.2-7)) to the domain D. (b) Write

=GP A by, V=G A nby,

PP =GB nbB, VB =GP b,
invoke the condition that the result should hold for arbitrary b? and b2, and show that
G,‘:{;A(x”,x’, = G,;{;B(x’,x”, 0.

Exercise 7.8-5

Let {52 f),A} ={pA G,A}(x,x',s) be the acoustic wave field at x that is causally radiated by the
point source at x’ with volume source density {4 A f kA} = {@A(s)0(x —x),0} and let
{pB GkB} ={p B ﬁ,? }(x,x”,s) be the acoustic wave field at x that is causally radiated by the point
source at x” with volume source density {4 B, f,B} = {3 B(s)d(x — x”),0}, with x’ #x”. The two
sources radiate in adjoint fluids occupying the domain . If D is bounded, its boundary surface
0Dis assumed to be acoustically impenetrable; if Dis unbounded, the standard provisions given
in Section 7.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (7.4-7)) to the domain D. (b) Write

pA =GPy, ats),  9A =G A5 ),
A A ‘B A A A o A
pB=GPBx9)als), 9P =Gl P s)a ),

invoke the condition that the result should hold for arbitrary 4A(s) and @B(s), and show that
GPTAR" X' 5) = GPTB(x' x",5).

Exercise 7.8-6

Let {pA \‘er} ={pA fer}(x,x’,s) be the acoustic wave field at x that is causally radiated by the
point source at x” with volume source density {g Af kA} = {d7(s)0(x —x'),0} and let
{PB 98} = (5B 9B} (x,x",s) be the acoustic wave field atx that is causally radiated by the point
source atx” with volume source density {4 B, £B} = {0,6B(s)6(x — x”)}, withx’ #x”. The two
sources radiate in adjoint fluids occupying the domain D. If Dis bounded, its boundary surface
0Dis assumed to be acoustically impenetrable; if Dis unbounded, the standard provisions given
in Section 7.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (7.4-7)) to the domain D. (b) Write
pA=CPFAax a ), A =G AR, 5)d (),

~B ApfiB 7 i B ~B A vf;B » i B
PE=CF By b ), 0 =GP )b ),
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mvoke the condition that the result should hold for arbitrary a A(.9) and b, B(s) and show that
qu, (x// xr S) =- pr B(xl ” S)

Exercise 7.8-7

Let {p* pAD A} ={pH A A} (x,x’,s) be the acoustic wave ﬁeld at x that is causally radiated by the
pomt source at x with volume source density { f } = {0, b (s)é(x —x")} and let
{ VU } = { s Vi }(x x”,s) be the acoustic wave field at x that is causally radiated by the point
source at x” with volume source density {4 B, f ,B} = {4B(5)0(x — x”),0}, with x" # x”. The two
sources radiate in adjoint fluids occupying the domain D. If Dis bounded, its boundary surface
0Dis assumed to be acoustically impenetrable; if Dis unbounded, the standard provisions given
in Section 7.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (7.4-7)) to the domain D. (b) Write

AA A 'A » AA A
=GP Axx bis), 01 =G X s) bis),

~B Apq.B ~B AB v, ~B
P =GP (xx"5)d"(s), P =Gl (xx"5)d (s),

invoke the condition that the result should hold for arbitrary bk (s)and @ B(s), and show that
GPFAK" X, 5) = —G9B(x',x",5). (Note that this result is consistent with the result of Exercise
7.8-6.)

Exercise 7.8-8

Let {p vrA} ={p pA vrA}(x x’,5) be the acoustic wave ﬁeld atx that is causally radiated by the
pomt source at x with volume source density {q f i} = {0, b,f‘(s)é(x —x)} and let
{ A } { ) Ay }(x,x ".5) be the acoustic Wave field at x that is causally radiated by the point
source atx” with volume source density {5, f ,B} ={0,b B(s)d(x x”)}, withx” #x”. The two
sources radiate in adjoint fluids occupying the domain D. If Dis bounded, its boundary surface
dDis assumed to be acoustically impenetrable; if Dis unbounded, the standard provisions given
in Section 7.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (7.4-7)) to the domain D. (b) Write

p™ =GP e, b, G wx,s) bGs),
ﬁB=(§;”f’ wx”)bBs), = va(xx . 5)b; Bs),

invoke the condition that the result should hold for arbitrary bk (s) and E,B(s), and show that
GHAC X, 5) = GYBE,X",s).

Exercise 7.8-9

Give the expressmns for the time-domain Green’s functions (a) G*9(x,x’), (b) G{f(xx D,
(©) GH(x,x,1), (d) G"{(x x',f) for a homogeneous isotropic, lossless fluid with constitutive
parameters p and « that occupies the entire ®3. (Hint: Use Equations (5.4-7)~(5.4-13).)
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Answers:

@ G"=pdGxxir),

® G =-3,Gx,

() G1=-9,G(xx1),

@ GY=p "o~ xHDS;+p 9,0 LG,
in which G = 4n|x —x’I_ld(t ~lx-xl/c)and c = (px)

Exercise 7.8-10

Give the expressmns for the complex frequency-domain Green’s functions (a) qu(x x'5),
(b) G{f (x,x'5), (c) Gy (x x,s),(d) G {(xx $) forahomogeneous isotropic fluid with cons-
titutive parameters C and 7 that occupies the entire 9{ (Hint: Use Equations (5.3-1)—(5.3-6).)

Answers:

@ GP'={Gxx.s),

®) GF =-0,6(xx.s),

© G1=-3,Gxx,s),

@ GY=E"0(-x)0,4+E 13,0615,

in which G = dmjx — x| exp(—plx —x’]) and y = (ﬁf)l/Z, with Re(-)l/2 > 0 for Re(s) > 0.

Exercise 7.8-11

Show that Equation (7.8-38) follows from Equation (7.8-14) and Equation (7.8-48) from
Equation (7.8-24) by taking the Laplace transform with respect to time.

7.9 The direct (forward) scattering problem

The configuration in an acoustic scattering problem generally consists of a background fluid
with known acoustic properties, occupying the domain D (the “embedding”), in which, in
principle, the radiation from given, arbitrarily distributed acoustic sources can be calculated
with the aid of the theory developed in Section 7.8. In the embedding, an acoustically penetrable
object of bounded support D* (the “scatterer”) is present, whose known acoustic properties
differ from the ones of the embedding (Figure 7.9-1). The scatterer is acoustically irradiated by
given sources located in the embedding, in a subdomain outside the scatterer. The problem is
to determine the total acoustic wave field in the configuration. The standard procedure is first
to calculate the so-called “incident’” acoustic wave field, i.e. the wave field that would be present
in the entire configuration if the object showed no contrast with respect to its embedding. (This
can be done by employing the representations derived in Section 7.8.) Next, the total wave field
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s
scatterer |

incident
wave field

7.9-1  Scattering configuration with embedding 9 and scatterer D°,

is written as the superposition of the incident wave field and the “scattered” wave field, and,
through a particular reasoning, the problem of determining the scattered wave field is reduced
to calculating its equivalent contrast source distributions, whose common support will be
shown to be the domain D* occupied by the scatterer. In case the embedding D is a bounded
domain, the boundary surface 90 of D is assumed to be acoustically impenetrable. If D is
unbounded, the standard provisions given in Section 7.1 for handling an unbounded domain
are made. Both the incident wave field and the scattered wave field are causally related to the
action of their respective sources.

Time-domain analysis

In the time-domain analysis of the problem, the acoustic properties of the embedding fluid are
characterised by the relaxation functions {s ,.x} = {¢ »x } (%.t), which are causal functions of
time. The acoustic properties of the scatterer are characterised by the relaxation functions
{1 2"} = {14 »x°) (x,2), which are also causal functions of time. The cases of an instantane-
ously reacting embedding and/or an instantaneously reacting scatterer easily follow from the
more general cases for fluids with relaxation. The contrast in the medium properties only differs
from zero in D%, and hence

Wiy’ —2) =00} forxen®, (7.9-1)
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where D* is the complement of D°UdD® in D, i.e. the part of D that is exterior to D°. The
incident wave field is denoted by
) = Py forxem, (7.9-2)

and is considered to be known. (Once its generating sources are given, the expressions of the
type derived in Section 7.8 yield the wave-field values at any xeD.) The total wave field is
denoted by

{pv,} = {pv,}(xt) forxeD, (7.9-3)
and the scattered wave field by

PV =)y forxed. (7.9-4)
Then,

{pv,} = (P +p°v,+v}  forxed. (7.9-5)

First, we investigate the structure of the acoustic wave equations in the domain DS occupied by
the scatterer. Since the sources that generate the total wave field are located in the domain
exterior to the scatterer, the total wave field is source-free in D%, and hence

3 +9.C (g vixt)=0  forxeD’, (7.9-6)
3, +9,C,(pxt)=0  forxeD’. (7.9-7)

Since the sources that generate the total wave field would also generate the incident wave field,
this part of the wave field is also source-free in DS, and hence

%P +0Clug, vty =0 forxeD’, (7.9-8)
v +3,C,(pxt)=0  forxeD’. (1.9-9)

In view of Equation (7.9-5), Equations (7.9-6)—(7.9-9) lead to equations with the scattered wave
field on the left-hand side and which can alternatively be written either as

up® +0,C Y, Vist) = =0 CyUf — g Vi) for xed’, (7.9-10)

0,5 +3.C, 0 ') = 0C - pop'x)  forxed’, (7.9-11)
or as

Op" + 0.C, (g pVistit) =~ Collihr — g pviiot)  for xeD’, (7.9-12)

0,V +0,C,(x,p"sx,0) = —3C,(° - xpxp)  for xeD’, (7.9-13)

Equations (7.9-10) and (7.9-11) express that the scattered wave field in D° can be envisaged as
being excited through both the presence of a contrast in the medium properties and the presence
of an incident wave field. If either of these two factors is absent, the scattered wave field
vanishes in 2% This system of equations customarily serves as the starting point for the
computation of the wave field via a numerical discretisation procedure applied to the pertaining
differential equations (finite-difference or finite-element techniques).

Equations (7.9-12) and (7.9-13) express that the scattered wave field can be envisaged as
being generated by contrast sources (with support D) radiating into the embedding. This system
of equations customarily serves as the starting point for the field computation via an integral
equation approach. This aspect, for which we also need the acoustic wave equations that govern
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the wave field in 'DS', are discussed further below. Now, in ©° the scattered wave field is
source-free since the (actual) total wave field and the (calculated) incident wave field are
assumed to be generated by the same source distributions. Consequently (note that in 7% the
medium parameters are the ones of the embedding),

Wb+ Cllyvisx) =0 forxeD® (7.9-14)
Vi +C P =0  forxen® (7.9-15)
Equations (7.9-12) and (7.9-13), and Equations (7.9-14) and (7.9-15) can be combined to give
QD"+ Cltyg Vi) = (50} for xe(D’ D), (7.9-16)
a,vi +C,0p5x ) = { q°0}) for xe {DS,st’}, (7.9-17)

where
fe ==0,C (U}, ~ g pvpixt)  for xed® (7.9-18)

is the equivalent contrast volume source density of force and
q°=-9C,(¢° - ypixf)  forxed® (7.9-19)

is the equivalent contrast volume source density of injection rate. If the contrast volume source
densities f§ and ¢° were known, Equations (7.9-16) and (7.9-17) would constitute a direct
(forward) source problem in the embedding of the type discussed in Section 7.8. As yet,
however, these contrast source densities are unknown,

To construct a system of equations from which the scattering problem can be solved, we
employ the source type integral representations for the scattered wave field (see Equations
(7.8-14) and (7.8-24)), i.e.

JACA) =J- [C,(qu,qs;x’,x,t) +C,(GF, f,f;x',x,t)] dvV  forxeD, (7.9-20)
xeD’

V(X0 = J- [Ct(G,vq,qs;x',x,t)+C,(G,‘:{, f,f;x',x,t)]dv forx'em, (7.9-21)
xeD’

in which the Green’s functions apply to a fluid with the same acoustic properties as the
embedding. Writing Equations (7.9-18) and (7.9-19) with the aid of Equation (7.9-5) as

R =-0C, (1t~ i+ Visxt)  forxed’, (7.9-22)
¢ =-0C,0 - xp +p5xt)  forxed’, (7.9-23)
1t X

and invoking Equations (7.9-20) and (7.9-21) for '€ D%, a system of integral equations results
from which fif and ¢* can be solved. Once these quantities have been determined, the scattered
wave field can be calculated in the entire configuration by reusing Equations (7.9-20) and
(7.9-21) for all xe D, and since the incident wave field was presumably known already, the total
wave field follows.

Except for some simple geometries (see, for example, Friedlander (1958)), where analytic
methods can be employed, the integral equations for the scattering of acoustic waves have to
be solved with the aid of numerical methods. The circumstance that the Green’s tensors are
singular when x” = x presents difficulties, in the sense that in the neighbourhood of x’ the
integrations with respect to x cannot be evaluated by means of a simple numerical formula (such
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as the tetrahedral formula, which is the three-dimensional equivalent of the one-dimensional
trapezoidal formula), but have to be evaluated by using a limiting analytic procedure. For the
rest, the application of numerical methods to the relevant integral equations presents no essential
difficulties.

Complex frequency-domain analysis

In the complex frequency-domain analysis of the problem, the acoustic properties of the
embedding fluid are characterised by the functions { Ck W= Ck ST, ,5). The acoustic
properties of the scatterer are characterised by the functions {C krf’} = {C ertl 5}(x,s). The
contrast in the medium properties only differs from zero in 25, and hence

(€5~ Ei* =71 ={00)  forxes®, (7.9-24)

where 7 is the complement of DSUD* in D, i.e. the part of D that is exterior to D°. The
incident wave field is denoted by

Al Al Alal

{P 0} ={p 7V, }(x.5) forxeD, (7.9-25)

and is considered to be known. (Once its generating sources are given, the expressions of the
type derived in Section 7.8 yield the wave-field values at any xe®.) The total wave field is
denoted by

{pV,} ={pV,}xs)  forxem, (7.9-26)
and the scattered wave field by

{(p°9) = {p 9 }(ws)  forxem. (7.9-27)
Then,

{pV,} = {p +p%9 ol L +9,)  forxem. (7.9-28)

First, we investigate the structure of the complex frequency-domain acoustic wave equations
in the domain D° occupied by the scatterer. Since the sources that generate the total wave field
are located in the domain exterior to the scatterer, the total wave field is source-free in D%, and
hence

D+ Ck = for xe D', (7.9-29)
00, +7°p=0  forxeD’, (7.9-30)

Since the sources that generate the total wave field would also generate the incident wave field,
this part of the wave field is also source-free in ©°, and hence

p' +E,5'=0  forxed’, (7.9-31)
39 +5p =0  forxed’. (7.9-32)

In view of Equation (7.9-28), Equations (7.9-29)—(7.9-32) lead to equations with the scattered
wave field on the left-hand side, which can be written either as

o+ Eo 0 =~ Gy forxed, (7.9-33)
0P +7p =-(7 =R)p'  forxed’, (7.9-34)
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or as
Wb+, 0 =—C - E )0, forxed’, (7.9-35)
00 +hp°=-H -Np  forxeD . (7.9-36)

Equations (7.9-33) and (7.9-34) express the fact that the scattered wave field in D° can be
envisaged as being excited through both the presence of a contrast in the medium properties
and the presence of an incident wave field. If either of these two factors is absent, the scattered
wave field vanishes in D°. This system of equations customarily serves as the starting point for
computation of the wave field via a numerical discretisation procedure applied to the pertaining
differential equations (finite-difference or finite-element techniques).

Equations (7.9-35) and (7.9-36) express the fact that the scattered wave field can be
envisaged as being generated by contrast sources (with support D% radiating into the
embedding. This system of equations customarily serves as the starting point for computation
of the wave field via an integral equation approach. This  aspect, for which we also need the
acoustlc wave equations that govern the wave field in D%, are discussed further below. Now,
in 2% the scattered wave field is source- free since the (actual) total wave field and the
(calculated) incident wave ﬁeld are assumed to be generated by the same source distributions.
Consequently (note that in ©° the medium parameters are the ones of the embedding),

b + Ck,rv, =0 forxep® (7.9-37)
O +7p =0  forxeD® . (7.9-38)
Equations (7.9-35) and (7.9-36), and Equations (7.9-37) and (7.9-38) can be combined to give
b +E ={F50)  forxe(D’0), (7.9-39)
VS +hp5=1(4%0)  forxe(’D%), (7.9-40)

where
fe=-Cir= e, forxen’ (7.9-41)

is the equivalent contrast volume source density of force and .
§°=-#°-np  forxed’ (7.9-42)

is the equzvalent contrast volume source density of injection rate. If the contrast source densities
f % and 4 ° were known, Equations (7.9-39) and (7.9- 40) would constitute a direct (forward)
source problem in the embedding of the type discussed in Section 7.8. As yet, however, these
contrast source densities are unknown.

To construct a system of equations from which the scattering problem can be solved, we
employ the source type integral representations for the scattered wave field (see Equations
(7.8-38) and (7.8-48)), i.e.

pis) = j G"’?(x 1,94 5068) + GP ¥ x,5) f‘,f(x,s)] dv  forx’ep,  (7.9-43)

D50x,s) = j “q(x',x,s)g *,5) + G x.5) f‘,f(x,s)} dv  forx’eDn,  (7.9-44)
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in which the Green’s functions apply to a fluid with the same acoustic properties as the
embedding. Writing Equations (7.9-41) and (7.9-42) with the aid of Equation (7.9-28) as

fe=—Ei-EN@i+9))  forxen, (7.9-45)
Q°=~(i° - NP +p%  forxed’, (7.9-46)

and invoking Equations (7.9-43) and (7.9-44) for x’e D, a system of integral equations results
from which f & and § ® can be solved. Once these quantities have been determined, the scattered
wave field can be calculated in the entire configuration by re-using Equations (7.9-43) and
(7.9-44) for all xe D and, since the incident wave field was presumably known already, the total
wave field follows.

Except for some simple geometrics (see, for example, Bowman et al., (1969)), where
analytic methods can be employed, the complex frequency-domain integral equations for the
scattering of acoustic waves have to be solved with the aid of numerical methods. The
circumstance that the Green’s tensors are singular when x” = x presents difficulties, in the sense
that in the neighbourhood of x’ the integrations with respect to x cannot be evaluated by means
of a simple numerical formula (such as the tetrahedral formula, which is the three-dimensional
equivalent of the one-dimensional trapezoidal formula), but have to be evaluated by using a
limiting analytic procedure. For the rest, the application of numerical methods to the relevant
integral equations presents no essential difficulties. A useful reference is Poggio and Miller
(1973). Recent advances on this subject can be found in Van den Berg (1991), and in Fokkema
and Van den Berg (1993).

7.10 The inverse source problem

The configuration in an acoustic inverse source problem generally consists of a background
fluid with known acoustic properties occupying the domain D (the “embedding”) in which, in
principle, the radiation from given, arbitrarily distributed acoustic sources can be calculated
with the aid of the theory developed in Section 7.8. In the embedding a known or guessed
bounded domain D7 is present in which acoustically radiating sources of unknown nature and
unknown spatial distribution are present. The presence of these sources manifests itself in the
entire embedding. In some bounded subdomain D2 of D, and exterior to DT, the radiated
acoustic wave field is accessible to measurement (Figure 7.10-1).

We assume that the action of the radiating sources can be modelled by volume source
densities of injection rate and force. The objective is to reconstruct these volume source
densities with support DT from (a set of) measured values of the acoustic pressure and/or the
particle velocity in D, Since the inverse source problem is, by necessity, a remote sensing
problem, the global reciprocity theorems given in Sections 7.2-7.5 can be expected to provide
a means for interrelating the known, measured wave-field data with the unknown source
distributions. In case the embedding D is a bounded domain, the boundary surface 99 is
assumed to be acoustically impenetrable. If D is unbounded, the standard provisions given in
Section 7.1 for handling an unbounded domain are made. The radiated wave field is, by its
nature, causally related to the sources by which it is generated. For gathering maximum
information, the reciprocity theorems are applied to the domain interior to a closed surface
5% that completely surrounds both DT and D°. If necessary, measurement on 5% can also be
carried out.
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7.10-1  Configuration of the inverse source problem: D7 is the support of the unknown radiating
sources; on D and 52 the transmitted wave field is accessible to measurement.

Time-domain analysis

In the time-domain analysis of the problem, the acoustic properties of the embedding fluid are
characterised by the relaxation functions {srrx} = {44g p»x } (x,), which are causal functions of
time. The causally radiated acoustic wave field is denoted by { pT,v;r} = { pT,vI}(x,t).

First, the measured acoustic wave-field data are interrelated with the unknown source
distributions {qT, fkT} ={ qT, fkT}(x,t), via the global time-domain reciprocity theorem of the
convolution type (Equation (7.2-7)). This theorem is applied to the domain interior to the closed
surface 5™, In it, we take for state A the actual state present in the configuration, i.e.

P @) = P ) forxe, (7.10-1)

(V@) = (d" fHwn  forxed, (7.102)
and

etV = (k) (et)  forxed., (7.10:3)

For state B, we take a “computational” or “observational” state; this state will be denoted by
the superscript 2. The corresponding wave field is

PRy = (PP} ) forxeo, (7.10-4)

and its source distributions will be taken to have the support 2% ie.
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(& B1wn = (6% ) forxen® (7.10-5)

Furthermore, the fluid properties in state B will be taken to be the adjoint of the ones in state
A ie.

B B
{ﬂr,kix }(x)t) = {:u'k,r)x}(xat) for xeD. (710‘6)
Then, application of Equation (7.2-7) to the domain interior to s% yields

Q T Q T
J. [Ct(P q ;x’t) - Ct(vk vfk ;x,t)} dv
xeD"
T Q T 2
=j [Ce" ¢ - COT £ av
xeD®

+ j I [~Cp " vimx) + Civmp 0] dA . (7.10-7)
xes$

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known, provided that the necessary measurements pertaining to state T and the wave-field
evaluations pertaining to state 2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
can make a difference for the surface contribution over §*. If the domain D occupled by the
configuration is bounded, 0 is impenetrable and the surface integral over 5% vanishes since
the integral over 09 does and in between 52 and 9 no sources of the radiated or the
computational wave fields are present (see Exercise 7.2-2). This conclusion holds for both
causal and anti-causal generation of the wave field in state £2. When the domain ©is unbounded
and the wave-ﬁeld generation in state £ is taken to be causal, the convolutions occurring in the
integral over 5% are also causal and the surface integral over 5% vanishes (because the integral
over a sphere with an infinitely large radius does and no sources of the radiated or the
computational wave fields are present between 5% and that sphere). If, however, Dis unbounded
and the wave-field generatlon in state £ is taken to be anti-causal, the convolutions occurring
in the integral over $% are not causal and the surface integral over 5% does not vanish, although
its value is a constant for each choice of the source distributions in state 2 (see Exercise 7.2-2).

Secondly, the measured acoustlc wave-field data are interrelated with the unknown source
distributions {q fk } = {q fk }(x,£), via the global time-domain reciprocity theorem of the
correlation type (Equation (7.3-7)). This theorem is applied to the domain interior to the closed
surface $%. In it, we take for state A the actual state present in the configuration, i.e.

PVt = (P i) forxeD, (7.10-8)

(B en = gLy forxen”, (7.10-9)
and

™60 = (e pox}(t)  forxed. (7.10-10)

For state B, we take a “computational” or “observational” state; this state will be denoted by
the superscript 2. The corresponding wave field is

PER) @ = PP ) forxen, (7.10-11)

and its source distributions will be taken to have the support D9 ie
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@ 2100 = (% f2)wn)  forxed®, (7.10-12)

Furthermore, the fluid properties in state B will be taken to be the time-reverse adjoint of the
ones in state A, i.e.

B B
{;ur,ksx }(x!t) = {Jt(:uk,r)Jt(X)}(x’t) forxeD. (7'10"13)
Then, application of Equation (7.3-7) to the domain interior to 5% yields

_[ [CO™g w0+ CE0D. ] AV
xeD"

== J‘ 9 {C,(pT, J,(qg);x,t) + Ct(v)T’Jt(fF);x,t)] dv
xeD

+ J- i [ T @mst) + ComT (P Pxn) dA. (7.10-14)
XES

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known provided that the necessary measurements pertaining to the state T and the wave-field
evaluations pertaining to the state £2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
can make a difference for the surface contribution over 5. If the domain D occupied by the
configuration is bounded, 92 is impenetrable and the surface integral over 5% vanishes (since
the one over 0D does and no sources of the radiated or the computational wave fields are present
between 5% and 9D (see Exercise 7.3-2)). This conclusion holds for both causal and anti-causal
generation of the wave field in state £. When the domain 2 is unbounded and the wave-field
generation in state £2 is taken to be causal, the correlations occurring in the integral over S are
non-causal and the surface integral over 5% does not vanish, although its value is a constant for
each choice of the source distributions in state 2 (see Exercise 7.3-2). If, however, D is
unbounded and the wave-field generation in state £ is taken to be anti-causal, the correlations
occurring in the integral over 5 are causal and the surface integral over 5 does vanish (since
the integral over a sphere with an infinitely large radius vanishes, and no sources of the radiated
or the computational wave fields are present between S* and that sphere). For additional
literature on the subject, see De Hoop (1988).

Complex frequency-domain analysis

In the complex frequency-domain analysis of the problem, the acoustic properties of the
embedding fluid are characterised by the functions {Ckr1} = {Cpi)(x,s). The causally
radiated acoustic wave field is denoted by {5 T,9,T} = {5 T,5, T} (x,s).

First, the measured acoustic wave-field data are interrelated with the unknown source
distributions {4 T, f; kT} ={47, fkT}(x,s), via the global complex frequency-domain reciprocity
theorem of the time convolution type (Equation (7.4-7)). This theorem is applied to the domain
interior to the closed surface $*. In it, we take for state A the actual state present in the
configuration, i.e.
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B2 = (9 xs)  forxe, (7.10-15)
@A = (@7 FN s forxed, (7.10-16)
and '
2A A & oA
6™ = (E i) es)  forxed. (7.10-17)

For state B, we take a “‘computational” or “observational” state; this state will be denoted by
the superscript Q. The corresponding wave field is

PE8)ws) = (20 ) ws)  forxe, (7.10-18)
and its source distributions will be taken to have the support 2‘)9, ie.
A 2 A o Q
G F B xs) = (62 £ %) forxen®. (7.10-19)

Furthermore, the fluid properties in state B will be taken to be the adjoint of the ones in state
A, ie.

{ér,Bk,ﬁ B } (x,s) = { ék,r’ﬁ}(x’s) forxeD. (7~10'20)
Then, application of Equation (7.4-7) to the domain interior to 5 yields

f 52w ) - 9 ws) fi )] dv
xeD”

=j o [P @0)3 %65) = 9, (59) £, (x9)] dv
XD

+ J VB ) (65) + Py (5P U,5)] dA (7.10-21)
xes

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known, provided that the necessary measurements pertaining to state T and the wave-field
evaluations pertaining to state £ are carried out, For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
can make a difference for the surface contribution over $%. If the domain D occupied by the
configuration is bounded, 9 is impenetrable and the surface integral over $* vanishes (since
the integral over 0D does, and no sources of the radiated or the computational wave fields are
present between 5% and 9D (see Exercise 7.4-4). This conclusion holds for both causal and
anti-causal generation of the wave field in state . When the domain 2 is unbounded and the
wave-field generation in state £2 is taken to be causal, the surface integral over 5% vanishes
(since the integral over a sphere with an infinitely large radius does, and no sources of the
radiated or the computational wave fields are present between  and that sphere). If, however,
Dis unbounded and the wave-field generation in state £2 is taken to be anti-causal, the surface
integral over 5% does not vanish, although its value is a constant for each choice of the source
distributions in state Q (see Exercise 7.4-4).

Secondly, the measured acoustic wave-field data are interrelated with the unknown source
distributions {g T f kT} ={4 T f kT} (x,s), via the global time-domain reciprocity theorem of the
time correlation type (Equation (7.5-7)). This theorem is applied to the domain interior to the
closed surface $%. In it, we take for state A the actual state present in the configuration, i.e.
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BAMEs = (559 ) (xs)  forxeD, (7.10-22)
AA 2A AT 2T T
{47, fr Yxs)={q ", fy }(x,s)  forxeD', (7.10-23)
and
{E5AM ) = (€l xs)  forxen., (7.10-24)

For state B, we take a “computational” or “observational” state; this state will be denoted by
the superscript 2. The corresponding wave field is

B2 0e9) = (%9 (xs)  forxe, (7.10-25)
and its source distributions will be taken to have the support D, i.e.
@5 @) =13 /% s forxen®. (7.10-26)

Furthermore, the fluid properties in state B will be taken to be the time-reverse adjoint of the
ones of state A, i.e.

2B AB . A
(£ ®)0os) = (L) (6=s)  forxe, (7.1027)
Then, application of Equation (7.5-7) to the domain interior to 5% yields

J [13 Poe-9)3 ) + 206-s) fil s)] dav

xeD"

J 5708 %wm5) +9 ) £ av
xeD

+j Vo B (5)0, (5i8) + 90 65) 5 %, ~5)]da (7.10-28)
xE.S

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known, provided that the necessary measurements pertaining to state T and the wave-field
evaluations pertaining to state £2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
can make a difference for the surface contribution over $%. If the domain D occupled by the
configuration is bounded, 09 is impenetrable and the surface integral over S* vanishes (since
the integral over 8@ does, and no sources of the radiated or the computational wave fields are
present between 5% and 9D (see Exercise 7.5-4). This conclusion holds for both causal and
anti-causal generation of the wave field in state £2, When the domain 2 is unbounded and the
wave-field generation in state £ is taken to be causal, the surface integral over $% does not
vanish, although its value is a constant for each choice of the source distributions in state £
(see Exercise 7.5-4). If, however, D is unbounded and the wave-field generation in state £ is
taken to be anti-causal, the surface integral over 5% vanishes (since the integral over a sphere
with an infinitely large rachus does, and no sources of the radiated or the computational wave
fields are present between 5% and that sphere).

Assolution to the inverse source problem is commonly constructed as follows. For the source
distributions in the computational state Q2 we take a sequence of M linearly independent spatial
distributions with the common spatial support D%, The corresponding sequence of acoustic
wave-field distributions (in the medium adjoint, or time-reverse adjoint of the actual one) is
computed. Next, the unknown source distributions are expanded into an appropriate sequence



Acoustic reciprocity theorems and their applications 205

of Nexpansion functions with the common spatial support DT or asubset of it; the corresponding
expansion coefficients are unknown. Substitution of the results in Equations (7.10-7), (7.10-14),
(7.10-21) or (7.10-28) and evaluation of the relevant integrals lead to a system of M linear
algebraic equations with N unknowns. When M <N, the system is underdetermined and cannot
be solved. When M = N, the system can be solved, unless the pertaining matrix of coefficients
is singular. However, even if this matrix is non-singular, in most practical cases it turns out to
be ill-conditioned. Therefore, one usually takes M >N, and a best fit of the expanded source
distributions to the measured data is obtained by the application of minimisation techniques
(for example, least-squares minimisation). Note that each of the Equations (7.10-7), (7.10-14),
(7.10-21) and (7.10-28) leads to an associated inversion algorithm.

The computational state £ is representative for the manner in which the measured data are
processed in the inversion algorithms. Since a computational state does not have to meet the
physical condition of causality, there is no objection against its being anti-causal. Which of the
two possibilities (causal or anti-causal) leads to the best results as far as accuracy and amount
of computational effort are concerned, is difficult to judge. Research on this aspect is still in
full progress (see Fokkema and Van den Berg, 1993). It is to be noted that the solution to an
inverse source problem is not unique because of the existence of non-radiating source
distributions (i.e. non-zero source distributions with support DT that yield a vanishing wave
field in the domain exterior to D). Therefore, a numerically constructed solution to an inverse
source problem is always only a solution to the problem (and not the solution); which solution
is obtained depends on the solution method employed. Examples of inverse source problems
are found in the detection of (spontaneous) acoustic emission and the detection of industrial
noise sources.

7.11 The inverse scattering problem

The configuration in an acoustic inverse scattering problem generally consists of a background
fluid with known acoustic properties, occupying the domain D (the “embedding”) in which, in
principle, the radiation from given, arbitrarily distributed acoustic sources can be calculated
with the aid of the theory developed in Section 7.8. In the embedding a known or guessed
bounded domain D° (the “scatterer”) is present in which the fluid properties show an unknown
contrast with the ones of the embedding. The contrasting domain is irradiated by an incident
acoustic wave field that is generated by sources in some subdomain 2* of D and that propagates
in the embedding. The presence of the contrasting domain manifests itself through the presence
of a non-vanishing scattered wave field in the entire embedding. In some bounded subdomain
D2 of D, and exterior to D°, the scattered acoustic wave field is accessible to measurement
(Figure 7.11-1).

The objective is to reconstruct the medium parameters (or their contrasts with the ones of
the embedding) from (a set of) measured values of the acoustic pressure and/or the particle
velocity in D%, Since the inverse scattering problem is, by necessity, a remote sensing problem,
the global reciprocity theorems of Sections 7.2-7.5 can be expected to provide a means for
interrelating the known, measured wave-field data with the unknown medium properties in the
scattering region. When the embedding Dis a bounded domain, the boundary surface is assumed
to be acoustically impenetrable. If © is unbounded, the standard provisions given in Section
7.1 for handling an unbounded domain are made. The scattered wave field is, by its nature,
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incident
wave field

7.11-1 Conflguranon of the inverse scattering problem: 9* is the support of the unknown contrast in
fluid properties; on D and S the scattered wave field is accessible to measurement.

causally related to the contrast sources by which it is generated. For gathering maximum
1nformat10n, the reciprocity theorems are applied to the domain interior to a closed surface
S that completely surrounds both D* and D*. If necessary, measurements on 5% can also be
carried out In general, D° and D' are disjoint, as are D° and D2, This need not be the case for
D' and D%; these domains may have a non-empty cross-section.

The mmdent, scattered and total wave fields are introduced as in Section 7.9. Now, the easiest
way to address the inverse scattering problem is to consider it to be partly an inverse source
problem, with the contrast volume source densities as the unknowns. The non-uniqueness of
these quantities is removed by invoking the remaining consistency relations of a constitutive
nature. In the latter, the condition that the reconstructed contrast-in-medium parameters must
be independent of the incident wave field plays a crucial role. Once the contrast volume source
densities have been determined, the scattered wave field is (following the procedures of Section
7.9), calculated in the domain 9° and, since the incident wave field and the medium parameters
of the embedding are known, the parameters of the fluid in D* follow.

Time-domain analysis

In the time-domain analysis of the problem, the acoustic properties of the embedding fluid are
characterised by the relaxation functions {pk,rox} = {1t -2} (%,2), which are causal functions of
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time. The case of an instantaneously reacting embedding easily follows from the more general
case of an embedding fluid with relaxation. The unknown acoustic properties of the scatterer
are characterised by the relaxation functions {u} ,x°} = {#h %"} (x,8), which are also causal
functions of time. The incident wave field is {p',v,'} = {p',v, }(x,?), the scattered wave field is
{P°V5} = {p°V3}(x.1), and the total wave field is {p,v,} = {p,v,}(x,) with {p,v,} = {p" +p’,
vy +vi}. The equivalent contrast volume source distributions that generate the scattered wave

field are then (see Equations (7.9-18) and (7.9-19))
Je ==Colttgr — pyepvpxd)  forxed, (7.11-1)
¢ =-C,(x° - y.pix,)  forxen’. (7.11-2)

First, the measured scattered wave-field data are interrelated with the unknown contrast
source distributions {g®, £}, via the global time-domain reciprocity theorem of the convolution
tyge (Equation (7.2-7)). This theorem is applied to the domain interior to the closed surface
S$™. Init, we take for state A the actual scattered state present in the configuration, i.e.

{pA,vf‘} = ps,vi}(x,t) forxeD, (7.11-3)

g Yoot = (g £} wr)  forxed?, (7.114)
and

et ™ ®D = (e x)(x8)  forxen. (7.11-5)

For state B, we take a “computational” or “observational” state; this state will be denoted by
the superscript 2. The corresponding wave field is

PPV = P VP ) forxeD, (7.11-6)
and its source distributions will be taken to have the support DQ, ie.
B B Q .Q Q
@ 2 = 6% 7w forxen®, (7.11-7)

Furthermore, the fluid properties in state B will be taken to be the adjoint of the ones in state
A, ie.

{opx 2} @D = (e x}50)  forxed. (7.11-8)
Then, application of Equation (7.2-7) to the domain interior to s% yields

Q2 [
J. [Ct(p ,qs;x,t)—Ct(vk,f/f;x,t)] av
xeD*
2 Q
=J , [c,(ps,q x,0) = C, (v f ;x,z)] av
X€D

+ J V| =Cop* Vi) + Cvp ) dA (7.11-9)
xeS$

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known, provided that the necessary measurements pertaining to state s and the wave-field
evaluations pertaining to state £ are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
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can make a difference for the surface contribution over $%. If the domain 2 occupied by the
configuration is bounded, 92 is impenetrable and the surface integral over 5 vanishes (since
the integral over BQ) does, and no sources of the scattered or the computational wave fields are
present between 52 and 9D (see Exercise 7.2-2)). This conclusion holds for both causal and
anti-causal generation of the wave field in state £2. When the domain 2 is unbounded and the
wave-ﬁeld generation in state £ is taken to be causal, the convolutlons occurring in the integral
over $ are also causal and the surface integral over S vanishes (since the integral over a
sphere with an infinitely large radius does and no sources of the scattered or the computational
wave fields are present between $* and that sphere). However, if O is unbounded and the
wave-field generatlon in state £ is taken to be anti-causal, the convolutlons occurring in the
integral over S are not causal and the surface integral over 5% does not vanish, although its

value is a constant for each choice of the source distributions in state 2 (see Exercise 7.2-2).
Secondly, the measured scattered wave-field data are interrelated with the unknown contrast
source distributions {¢°, fi’}, via the global time-domain reciprocity theorem of the correlation
5e (Equation (7.3-7)). This theorem is applied to the domain interior to the closed surface

- In it, we take for state A the actual scattered state present in the configuration, i.e.

{p »Vr }(x,t) ={p’ ,v,}(x,t) forxeD, (7.11-10)

(@ 800 = () p)  forxed’, (7.11-11)
and

et V50 = (g px) o) forxed. (7.11-12)

For state B, we take a “computational” or “observational”” one; this state will be denoted by the
superscript £2. The corresponding wave field is

PPVR) ) = P2 ey forxeD, (7.11-13)
and its source distributions will be taken to have the support @9, ie
(S By en = (g% 2 xp  forxen®. (7.11-14)

Furthermore, the fluid properties in state B will be taken to be the time-reverse adjoint of the
ones of state A, i.e.

B B
{trox Y000) = (T (e )3, (x) ) (et)  forxeD. (7.11-15)
Then, application of Equation (7.3-7) to the domain interior to 5 yields

J [COPD. w0 + 0D, fExn] dv

xeD’

=- J [CP° i@t + Co3TDn] av
xeD?

+ J I CAP° T mit) + C3 T (p D)) dA . (7.11-16)
Xes

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known, provided that the necessary measurements pertaining to the state s and the wave-field
evaluations pertaining to the state £2 are carried out. For the latter (computational) state we can
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choose between either causal or anti-causal generation of the wave field by its sources. This
can make a difference for the surface contribution over $*2. If the domain © occupied by the
configuration is bounded, 9 is impenetrable and the surface integral over § $ vanishes (since
the one over 9D does, and no sources of the scattered or the computational wave fields are
present between 5% and 9D (see Exercise 7.3-2). This conclusion holds for both causal and
anti-causal generation of the wave field in state 2. In case the domain D is unbounded and the
wave- ﬁeld generation in state £2 is taken to be causal, the correlations occurring in the integral
over S are non-causal and the surface integral over 5% does not vanish, although its value is
a constant for each choice of the source distributions in state £ (see Exercise 7.3-2). However,
if D is unbounded and the wave-field generatxon in state £ is taken to be anti-causal, the
correlations occurring in the integral over 5% are causal and the surface integral over 52
vanishes (since the integral over a sphere with an infinitely large radlus does, and no sources
of the scattered or the computational wave fields are present between 5% and that sphere).

A solution to the time-domain inverse scattering problem is commonly constructed as
follows. First, the contrast-in-medium parameters are discretised by writing them as linear
combinations of M expansion functions with unknown expansion coefficients. Each of the
expansion functions has 7, or a subset of 1%, as its support. Next, for each given incident wave
field, the scattered wave field is measured in N subdomains of D, The latter discretisation
induces the choice of the N supports of the source distributions of the observational state.
Finally, a number I of different incident wave fields is selected (where “different” may involve
different choices in temporal behaviour, in location space, or in both). With NI > M, the
non-linear problem of evaluating the M expansion coefficients of the contrast-in-medium
parameter discretisation is solved by some iterative procedure (for example, by iterative
minimisation of the global error over all domains in space and all time intervals involved where
equality signs should hold pointwise). In this procedure, Equations (7.11-1), (7.11-2), (7.11-9)
or (7.11-16), and the source type integral representations (Equations (7.9-20) and (7.9-21)) are
used simultaneously.

Complex frequency-domain analysis

In the complex frequency-domain analysis of the problem, the acoustic properties of the
embedding fluid are characterised by the relaxation functions {C kol = {Z; k, ~T}(x,s). The
unknown acoustic properties of the scatterer are characterised by the relaxation functions
(&8 eri ) =1 C k 1 °}(x,5). The incident wave field is { pl 9,‘} = {p",9}}(x,s), the scattered wave
ﬁeld is {p 05} = (P55} (x,5) and the total wave field is {p,9,} = {p,0,}(x.5), with {pV,} =
{p*+ps»} +v5} The equivalent contrast volume source distributions that generate the
scattered wave field are then (see Equations (7.9-41) and (7.9-42))

fi= —(f,zr - ‘fk,r)f’r for xeD’, (7.11-17)
@ =-*-Hp  forxed’. (7.11-18)

First, the measured sgattered wave-field data are interrelated with the unknown contrast
source distributions {4 %, f}, via the global complex frequency-domain reciprocity theorem of
the time convolution type (Equation (7.4-7). This theorem is applied to the domain interior to
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the closed surface S, In it, we take for state A the actual scattered state present in the
configuration, i.e.

BAM ) = (555 0s)  forxeD, (7.11-19)

@8/ s = {5 F 8 s)  forxeD, (7.11-20)
and

{E6.7™ ) = (€ Al xs)  forxem. (7.11-21)

For state B, we take a “computational” or “observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

PR ) = (29 (xs)  forxeD, (7.11-22)
and its source distributions will be taken to have the support D ie.
~B 2B A2 20 Q
(g7 f Yxes)={4™, f, Yxs)  forxeD™. (7.11-23)

Furthermore, the fluid properties in state B will be taken to be the adjoint of the ones in state
A, ie.

B ~B & A
{Crphl }x,8) = {Cg A} (s)  forxeD. (7.11-24)
Then, application of Equation (7.4-7) to the domain interior to 5% yields

J' [ %) *s) ~ 9869 £ 9] v

xeD*

= f P03 %) = 92ws) £,7s)]dv
xeD

+ J VB @) 8) + () p Ys)] dA (7.11-25)
xe$

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known, provided that the necessary measurements pertaining to state s and the wave-field
evaluations pertaining to state £2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
can make a difference for the surface contribution over $%. If the domain D occupxed by the
configuration is bounded, 02 is impenetrable and the surface integral over $* vanishes (since
the integral over am does, and no sources of the scattered or the computatinal wave fields are
present between $% and 9D (see Exercise 7.4-4). This conclusion holds for both causal and
anti-causal generation of the wave field in state £2. When the domain 9 is unbounded and the
wave-field generation in state 2 is taken to be causal, the surface integral over S vanishes
(since the integral over a sphere with an infinitely large radius does, and no sources of the
scattered or the computational wave fields are present between S and that sphere). However,
if Dis unbounded and the wave-field generation in state §2 is taken to be anti-causal, the surface
integral over $*? does not vanish, althou gh its value is a constant for each choice of the source
distributions in state Q (see Exercise 7.4-4),

Secondly, the measured scattered wave-field data are interrelated with the unknown contrast
source distributions {4 $, f ©}, via the global complex frequency-domain reciprocity theorem of
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the time correlation type (Equation (7.5-7)). This theorem is applied to the domain interior to
the closed surface $*. In it, we take for state A the actual scattered state present in the
configuration, i.e.

BA9M0s) = (5555 ws)  forxeD, (7.11-26)
@5 /M@ = 45 Fws)  forxeD’, (7.11-27)
and
2A AA S oA
{Crll " }8) = {Cp o} (x,s)  forxeD. (7.11-28)

For state B, we take a “computational” or “observational” one; this state will be denoted by the
superscript 2. The corresponding wave field is

(%30 ws) = (p 29 ) ws)  forxem, (7.11-29)
and its source distributions will be taken to have the support D ie.
@5 P ) = 4%/ ws)  forxen®. (7.11-30)

Furthermore, the fluid properties in state B will be taken to be the time-reverse adjoint of the
ones in state A, i.e.

(i Y8 = (=i} xs)  forxeD. (7.11-31)

Then, application of Equation (7.5-7) to the domain interior to s9 yields

J' gs[’; =93 °9) + 9 0ems) fws)| av
X€E

o I B3 %5i=5) +97065) f )|V
xeD

+ J- |55 5ms) + D) N-9)] A (7.11-32)
xes

The left-hand side of this equation contains the unknown quantities, while the right-hand side
isknown, provided that the necessary measurements pertaining to the state s and the wave-field
evaluations pertaining to the state £ are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
can make a difference for the surface contribution over $%. If the domain D occupied by the
configuration is bounded, 99 is impenetrable and the surface integral over 5% vanishes (since
the one over 90 does, and no sources of the scattered or the computational wave fields are
present between 52 and 9D (see Exercise 7.5-4). This conclusion holds for both causal and
anti-causal generation of the wave field in state 2. When the domain D is unbounded and the
wave-field generation in state @ is taken to be causal, the surface integral over S does not
vanish, although its value is a constant for each choice of the source distributions in state £
(see Exercise 7.5-4). However, if D is unbounded and the wave-field generation in state £ is
taken to be anti-causal, the surface integral over 5 vanishes (since the integral over a sphere
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with an infinitely large radius does, and no sources of the scattered or the computational wave
fields are present between 5 and that sphere).

A solution to the complex frequency-domain inverse scattering problem is commonly
constructed as follows. First, the contrast-in-medium parameters are discretised by writing them
as linear combinations of M expansion functions with unknown expansion coefficients. Each
of the expansion functions has D®, or a subset of D%, as its support. Next, for each given incident
wave field, the scattered wave field is measured in N subdomains of %, The latter discretisation
induces the choice of the N supports of the source distributions of the observational state.
Finally, a number I of different incident wave fields is selected (where “different” may involve
different choices in frequency content, in location space, or in both). With NI 2 M, the non-linear
problem of evaluating the M expansion coefficients of the contrast-in-medium parameter
discretisation is solved by some iterative procedure (for example, by iterative minimisation of
the global error over all domains in space and all frequency ranges involved where equality
signs should hold pointwise). In this procedure, Equations (7.11-17), (7.11-18), (7.11-25) or
(7.11-32), and the source type integral representations (7.9-43) and (7.9-44) are used simulta-
neously.

The computational state £ is representative of the manner in which the measured data are
processed in the inversion algorithms. Since a computational state does not have to meet the
physical condition of causality, there is no objection against its being anti-causal. Which of the
two possibilities (causal or anti-causal) leads to the best results as far as accuracy and amount
of computational effort are concerned, is difficult to say. Research on this aspect is still in full
progress (see Fokkema and Van den Berg, 1993).

Examples of inverse acoustic scattering problems are found in the non-destructive evaluation
of mechanical structures, medical acoustic tomography and exploration geophysics.

7.12 Acoustic wave-field representations in a subdomain of the
configuration space; equivalent surface sources; Huygens' principle and the
Ewald-Oseen extinction theorem

In Section 7.8, wave-field representations have been derived that express the acoustic pressure
and the particle velocity at any point of a configuration in terms of the volume source
distributions of injection rate and force that generate the wave field. In them, the point-source
solutions (Green’s functions) to the radiation problem play a crucial role. In a number of cases
we are, however, only interested in the values of the wave-field quantities in some subdomain
of the configuration, and a wave-field representation pertaining to that subdomain would
suffice. In the present section it is shown how the reciprocity theorem of the time convolution
type leads to the desired expressions, albeit that now, in addition to the volume integrals over
the volume source distributions (insofar as they are present in the subdomain of interest), surface
integrals over the boundary surface of this subdomain occur. In these representations, the
point-source solutions (Green’s functions) are again the intervening kernels.

Let G be the domain for which the Green’s functions introduced in Section 7.8 are defined.
If G is bounded, its boundary surface dgG is assumed to be acoustically impenetrable. If G is
unbounded, the standard provisions given in Section 7.1 for handling an unbounded domain
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7.12-1  Configuration for the wave-field representations in the subdomain D of the configuration space
Gfor which the Green’s functions are defined. dDis the (smooth) boundary surface of D. (a) If Gis bounded,
9§ is impenetrable; (b) for unbounded G the Green’s functions satisfy causality conditions at infinity.

are made. Furthermore, let D be the subdomain of G in which expressions for the generated
acoustic wave field are to be found. The boundary surface of D is 9 and the complement of
DUID in G is denoted by D’ (Figure 7.12-1). In fact, the relevant wave field need only be
defined in D and on 9D. The constitutive properties must, however, be defined in &G in order
that the necessary point-source solutions can be defined in g. In this sense, G serves as an
embedding of 9. Since the acoustic wave field generated is a physical wave field, it is causally
related to its source distributions.

Time-domain analysis

For the time-domain analysis of the problem the acoustic properties of the fluid present in G
are characterised by the relaxation functions {uy ,x} = {1, % } (x.t), which are causal functions
of time, and the global reciprocity theorem of the time convolution type (Equation (7.2-7)) is
applied to the subdomain 2 of G. In the theorem, state A is taken to be the acoustic wave field
generated under consideration, i.e.

{pA, vf‘} ={py,}xf)  forxeD, (7 J12-1)

(") = (e fdwn  forxen, (7122)
and

{ﬂﬁr,x”‘} ={ugpx)xs)  forxeg. (7.12-3)

Next, state B is chosen such that the application of equation (7.2-7) to the subdomain D leads
to the values of {p,v,} at some arbitrary point x’eD. Inspection of the right-hand side of
Equation (7.2-7) reveals that this is accomplished if we take for the source distributions of state



214 Acoustic waves in fluids

B a point source of volume injection rate at x” in case we want an expression for the acoustic
pressure at x” and a point source of force at x” in case we want an expression for the particle
velocity at x’, while the fluid in state B must be taken to be the adjoint of the one of state A, i.e.

B
{(pox®) = (e px)(t)  forall xeg. (7.12-4)

The two choices for the point-source distributions will be discussed separately below.
First, we choose

@ =ad(x-x,H) and fP=0, (7.12-5)

where d(x — x', ) represents the four-dimensional unit impulse (Dirac distribution) operative at
the pointx =x" and at the instant ¢ = 0, while a is an arbitrary constant scalar. The acoustic wave
field that is, for the present application, causally radiated by this source’and satisfies the proper
boundary conditions at dGif G is bounded, is given by

%) = PP VER ), (7.12-6)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. In view of Equation (7.12-5) and the
properties of (x — x’,f) we have

B_A A
J [-C 1Pt + Cp™ i) av
xeD

= J C/(p,ad(x - x’6);x.1) dV=ap(x,0)yxp(x)  forx'eg, (7.12-7)
xeD
where
xp@) ={140} forx’e{D,0D,D’} (7.12-8)

is the characteristic function of the set D, and 9’ is the complement of DUJDin ﬂ(?’. With this,
we arrive at

’ ’ ;B , ;B ’
ap(x,z>x@<x>=J [Cp™E gt - CLOE®, fuxx ] av
xXeD

—j U | CP™5 v ) = COEP i )]dA forxeg, (7.12-9)
xedD

where, in the second terms in the integrands, we have used the symmetry of the convolution in
its functional arguments. From Equation (7.12-11) a representation for p(x’, £)y 5, (x’) is obtained
by taking into account that p%B and v§'B are linearly related to a. Introducing the Green’s
functions through

PP ) = (GPR 7P ) D, (7.12-10)
using the reciprocity relations for these functions (see Exercises 7.8-1 and 7.8-3)
(6™, G{"P el = (G724 -Gy (7.12-1D

and invoking the condition that the resulting equation has to hold for arbitrary values of a,
Equation (7.12-9) leads to the final result:
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P DY) = J [CUGH g%, x) + CUGE, ') av
xeD

—J V| CUGP v ) + CUGH pip)]dA  forx'eg. (7.12-12)
xe0D

Equation (7.12-12) expresses, for x'e D, the acoustic pressure p of the generated acoustic wave

field at x’ as the superposition of the contributions from the elementary volume sources g dV

and f; dV at x as far as present in 2 and the elementary contributions —,,v,, dA and —v,,p dA

from the equivalent surface sources at x on the boundary 9 of the domain of interest.
Secondly, we choose

=0 and f2=b,0-x,1), (7.12-13)

where b, is an arbitrary constant vector. The acoustic wave field that in the present application
is causally radiated by this source and satisfies the proper boundary conditions at 9G if G is
bounded, is given by:

P28y = BB, (7.12-14)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. In view of Equation (7.12-13) and the
properties of d(x — x',z), we have

B A A B
J. {_Ct(fr VesXt) + C:(P »q ;x!t)] av
xeD

= —J C,(b,0(x — x,0),vsx,0) AV = -bv(x,)xpx")  forx'eg. (7.12-15)
xeD

With this, we arrive at

’ ’ B ’ B ’
by, (X t)xp(x") =J‘ [—C,(pf , @i x,x5 1) + C,(V{C , fk;x,x,t)} dav
xeD

——J Vi [—Ct( pf ;B, VX X5 1) + C,(»{,;,B, DX, X t)] da forx'eg, (7.12-16)
x€0D

where, in the second terms in the integrands, we have used the symmetry of the convolution in
its functional arguments. From Equation (7.12-16) a representation for v,(x’, )y, (") is obtained
by taking into account the fact that p/*B and VB are linearly related to b,.. Introducing the Green’s
functions through

AP wx ) = (GPR.GYP ) wx' 0, (7.12-17)
using the reciprocity relations for these functions (see Exercises 7.8-2 and 7.8-4)
(GHB YR,y = (-GG R woxt) (7.12-18)

and invoking the condition the resulting equation has to hold for arbitrary values of b,, Equation
(7.12-16) leads to the final result

W)= [ [CUG e + U fiven)av

xeD
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-J Y [CUG ') + CG Y pix k)] dA  forxeg. (7.12-19)
xe0D

Equation (7.12-19) expresses, for x’eD, the particle velocity v, of the generated acoustic wave
field at x” as the superposition of the contributions from the elementary volume sources g dV
and f; dV at x insofar as they are present in 9D, and the elementary equivalent surface sources
—VV,, dA and ~v,,p dA at x on the boundary 9 of the domain of interest.

Complex frequency-domain analysis

For the complex frequency-domain analysis of the problem the acoustic properties of the fluid
present in G are characterised by {C .7} = {C 7} (x,5) and the global complex frequency-
domain reciprocity theorem of the time convolution type (Equation (7.4-7)), is applied to the
subdomain P of G. In the theorem, state A is taken to be the generated acoustic wave field under
consideration, i.e.

(P2 = (P9} (xs)  forxeD, (7.12-20)

@AM =6 f)ms)  forxen, (7.12-21)
and

{E64%) = Cerilms)  forxeg. (7.12:22)

Next, state B is chosen such that the application of Equation (7.4-7) to the subdomain D leads
to the values of {p,V,} at some arbitrary point x’eD. Inspection of the right-hand side of
Equation (7.4-7) reveals that this is accomplished if we take for the source distributions of state
B a point source of the volume injection rate at x” when we want an expression for the acoustic
pressure at x’, and a point source of force at x’ when we want an expression for the particle
velocity at x’, while the fluid in state B must be taken to be the adjoint of the one of state A, i.e.

(E3A") = (E Pl ms)  forallxeg. (7.12-23)

The two choices for the point source distributions will be discussed separately below.
First, we choose

¢B=a(s)ox—x) and fB=0, (7.12-24)

where d(x — x”) represents the three-dimensional unit impulse (Dirac distribution) operative at
the point x = x’, while & = d(s) is an arbitrary scalar function of s. The acoustic wave field that
is, for the present application, causally radiated by this source and satisfies the proper boundary
conditions at 0G if G is bounded, is given by

~B 2B Aq;B A ;B ,
B2 2y = BT8P e xss) (7.12-25)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. In view of Equation (7.12-24) and the
properties of d(x — x”), we have

J' [P s ) + g Ps) | av
xeD
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= J P,5)a(s)0(x — x') AV =a(s)p(x’s)xp(x")  forx’eg. (7.12-26)
xeD

With this, we arrive at

a(s) P’ ) p (') = J‘ (7P 0 )40x.5) = 9P (ox's) i (x.5)] AV
xeD

—j Vi [13 q;B(x,x’, )V, (%,5) — 0,3;B(x,x’s) ﬁ(x,s)] dA forx’eg. (7.12-27)
xe0D

From Equation (7.12-27) a representation for p(x’,s)xp(x”) is obtained by taking into account
that p 9P and $;@B are linearly related to d(s). Introducing the Green’s functions through

(B EP) wx,s) = (PR, G e 9)Cs) (7.12:28)
using the reciprocity relations for these functions (see Exercises 7.8-5 and 7.8-7)

(6778617 xx's) = (G™4 -G wws) (7.12-29)
and invoking the condition that the resulting equation has to hold for arbitrary values of as),

Equation (7.12-27) leads to the final result:

P8y p(x) = J. [ép U(x’,x,8)4(x,s) + G,ff &, x,5) 1% (x,s)] dv
xeD
4 J (670, 1,910 + CH 2 v A forveg.  (7.1230)
xe0D

Equation (7.12-30) expresses, for x’e D, the acoustic pressure p of the generated acoustic wave
field at x* as the superposition of the contributions from the elementary volume sources
q T3dvand f kT dV at x, insofar as they are present in D, and the elementary equivalent surface
sources —,,V,, dA and —,, p dA at x on the boundary 0D of the domain of interest.

Secondly, we choose

48=0 and f2=b,(s)ox-x"), (7.12-31)

where Br = l;r(s) is an arbitrary vector function of s. The acoustic wave field that is, for the
present application, causally radiated by this source and satisfies the proper boundary condition
at dGif G is bounded, is given by

(P8 A8 = (8B [Py exls), (7.12-32)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. In view of Equation (7 .12-31) and the
properties of d(x — x”), we have

J [/ Pes)o0ns) + p ARG Pexs)]dv
xeD

= —J l;r(s)é(x - X)W (x,5) dV = -Br(s)ﬁr(xﬁ Hxp)  forx’eg. (7.12-33)
xeD
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With this, we arrive at

bV, p @) = J' [-5"Pwx, 5)des) + 9P @) fi ()| av

—J Vs[5 008,5)0 () + 0P (e 5) )| dA Forxeg. (7.12-34)
xe0D

From Equation (7 12-34) a representation for ¥,(x’,5)x 5 (x’) is obtained by taking into account
that 5B and v[ are linearly related to b,(s) Introducing the Green'’s functions through

(575 0[Py ') = (GPB GP) e 5)by(s), (7.12-35)
using the reciprocity relations for these functions (see Exercises 7.8-6 and 7.8-8)
{GPB 6Py ' s) = (-GG () x.s) , (7.12-36)

and invoking the condition the resulting equation has to hold for arbitrary values of gr(s),
Equation (7.12-34) leads to the final result:

0,8, )1 p (&) = _[ G %,5)40x,5) + G " x,5) fi (e.5)| AV
Xe!

+ J- Vi {é,”q(x:x,s)[—umﬁm(x,s)] +é,§’{n(x:x,s)[-umﬁ(x,s)]}dA forxeg. (7.12-37)
xedD

Equation (7.12-37) expresses, for x’eD, the particle velocity v, of the generated acoustic wave
field at x” as the superposition of the contributions from the elementary volume sources ¢ dV
and f}, dV atx, insofar as they are present in D, and the elementary equivalent surface sources
—V,,V,, dA and —v,, p dA at x on the boundary 9 of the domain of interest.

For x’e D, Equations (7.12-12), (7.12-19), (7.12-30) and (7.12-37) express the values of the
acoustic pressure and the particle velocity in some point of D as the sum of the contributions
from the volume sources of injection rate and force, insofar as these are present in D, and the
equivalent surface sources on 9D. Evidently, the equivalent surface sources yield, in the interior
of D, the contribution to the wave field that arises from (unspecified) sources located in D', i.e.
in the exterior of . In particular, the surface integrals in these expressions vanish when the
wave field is not only defined in 9 and on 99, but also in D’ and no sources are located in
between 0D and d g, and the wave fields in state B either satisfy the proper boundary conditions
at 0G if G is bounded (see Exercises 7.2-2, 7.3-2, 7.4-4 and 7.5-4), or are causally related to
their point source excitations if G is unbounded. In the latter case, Equations (7.12-12),
(7.12-19), (7.12-30) and (7.12-37) reduce to Equations (7.8-14), (7.8-24), (7.8-38) and (7.8-48),
respectively.

Another property of Equations (7.12-12), (7.12-19), (7.12-30) and (7.12-37) is that the wave
field emitted by the volume sources in P and the wave field emitted by the equivalent surface
sources on 90 apparently cancel each other when x’eD’. This property is known as the
Ewald—Oseen extinction theorem (Oseen, 1915; Ewald, 1916).

Another special case arises when Equations (7.12-12), (7.12-19), (7.12-30) and (7.12-37)
are used in a domain in which no volume source distributions are present. Then, they express
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Huygens’ principle (Huygens, 1690) which states that an acoustic wave field arising from
sources “behind” a closed surface that divides the configuration space into two disjoint regions
and “in front” of which no volume sources are present, can be represented as being due to
equivalent surface sources located on that surface, while that representation yields the value
zero “behind” that surface. In particular, Huygens stated his principle for the case where the
relevant surface is a wave front of the wave motion in space-time. A number of historical details
about the development of the mathematical theory of Huygens’ principle can be found in Baker
and Copson (1950). Additional literature on the subject can be found in Blok et al. (1992), and
De Hoop (1992).

Applications of the wave-field representations in a subdomain of space are found in the
integral equation formulation of scattering problems, while the Ewald—Oseen extinction
theorem forms the basis of the so-called “null-field method” for solving such problems.

Exercises

Exercise 7.12-1

Let Dbe a bounded subdomain of three-dimensional Euclidean space ﬂf’ Let 0D be the closed
boundary surface of ©and denote by D’ the complement of DU Din &3, The unit vector along
the normal to 9D, pointing away from D (i.e. towards 2’), is denoted by v (Figure 7.12-2). In
the domain 9’ an acoustic wave field {p,v,} is present whose sources are located in D. Use
Equations (7.12-12) and (7.12-19) to arrive at the equivalent surface source time-domain
integral representation

P Dy X"y = J ,(G Ty X0 + C,(G,ﬁ DIXOX t)] for ¥'eR> (7.12-38)

and

V(X D)y pAx’) = J- C,(Gr s VXX, 8) + C,(G, T DX X, t)} dA forx’e®’. (7.12-39)

Exercise 7.12-2

Let D be a bounded subdomain of three-dimensional Euclidean space &3, Let 9D be the closed
boundary surface of 22 and denote by D’ the complement of DUIDin ®>. The unit vector along
the normal to 9D, pointing away from D (i.e. towards D), is denoted by v (Figure 7.12-2). In
the domain 2’ an acoustic wave field {p,V,} is present whose sources are located in D. Use
Equations (7.12-30) and (7.12-37) to arrive at the equivalent surface source complex
frequency-domain integral representations

P\ )= | 1 [GPUx,5)0(5) + G x,5) plrs) | dA for e (7.12-40)
xedD
and
)= | 1[G x,5) + G (0,5 P(x,5)] dA for w'eR’. (7.12-41)

xeBQ)
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7.12-2  Configuration for the equivalent surface source integral representation for an acoustic wave
field in the source free domain 2’ exterior to a bounded subdomain P of ®3.
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