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Plane wave scattering by an object
in an unbounded, homogeneous,
isotropic, lossless embedding

In this chapter, the simplest scattering configuration is investigated in more detail. It consists
of an unbounded, homogeneous, isotropic, lossless embedding in which a plane wave isincident
upon a scattering object of bounded extent. First, the reciprocity properties of the amplitudes
of the scattered wave in the far-field region are investigated. Next, an energy theorem
(“extinction cross-section theorem”) is derived that relates the surh of the energy carried by the
scattered wave and the energy absorbed by the scattering object to the amplitude of the scattered
wave in the far-field region when observed in the forward scattering direction. Finally, the first
term in the Neumann solution to the relevant system of integral equations (the so-called
“Rayleigh-Gans-Born approximation”) is determined for penetrable, homogeneous scatterers
of different shapes. The analysis is carried out in the time domain as well as in the complex
frequency domain.

8.1 The scattering configuration, the incident plane wave and the far-field
scattering amplitudes

The scattering conﬁguratxon consists of a homogeneous, isotropic, lossless embedding that
occupies all of &2, The acoustic properties of the embedding are characterised by its volume
density of mass p and its compressxblhty %, which are positive constants. The associated
acoustic wave speed is ¢ = (px) 2 which is also a positive constant. In the embedding, an
acoustic scatterer is present that occupies the bounded domain ©°. The boundary surface of
DS is denoted by 9D° and v is the umt vector along the normal to 0D*® oriented away from D°.
The complement of D%U0D*® in & is denoted by D (Figure 8.1-1).

Time-domain analysis

In the time-domain analysis of the problem, the acoustic properties of the scatterer are, if the
scatterer is an acoustically penetrable object, characterised by the relaxation functions
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Figure 8.1-1 Scattering object occupying the bounded domain 2* in an unbounded acoustically
homogeneous, isotropic, lossless embedding with volume density of mass p and compressibility .

{uf x°} = {u}. »x°} (1), which are causal functions of time. The equivalent contrast volume
source densities of injection rate and force are then given by (see Equations (7.9-18) and
(7.9-19))

fi ==0,C, (,ui r— POk O(0),vpxst)  forxe D°, (8.1-1)
¢ =-0,C,(x° - xd(t), px;t)  for xeD’, (8.1-2)

in which the total acoustic wave field {p,v,} is the sum of the incident wave field {pi,vi,} and
the scattered wave field {p°yv;} (see Equation (7.9-5)). If the scatterer is acoustically
impenetrable, either of the two boundary conditions

limy,yo p(x+hv,f) =0 for xedD® (8.1-3)
or

limy v, v, (x + bv,t)=0  for xedD® (8.1-4)
applies.

For the incident wave we now take the uniform plane wave (see Equations (6.4-7) and
(6.4-13))

P'ol) = (PV,}att - ayxlc) , (8.1-5)
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that propagates in the direction of the unit vector a (i.e. a,a; = 1) and has the normalised pulse
shape a(f). Its acoustic pressure and particle velocity amplitudes are related through (see
Equations (6.4-15) and (6.4-16))

V,=YPa,, (8.1-6)
in which (see Equation (6.4-17))
_ W_ -1 . 3
Y=(x/p)"*=(pc) with (...)"*>0 (8.1-7)

is the acoustic plane wave admittance of the wave.
For an acoustically penetrable scatterer we use for the scattered wave the constrast volume
source integral representation (see Equations (7.9-20) and (7.9-21))

P = [CHGPLg'wxt) + CGE féxxn]dv  forxe®’ (8.1-8)
J xeD*
and
=] [C6 g W) + CGfExxn]dv  forxer, (8.1-9)
o xeD*

in which (see Exercise 7.8-9 with x and x” interchanged)

GPI'x,t) = po,G(xx,0) (8.1-10)
G, x,) = -0{ G'x.0) 8.1-11)
G (x'\x ) =9} G(x'x1) , (8.1-12)
G, x) = p 8 = DHS i+ 010, 3 LG x.0)], (8.1-13)

where 0,, denotes differentiation with respect to x,,, and

_ Ot = Ix" —xl/ec)

Gixx,t) = forx’ #x . (8.1-14)

4nlx’ — x)
In the far-field region, the expansion

(PSVITNE = Ix)e)
47|x’|

PV = [1+00x1™)] as lxl—ee withx’ = |x1§ (8.1-15)

holds, where (see Equations (5.10-5)—(5.10-10))

§jo0 _ o | -1 $100
P —pE),d) +c §k8,<15k , (8.1-16)
and

;00 -1 ;00

W= (po) & p", (8.1-17)
in which

o7& = J- q (et + Egxglc) dV (8.1-18)
: xeD*
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and

o En=| flwt+Exlc)dv. (8.1-19)
xeD’

For an acoustically impenetrable scatterer the acoustic wave field is not defined in the
interior D° of the scatterer and we have to resort to an equivalent surface source integral
representation that expresses the scattered wave field in the exterior D% of the scatterer in terms
of the wave field on the boundary surface D° of D°. This representation is, on account of
Equations (7.12-38) and (7.12-39),

ps(x',t)x@s'(x')zj [c,(G”q,aqs;x',x,z)+c,(G,§’f,afs;x',x,x)]dA forx'e®’ (8.1-20)
xe0D*

and

Vi, t)x@:‘(x’)=-[ [C(GY0¢%x xt) + CG o' x)] dA forxe®’, (8.1-21)
xedD*

in which (note the orientation of v,,)

og° =v,v} (8.1-22)
and
of =vep'. (8.1-23)

In the far-field region, the expansion given in Equation (8.1-15) holds, where, based upon
Equations (8.1-20) and (8.1-21), we have ’

P =p0,0 %0 v g o,0X (8.1-24)
and
v = (pe) &, 0™, (8.1-25)
in which (note the orientation of v,,)
¥ En= | o4t +Exlc) dA (8.1-26)
xedD’
and
¥ =En=|  ofimr+Exlc)da. (8.1-27)
xedD*

However, upon applying Equations (7.12-12) and (7.12-19) to the incident wave field { pi,vi,}
and to the domain 2%, we have (note that the incident wave field'is source-free in %)

pi(x’, Dy ps(x) = J- [C,(GP q,aqi;x’,x,t) + C,(G,ff,af i;x’,x,t)] dA for x'eﬂ(3 (8.1-28)
xe0D*

and
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Vi, Dy ) = j [CUGY%0q %) + C(GLaf ') dA for x'e®,  (8.1-29)
xedD*

in which (note the orientation of v,,,)

dg =—vpl (8.1-30)
and
fi=-np. (8.1-31)

Subtraction of Equation (8.1-28) from Equation (8.1-20) and of Equation (8.1-29) from
Equation (8.1-21) leads to

P&y &) = P&, Dy px') = J [CH(GP%0gix’x.t) + CGH D' )| dA
xedD

for ¥'e®’ (8.1-32)
and
VI Do () Vi ) = | [CUGYE3gxt) + Ci(GHafx'xn)] dA
xe0D
forx'e®’ (8.1-33)
in which (note the orientation of v,,))
og = v,v, (8.1-34)
and
fe=wp . (8.1-35)

In the far-field region, again the expansion given in Equation (8.1-15) holds where, based upon
Equations (8.1-32) and (8.1-33), we now have

P =00, 0% + g 9,00 (8.1-36)
and
v = (pe) &, P57, (8.1-37)
in which (note the orientation of v,,,)
&%) = dq(nt + Ex lc) dA (8.1-38)
xe0D*
and
oI & = At + Egrlc) dA . (8.1-39)
xe0D*

Of course, the equivalent surface source representations also apply to the case of an acoustically
penetrable scatterer. For x’eD® , Equations (8.1-20) and (8.1-21), and Equations (8.1-32) and
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(8.1-33) must then yield the same result as Equations (8.1-8) and (8.1-9). Similarly, in the
far-field region, Equations (8.1-24)—(8.1-27) and (8.1-36)—(8.1-39) must yield the same result
as Equations (8.1-16)—(8.1-19). Note, however, that the results for x’eD* differ.

Equations (8.1-8) and (8.1-9), when taken for x’e D%, provide the basis for the time-domain
domain integral equation method to solve problems of the scattering by penetrable objects. For
solving problems of the scattering by impenetrable objects, Equations (8.1-32) and (8.1-33)
provide, when taken for x’edD®, the basis for the time-domain boundary integral equation
method and, when taken for x’eD®, the basis for the time-domain null-field method. For general
scatterers, all three methods need numerical implementation.

Complex frequency-domain analysis

In the complex frequency-domain analysis of the problem, the acoustic properties of the
scatterer are, if the scatterer is an acoustically penetrable object, characterised by the functions
{¢ ks W75} = {Ef k.1 °}(x,5). The equivalent contrast volume source densities of injection rate and
force are then given by (see Equations (7.9-41) and (7.9-42))

fi=-C kr— PO, forxeD®, (8.1-40)
G =- -si)p  forxeD’, (8.1-41)

in which the total acoustic wave field { p,,} is the sum of the incident wave field { p1 1} and
the scattered wave field {pSV7} (see Equation (7.9-28)). If the scatterer is acoustically
impenetrable, either of the two boundary conditions

limy,o plx+hv,5)=0  for xedD® (8.1-42)
or

limy ¥, P, + v,s) =0 for xed D’ (8.1-43)
applies.

For the incident wave we now take the uniform plane wave (see Equations (6.1-3), (6.1-12),
(6.2-3) and (6.2-12))

(5 9‘} = {P,V,}d(s) exp(—sasx,/c) (8.1-44)
that propagates in the direction of the unit vector @ (i.e. a,a; = 1) and has the complex
frequency-domain normalised pulse shape d(s). Its acoustic pressure and particle velocity
amplitudes are related through Equations (8.1-6) and (8.1-7).

For an acoustically penetrable scatterer we use for the scattered wave the contrast volume
source representation (see Equations (7.9-43) and (7.9-44))

ﬁs(x',s'):J. [GPI0,x,5) 4 °(xs) + G xs) fiiws)|dv  forxer®  (8.1-45)

and

P os) = [é,"‘l(x',x,s)és(x,s)+é,?{(x§x,s) f‘,f(x,s)] dv  forx’e®’,  (8.1-46)

xeD*
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in which (see Exercise 7.8-10 with x and x” interchanged)

Gl x,5) = spé(x',x,s) ,

é,ff 0, x,5) = -9 G(x,x.5) »

G, x,5) = —3] G\ x.5) »

G, x,5) = (50) 00 — 1), + (sp) 9/ 9 G’ x.9)
where 9, means differentiation with respect to x,,, and

A , — 4 —
G ns) = e)qgt(1 ,:l‘:'_ ,;VC)

forx’#x.

In the far-field region; the expansion

(5399 = (591 P2l 1+ 001 7))

as |x'|—ee with x’=|x'|€
holds, where (see Equations (5.9-11)~(5.9-16))
P =spd T+ (sle)g B
and
857 = (pe) 6P

in which

T =| §ms) explsEoxlc) AV,

J xeD*

and

B[ (Es)= | Fites) explstgndc) V.

J xeD*

227

(8.1-47)

(8.1-48)

(8.1-49)
(8.1-50)

(8.1-51)

(8.1-52)

(8.1-53)

(8.1-54)

(8.1-55)

(8.1-56)

For an acoustically impenetrable scatterer the acoustic wave field is not defined in the
interior D° of the scatterer and we have to resort to an equivalent surface source integral
representation that expresses the scattered wave field in the exterior D° of the scatterer in terms
of the wave field values on the boundary surface 9D* of DS, This representation is, on account

of Equations (7.12-40) and (7.12-41),

Py = J [GP(x',x,5)04 *(x.s) + G x50 (x.5)| dA
x€0D*

for x’eﬂ(3

and

(8.1-57)
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D)o (x) = (6% x,5)9G *(x.5) + Gl %,5)d fix.s))dA
x€0D*
for x’e‘](3 , (8.1-58)
in which (note the orientation of v,,)
0§ =v} (8.1-59)
and
of¢ =vip*. (8.1-60)

In the far-field region, the expansion given in Equation (8.1-15) holds, where, based upon
Equations (8.1-57) and (8.1-58), we have

P = 5pd %0 4 sy, BY (8.1-61)
and
A §j00 -1 A §j00
55 = (o) 1€, p 5, (8.1-62)
in which
% (g5) = 3G °(x,5) exp(s&,x,/c) dA (8.1-63)
J xe0D*
and
S (& s) = | 3f(x,s) exp(skx,/c) dA . (8.1-64)
xe0D*

However, upon applying Equations (7.12-30) and (7.12-37) to the incident wave field
{p:?v l} and to the domain D%, we have (note that the incident wave field is source-free in D°)

P )psx) = [GP,,5)04 (v5) + GHlx' x93 e5)) A
x€0D*
for x'e®’ (8.1-65)
and
Gri X )xpsx") = [Grvq(xﬁx,s)aq“ i) + GA,‘:i(x’,x,s)B ) kl (x,s)] dA
x€0D*
for x'eﬂ(? , (8.1-66)
in which (note the orientation of v,,,)
3Gi=—vp! (8.1-67)
and

Aff=-np (8.1-68)
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Subtraction of Equation (8.1-65) from Equation (8.1-57) and of Equation (8.1-66) from
Equation (8.1-58) leads to

PO S0 () — B S

= J' [é"‘l(x',x,s)acj(x,s)+é,ff(x:x,s)afk(x,s) dA  forxer’ (8.1-69)
X€0D'

and
D, )2 05 (") = D (x,8)x ps(x")

= J [é,vq(x',x,s)aé(x,s)+G“,f{(x',x,s)a fk(x,s)]dA for Xex’, (8.1-70)
xe0D’

in which (note the orientation of v,,,)

oG =v5, 8.1-71)
and
3fie=vih - (8.1-72)

In the far-field region, again the expansion given in Equation (8.1-52) holds, where, based upon
Equations (8.1-69) and (8.1-70), we have

P = 5pd 9% + (510 BT 8.1-73)
and
= (pc) &5 (8.1-74)
in which
S (£g) = 34(x,s) exp(sé,x,/c) dA (8.1-75)
xe0D*
and
3P &)= |  ofi(xs) exp(sEgx,/c) dA . (8.1-76)
x€0D*

Of course, the equivalent surface source representations also apply to the case of an acoustically
penetrable scatterer. For x EDS Equations (8.1-57) and (8.1-58) and Equations (8.1-69) and
(8.1-70) must then yield the same result as Equations (8.1-45) and (8.1-46). Similarly, in the
far-field region, Equations (8.1-61)—(8.1-64) and (8.1-73)~(8.1-76) must yield the same result
as Equations (8.1-53)—(8.1-56). Note, however, that the results for x’eD® differ.

Equations (8.1-45) and (8.1-46), when taken for x’e D, provide the basis for the complex
Sfrequency- domain domain integral equation method to solve problems of the scattering by
penetrable objects. For solving problems of the scattering by impenetrable objects, Equations
(8.1-69) and (8.1-70) provide, when taken for x’edD*, the basis for the complex frequency-
domain boundary integral equation method and, when taken for x’e D%, the basis for the complex
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frequency-domain null-field method. For general scatterers, all three methods need numerical
implementation.

The different representations in this section will be needed in the analysis in the remainder
of this chapter.

Exercises

Exercise 8.1-1

Show that from Equations (8.1-32) and (8.1-33) it follows that

P Do () = (1) + J- [C(GPL0gix’x.t) + C(GF s’ x.0)| dA
x€dD*

for x'e®’ (8.1-77)

and

v, D p ) = Vi) + j [C(G,,0g:%,x.0) + C(G s, dA

xedD*
for x'e®’ (8.1-78)
in which (note the orientation of v,
3= v, (8.1-79)
and
=wp . | (8.1-80)

(Hint: Consider the cases x’€D , x’edD* and x’eD5.)

Exercise 8.1-2

Show that from Equations (8.1-69) and (8.1-70) it follows that

P, () = P(x,5) + J [é”q(x:x,s)acj(x,s) + G x5 fk(x,s)] dA

x€0D
for x'e®’ (8.1-81)

and

5,0, )0 (") = D xss) *J

|69, %,9935,9) + 6, x,5) f (55)]
xed D’ :

for X'e®> | (8.1-82)
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in which (note the orientation of v,,,)

G=vp, (8.1-83)
and
ofr=wb- (8.1-84)

(Hint: Consider the cases x'€D* " x'€dD® and x'€D5.)

8.2 Far-field scattered wave amplitude reciprocity of the time convolution

type

In this section we investigate the reciprocity relation of the time convolution type that applies
to the far-field scattered wave amplitude at plane wave incidence upon an acoustically
penetrable or impenetrable object. The scattering configuration shown in Figure 8.1-1 applies.
Two states (A and B) in this configuration are considered. In state A, a uniform plane acoustic
wave that propagates in the direction of the unit vector a is incident upon the scattering object;
in state B, a uniform plane acoustic wave that propagates in the direction of the unit vector
isincident upon the scattering object. It will be shown that the far-field scattered wave amplitude
in state A when observed in the direction of observation & = —f1is related, via reciprocity, to the
far-field scattered wave amplitude in state B when observed in the direction of observation
& = —a (Figure 8.2-1).

The corresponding relationships in the time domain and in the complex frequency domain
are derived separately below.

Time-domain analysis

In the time-domain analysis, the incident uniform plane wave in state A is taken as

PV = (PA VM - agxlo) (8.2-1)
with
vA=yPla,, (8.2-2)

in which Y is given by Equation (8.1-7). In the far-field region, the scattered wave in state A is
represented as

TN (1)

47lx’|

P = [1+00x17Y)

as |x’|—ee with x’'=|x'|&, (8.2-3)

in which, on account of Equations (8.1-22)—(8.1-27),
PR = 03,0 20 1 T 5 XA (8.2-4)
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§=-p - N a

£=-a h g B

Figure 8.2-1 Configuration for the far-field scattered wave amplitude reciprocity of the time
convolution type.

and
= (pey e, pA, (8.2-5)
with
4=y [ 0w+ E.x,/c) dA (8.2-6)
o xedD*
and
o Mg - [ A A et + Exlc) dA (8.2-7)
o xed D’
in which (note the orientation of v,,,)
A =y A (8.2-8)
and
fet = np™h (8.2-9)

Similarly, the incident uniform plane wave in state B is taken as



Plane wave scattering in a homogeneous, isotropic, lossless embedding 233

T

PPy = (PRV )bt - Byxle) (8.2-10)
with

vB=vr®s,. (8.2-11)
In the far-field region, the scattered wave in state B is represented as

s;Bies _s;Bjoo p
B ¢ vy )Gt - Ixle -
(2P ) = Lt LGB o)
47lx’|
as x| = with x" = x"|€, (8.2-12)

in which, on account of Equations (8.1-22)—(8.1-27),

pS;B = Pat¢ 9g’;Bjeo + C—lgkaxd’l?fs;B;w (82-13)
and
B o lE, B (8.2-14)
with
oM B gn= | 9g™B(e+Exle) dA ®2-13
xedD*
and
o Pgn=| oS+ bl aa, (#2109
xe0D*

in which (note the orientation of v,,)

g B =S (8.2-17)
and
A =y p™P. (8.2-18)

If the scatterer is penetrable, its acoustic fluid properties in state B are assumed to be the adjoint
of the ones pertaining to state A. If the scatterer is impenetrable, either of the two boundary
conditions given in Equations (8.1-3) or (8.1-4) applies. These boundary conditions apply to
both state A and state B, and are, therefore, self-adjoint.

To establish the desired reciprocity relation, we first apply the time-domain reciprocity
theorem of the time convolution type (Equation (7.2-7)) to the total wave fields in the states A
and B, and to the domain D°® occupied by the scatterer. For a penetrable scatterer this yields

J Yim [Cx(pA,vﬁ;x,t) - C,(va,f;;x,t)] dA=0, (8.2-19)
xe0D’

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
scatterer, Equation (8.2-19) holds in view of the boundary conditions upon approaching 0D*
via D% . In Equation (8.2-19) we substitute
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(PP VE) = (PP + pSA A 154y (8.2-20)
and
PPVB) = (P + p BB 4158y (8.2-21)

Next, the time-domain reciprocity theorem of the time convolution type is applied to the
incident wave fields in states A and B and to the domain D°. Since the incident wave fields are
source-free in the interior of the scatterer and the embedding is self-adjoint in its acoustic
properties, this leads to

j Y [CoP™ i) = C(p ™) da = 0. (8.2-22)
xedD*

Finally, the time-domain reciprocity theorem of the time convolution type is applied to the
scattered wave fields in states A and B and to the domain D%, Since the embedding is self-adjoint
in its acoustic properties and the scattered wave fields are source-free in the exterior of the
scatterer and satisfy the condition of causality, this leads to

j v | CH™ ViR - 0PV da = 0. (8.2-23)
xe0D*
From Equations (8.2-19)—(8.2-23) we conclude that
J. Vi [C, ( pi;A,vf,;,B;x,t) +Cy( pS;A,vi,;,B 351)
xedD’

~ (P - Cp*Pvixn] da =0, (8.2-24)

However, on account of Equations (8.2-1) and (8.2-2), (8.2-4)—(8.2-9), (8.2-10) and (8.2-11),
and (8.2-13)—(8.2-18) we have

J' v [Cop™ i) = Cp P M) da
xedD*

= J de’ J V[P0t Wi = PPVSA 1)) bt = Boxsle — 1) dA
t'eR. xe0D* .

= J' b(t—1") dt” j V[P0 = Bl Vi — PPVER et — Boxsle)] dA
t"eR. xedD*
2 J' b(e - "), [p 54 (B, de” (8.2-25)
t"eR,

and

J. v [CoP™ B Vi) - C (A ViR ] dA
xeoD*
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= j dr’ J i [P = PAVIR (61 alt = agxsle ~ 1) dA
t'eR. xe0D*

= J- a(t—1t")dt” J. Vim [pS;B(x,t” - a&xs/c)V,ﬁ‘ -P Avf,",B(.lr:,t” - asxS/c)] da
t"eRr. xc0D*
=—p P4 J' a(t - "), [p B (-t dr”. (8.2-26)
" €R.

Equations (8.2-24)—(8.2-26) lead to the desired reciprocity relation for the far-field scattered
wave amplitudes:

pB J bt - ), [pSA (=B de”
’”GZR_

=pA J att — "), [P -] at”. (8.2-27)
tlleﬂ

At this point it is elegant to express the linear relationship that exists between the far-field
scattered wave amplitude and the incident wave field, both in state A and in state B. To this end,
we write

PAEDN=P* | a)sHEar-1)dr (8.2-28)
J teRr.
and
PR EN=PB | b)SPEBL-1)dr, (8.2-29)
J t’eR.

where S and SB are the configurational time-domain acoustic pressure far-field scattering
coefficients. Substitution of Equations (8.2-28) and (8.2-29) in Equation (8.2-27) and rewriting
the convolutions, we obtain

pPBpAy, .[ b(t") dt”.[ at)SA-pat—t"—t)dt’
t'e

‘”eﬁ. K.
A B ” ” ’ B ” ’ ’
=pP°p 1,j a(t”) dt J b(t)S “(-a,pt—t" —t') dt’, (8.2-30)
t"eR. t'er.

where, in accordance with the rules applying to the time convolution, the operator I, has been
brought in front of the integral signs. Taking into account that Equation (8.2-30) has to hold for
arbitrary values of PA, PB, a(?) and b(?), and using the causality of the scattered waves, we end
up with

sA-Bap)=5Papby (8.2-31)

as the final expression of the time-domain reciprocity property under consideration.
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Complex frequency-domain analysis

In the complex frequency-domain analysis, the incident uniform plane wave in state A is taken
as

(65455 = PRV exp(-sagr,lc) , (82-32)
with
yA=vphq,, (8.2-33)

in which Y is given by Equation (8.1-7). In the far-field region, the scattered wave in state A is
represented as

ASA ASA A SiA00 & 5iA;00 —slx’l/ n—
(FA 0 ws) = (54954 }(&s)%%“jffl'—c) [1+00x17)

as |x’|—ee with x'=|x|&, (8.2-34)

where, on account of Equations (8.1-59)—(8.1-64),

5 = s MR ¢ g Y @239
and
Qrs;A;oe =(p c)~1 Ep S;A;m, (8.2-36)
with
B9A=(£) = 3G % x,5) exp(sEyxy/c) dA (8.2-37)
xedD’
and
S A = f Of " (rs) explsgxylc) da - (82-38)
x€0D°
in which (note the orientation of v,,)
3G SA _ Vr‘A’rS;A (8.2-39)
and
3 f ks;A =np A (8.2-40)
Similarly, the incident uniform plane wave in state B is taken as
(559, = (PB.V2is) exp(-sByx,fc) , (8.2-4D)
with
VrB —ypB 3. (8.2-42)

In the far-field region, the scattered wave in state B is represented as
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38 598) (x)5) = (55 938y g,) CREIEVDTy 5 10-1))

{p
4rlx’|
as |x’]—o with x"=|x|&, (8.2-43)
where, on account of Equations (8.1-59)—(8.1-64),
P = 5p BT 4 (slo) BB (8.2-44)
and
= = (0o) &, 5P, (8.2-45)
with
2 0¢°;Bieo _ 3 A5;B
D &s)= 04 7 (x,5) exp(s€x /c) dA (8.2-46)
J xe0D*
and
B = 9fFBrs) exp(sEgxlc) dA, (8.2-47)
J xe0D*

in which (note the orientation of »,,)

3§58 =y p 5B (8.2-48)
and
B =y p™. (8.2-49)

If the scatterer is penetrable, its acoustic fluid properties in state B are assumed to be the adjoint
of the ones pertaining to state A. If the scatterer is impenetrable, either of the two boundary
conditions given in Equations (8.1-42) or (8.1-43) applies. These boundary conditions apply to
both state A and state B, and are, therefore, self-adjoint.

To establish the desired reciprocity relation, we first apply the complex frequency-domain
reciprocity theorem of the time convolution type Equation (7.4-7) to the total wave fields in the
states A and B, and to the domain 9® occupied by the scatterer. For a penetrable scatterer this
yields

J. Vi [ 2800 (5,5) = 5P ()0 (5,5)] A =0, (8.2-50)
xe0 D’

since in the interior of the scatterer the total wave field is source-free. For an impenetrable
scatterer, Equation (8.2-50) holds in view of the boundary conditions upon approaching oD’
via D%, In Equation (8.2-50) we substitute

AA’ A}_{AIA ASAA1A+{)SA} (8_2-51)
and
(3297 = (™ + 59 +955) . (82-52)

Next, the complex frequency-domain reciprocity theorem of the time convolution type is
applied to the incident wave fields in the states A and B and to the domain D°. Since the incident



238 Acoustic waves in fluids
wave fields are source-free in the interior of the scatterer and the embedding is self-adjoint in
its acoustic properties, this leads to

AlA

J. [P0 (w5) ~ 5P 0650 A )] dA = 0. (8.2-53)
xeoD*

Finally, the complex frequency-domain reciprocity theorem of the time convolution type is
applied to the scattered wave fields in the states A and B, and to the domain D" Since the
embedding is self-adjoint in its acoustic properties and the scattered wave fields are source-free
in the exterior of the scatterer and satisfy the condition of causality, this leads to

J v [P )0 ) - B Pl ws)] dA = 0. (8:2-54)
x€0D°

From Equations (8.2-50)~(8.2-54) we conclude that
J V|50 5) + P A 0,8)0, B ()
xe€0D*

AsB

— P Bas)DSAws) - p B,s)p A, 5)]da=0. (8.2-55)

However, on account of Equations (8.2-32) and (8.2-33), (8.2-35)—(8.2-40), (8.2-41) and
(8.2-42), and (8.2-44)—(8.2-49) we have

J. V[ B 5000 P 0,8) — B, 505 (x,s)]dA
xe0

@S

= J‘ [ PXH A(x s)V -P BA; A(x,s)] b(s) exp(—sBx,/c) dA
x€0D*

=~(sp)" P Pb(s)p A"

and

(-B.s) (8.2-56)

As;B

f Vi [ BP0 (55) = B A )08 00,5)] A
X€0D

s

= J‘ [ 5™ B(x S)V -P Aﬂns: B(x,S)] a(s) exp(—sagx/c) dA
xe0D*

=—(sp) " Pa(s)p P (as) . | (8.2-57)

Equations (8.2-55)—(8.2-57) lead to the desired reciprocity relation for the far-field scattered
wave amplitudes:
PPb(5)p N (=Bs) = PAa(s)p P (-as) (8.2-58)
Atthis pointitis, again, elegant to express the linear relationship that exists between the acoustic
pressure far-field scattered wave amplitude and the incident wave field, both in state A and in
state B. To this end, we write, in accordance with Equations (8.2-28) and (8.2-29)
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pIA=(&s) = PRas)S M a,s) (8.2-59)
and
pEPEs) = PPh)SP(EBs) , (8.2-60)

where § A and § B are the confi gurational complex frequency-domain acoustic pressure far-field
scattering coefficients. Substitution of Equations (8.2-59) and (8.2-60) in Equation (8.2-58)
yields

PBPAb(s)a(s)S A(=B.as) = PP Ba(s)b(s)S B(~a B.5) . (8.2-61)
Taking into account that Equation (8.2-61) has to hold for arbitrary values of P2, PP, 4(s) and
b(s), we end up with

$%-Bas) =5 -aps) (8.2-62)

as the final expression of the complex frequency-domain reciprocity property under considera-
tion.

In atheoretical analysis, the reciprocity relations derived in this section serve as an important
check on the correctness of the analytic solutions, as well as on the accuracy of numerical
solutions to scattering problems. Note, however, that the reciprocity relations are necessary
conditions to be satisfied by the scattered wave field (in the far-field region), but their
satisfaction does not guarantee correctness of a total analytic solution or a certain accuracy of
a total numerical solution. In a physical experiment, the redundancy induced by the reciprocity
relations can be exploited to reduce the influence of noise on the quality of the observed data.

References to the earlier literature on the reciprocity relations of the type discussed in this
section can be found in De Hoop (1960).

Exercises

Exercise 8.2-1

To what form does Equation (8.2-27) reduce if a(f) = b(f) and pA=pBy (Hint: Use the fact that
the resulting indentity has to hold for any pulse shape and employ the causality of the scattered
wave.)

Answer:

1Ajee 1Bjoo
pYT B =p T (-a) .

Exercise 8.2-2
To what form does Equation (8.2-58) reduce if d(s) = l;(s) and PA = pPB?

Answer:

2 83A 00 ~ 8;Bje0
PYVTBs) =" " (-a,s) .
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Exercise 8.2-3

Show that Equation (8.2-62) follows from Equation (8.2-31) by taking the time Laplace
transform.

8.3 Far-field scattered wave amplitude reciprocity of the time correlation
type

In this section we investigate the reciprocity relation of the time correlation type that applies
to the far-field scattered wave amplitude reciprocity for plane wave incidence upon an
acoustically penetrable or impenetrable object. The scattering configuration shown in Figure
8.1-1 applies. Two states (A and B) in this configuration are considered. In state A, a uniform
plane acoustic wave that propagates in the direction of the unit vector a is incident upon the
scattering object; in state B, a uniform plane acoustic wave that propagates in the direction of
the unit vector B is incident upon the scattering object. It will be shown that a certain relation
exists between the far-field scattered wave amplitudes in states A and B (Figure 8.3-1).

The corresponding relationships in the time domain and in the complex frequency domain
will be derived separately below.

Time-domain analysis

In the time-domain analysis, the incident uniform plane wave in state A is taken as

P AV = (P2 VA a( - agx o), (8.3-1)
with
A A
vi=vPla,, (8.3-2)

in which Y is given by Equation (8.1-7). In the far-field region, the scattered wave in state A is
represented as

Ao 53Aj 00 /"
A vs;A}(x,t)_{ps VN ) (E e~ Ixe)
o dr|x’|

[1+00x17Y)]

as [x’|—e with x'=x|&, (8.3-3)

in which, on account of Equations (8.1-22)—(8.1-27),

PP = pa, 0 A 1 Tl g oY A (8:3-4)
and
vi;A;oo - (pc)—l §rPS;A;°°, (8.3-5)

with
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Figure 8.3-1 Configuration for the far-field scattered wave amplitude reciprocity of the time
correlation type.

@ OTA= (g = J 3™ t + Ex lc) dA (8.3-6)
xedD*
and
e A= = J At + Exslc) dA \ (8.3-7)
x€dD* ,
in which (note the orientation of v,,)
A =y A ~ (8.3-8)
and
ASA =y pSi. (8.3-9)
Similarly, the incident uniform plane wave in state B is taken as
(P8 vB) = (PBvB)b(e - Bxylc) (8.3-10)

with
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vB=ypBs . (8.3-11)
In the far-field region, the scattered wave in state B is represented as

PP €t = Ixle)

;B _sB,. , n-1
,V x50 = 1+0(x
PP powy [1+00x1™)]
as |x|—oee with x'=|x'|&, (8.3-12)
in which, on account of Equations (8.1-22)—~(8.1-27),
P = p3, 0B g 5 2B (8.3-13)
and
iBjoo -1 iBjeo
VT = (pe) & p, (8.3-14)
with
B En= | ag" B+ Exlc) dA (8.3-15)
xe0D*
and
oY B(g ) = Bt +Epxlc) dA, (8.3-16)
xe0D*

in which (note the orientation of ,,,)

ag"B =y 5B (8.3-17)
and
B = v pSB. (8.3-18)

If the scatterer is penetrable, its acoustic fluid properties in state B are assumed to be the
time-reverse adjoint of the ones pertaining to state A. If the scatterer is impenetrable, either of
the two boundary conditions given in Equations (8.1-3) or (8.1-4) applies. These boundary
conditions apply to both state A and state B, and are, therefore, time-reverse self-adjoint.

To establish the desired reciprocity relation, we first apply the time-domain reciprocity
theorem of the time correlation type (Equation (7.3-7)) to the total wave fields in the states A
and B, and to the domain D*® occupied by the scatterer. For a penetrable scatterer this yields

j i [CoB™ T i) + C0, (PP i) dA =0, (8.3-19)
xedD*

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
scatterer, Equation (8.3-19) holds in view of the boundary conditions upon approaching 9°
via D% . In Equation (8.3-19) we substitute

{pA,vﬁx} - {pi;A +pS;A,vir;A _H,i;A} (8.3-20)

and
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PPy = (™ +p P +05By (83-21)

Next, the time-domain reciprocity theorem of the time correlation type is applied to the incident
wave fields in the states A and B and to the domain D®. Since the incident wave fields are
source-free in the interior of the scatterer and the embedding is time reverse self-adjoint in its
acoustic properties, this leads to

I U [CP A TR 0) + C, 0, (03 Axn]da=0. (8.3-22)
xe0D*

Finally, the time-domain reciprocity theorem of the time correlation type is applied to the
scattered wave fields in the states A and B and to the domain D%, Since the embedding is time
reverse self-adjoint in its acoustic properties, and the scattered wave fields are source-free in
the exterior of the scatterer and satisfy the condition of causality, this leads to

J- [C (p t(vm )7x»t) + C (Jt(ps;B)vvpsr;lA;x;t)] dA
xe0D*

=lim,_,., j U [CP™A TR + C 0t x0)] da (8.3-23)
xe.S(O,A)

where $(0,4) is the sphere of radius 4 with its centre at the origin O of the chosen reference
frame. From Equations (8.3-19)—(8.3-23) we conclude that

LA B A i;B
J V[ CoPA TR )s,0) + Cu (0™ T, 0B s,
xe0D*

+ GO ) + C0,(p"P) iR xn] da

+1imA_,wj b [CUP S T30 )80 + GO, (P viten)dA =0, (8.3-24)
xe.S(oA)

However, on account of Equations (8.3-1) and (8.3-2), (8.3-4)—(8.3-9), (8.3-10) and (8.3-11),
and (8.3-13)—(8.3-18) we have

J Vi [CoP™ AT + C (3,0 ),m,xt)]

J j o [P Vi + PRV )| b - B~ 1) A
t'e xedD*

= j b(t” 1) dt”J- [Pt + Boxs Vi + PRVER et + Box o)) da
t"eR, xc0D*
=p PP J' b(t” ~ O [p (8] ds” (8.3-25)
t"eR

and

By ;A LA B
J- Vm [Ct(Jt(pS )7V:n ;x,t) + C:(Pl ’ J,(an );xyt)] dA
xedD*
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= J df’J- Vi [ps;B(x,t’ - t)V,f +P Avf,",B(x,t’ -~ t)] a(t’ - agxg/c) dA
reR o xedD®

= j a(t”) dt” J. V[Pt + axgle = Vi + PAVER (et + agx fe - 1)] dA
=4 xedD*
=plpA J. a@),[p B (e - 1) dr”. (8.3-26)
tllex‘

Furthermore, we have

i Ay (5B By .
limy_,.. f i [CLP™ S L0500 + Ci0, (™) )| dA
xe5(0,4)

=@M | | & [PATE W ES 1)+ p B E Y - AT E )] A
t'eR, &eQ
= @) ()™ dt’j P E gy - dA, (83-27)
t'eR. &ef2

where Q is the sphere of unit radius with its centre at 0. Equations (8.3-24)—(8.3-27) lead to
the desired reciprocity relation for the far-field scattered wave amplitudes:

p"IP B J- b(t” _ t)It [pS;A;D"(ﬂ,tﬂ)} dt”
tIIGR‘

+p TP A_[ a1 [p™ (@ - 1)) de”
I”ER_

=—@a’p)” | o J PN @ T -1 dA (8:3-28)
t'eR. &eQ

At this point it is elegant to express the linear relationship that exists between the far-field

scattered wave amplitude and the incident wave field, in both state A and state B. Substitution

of Equations (8.2-28) and (8.2-29) in Equation (8.3-28) and rewriting the convolutions and the

correlation, we obtain

PBPAJ b(t” - 1) dt” J a S Bat” 1) dr
t"eR, t'er.

+pApB J. a(t”) dt” J- b()LSBas” —t—1)adr
t"e t

R ‘eR.
=—(87%) 'pApPB j dr J- [ j at)SAEx-1)dr
TER, &eQ t'eR.
j b(")SB(Er—1—1")de"|dA, (8.3-29)
I”EK
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or

pBpA J‘ a(t’) dt’ J bLSABat+ ¢ —t)dr”
t'eR t"eR.

+phpB J a(t’) dt’ J. b(t")N,SBa Bt~ 1" - 1) de”
teR, t"eR

=—(8n2c)"PAPBf a(t) dt'J. b(t") dt”
ter. t"eR,

J [ J SAEr-1)SBEr-1t~1") dr} dA. (8.3-30)
&e 1€R. )

Since Equation (8.3-30) las to hold for arbitrary values of PA, P8, a(t) and b(¢), we end up with

LS AB.a.) +1,5B(a,B~) = -(8r%c) [ j SAEDSBEr—1)dr|dA (8.3-31)
1<0] TER,

as the final expression of the reciprocity relation under consideration.

Complex frequency-domain analysis

In the complex frequency-domain analysis, the incident uniform plane wave in state A is taken
as

(554954 = (PAYV M) expsagxle), (83-32)
with
VrA= YP Aar’ (8.3-33)

in which Y is given by Equation (8.1-7). In the far-field region, the scattered wave in state A is
represented as

ASiA asAy L, 4 5;A 00 4 514500 ex —S'X’UC "—
(B5A 55400 = (55405457 g0y SRy | oo
47)x’| :
as |x’|oe with x"=|x'|&, (8.3-34)

where, on account of Equations (8.1-59)—(8.1-64), ‘
PN = spB O 4 (51)E B A (83-35)

and
‘/;rS;A;‘” —_ (pc)"lé-r ﬁ S;A;O"’ (8'3-36)
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with
Ao ASIA
A== | 95 0ns) exp(sé,xylc) dA
xe0D*
and
£ 0f A0 7 SiA
B A (g 5) = ; 3f A (x,5) exp(sEx,/c) dA
xe0D*

in which (note the orientation of v,,)
a AS;. A — Vr{)rs A
and

akaA__VﬁSA'

Similarly, the incident uniform plane wave in state B is taken as

{ﬁlB AIB} = {P V }b(s) exp(——sﬂsxs/c) s
with
VrB =YP Bﬂr .

Acoustic waves in fluids

(8.3-37)

(8.3-38)

; (8.3-39)

(8.3-40)

(8.3-41)

(8.3-42)

In the far-field region, the scattered wave in state B is represented as

{ASB ASB}(x S)__{[)\SBOOASBN (g ) Eg Slxl/C)

47lx’|
as x| e with x"=|x|&,

where, on account of Equations (8.1-59)~(8.1-64),

BB = sp 2T 1 (o)), S B
and
5555 = (ocy g, 5B,
with
qgaqs:B;m( Es) = oG 5B (x,5) exp(s&;x,/c) dA
xeaa)
and
dngfS;B;w(g,s) = 0 fks;B(x,S) exp(sEgxs/c) dA
x€0D*

in which (note the orientation of ,,,)
~8;B ~s;B
0§ =v,

and

[1+00x17h)

(8.3-43)

(8.3-44)

(8.3-45)

(8.3-46)

(8.3-47)

(8.3-48)
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Af P = v p P (8.3-49)

If the scatterer is penetrable, its acoustic fluid properties in state B are assumed to be the
time-reverse adjoint of the ones pertaining to state A. If the scatterer is impenetrable, either of
the two boundary conditions given in Equations (8.1-42) or (8.1-43) applies. These boundary
conditions apply to both state A and state B, and are, therefore, time reverse self-adjoint.

To establish the desired reciprocity relation, we first apply the complex frequency-domain
reciprocity theorem of the time correlation type Equation (7.5-7) to the total wave fields in the
states A and B, and to the domain ©° occupied by the scatterer. For a penetrable scatterer this
yields

j V[ B8 068) + 5 P (05)m () |dA =0, (8.3-50)
xedD*

since in the interior of the scatterer the total wave field is source-free. For an impenetrable
scatterer, Equation (8.3-50) holds in view of the boundary conditions upon approaching oD*
via 0% In Equation (8.3-50) we substitute

{I;A, A} {AlA ASA’{)\;A+§"SA} (8.3-51)
and
{ﬁB’A } {plB A 8B A1B+{\)SB} (8.3-52)

Next, the complex frequency-domain reciprocity theorem of the time correlation type is applied
to the incident wave fields in the states A and B and to the domain D°. Since the incident wave
fields are source-free in the interior of the scatterer and the embedding is time reverse
self-adjoint in its acoustic properties, this leads to

J- um[ A, 5)05B 0e,-s) + p B, s)ﬁ‘A(x,s)]dA=o. (8.3-53)
x€0D

s

Finally, the complex frequency-domain reciprocity theorem of the time correlation type is
applied to the scattered wave fields in the states A and B and to the domain D%, Since the
embedding is time reverse self-adjoint in its acoustic properties and the scattered wave fields
are source-free in the exterior of the scatterer and satisfy the condition of causality, this leads
to

J V[ B 5050 B 0m5) + 5V () ) dA
xed D’

=1imA_,mJ‘ Ve[ B 08000 ims) + P () ) dA (8.3-54)
xeS(0 A)
where $(0,4) is the sphere of radius 4 with its centre at the origin O of the chosen reference

frame. From Equations (8.3-50)—(8.3-54) we conclude that

A8 A

J Vs [ B A8 )im5) + A ) (i)
xe0D*

+ 5B —s)0 s + BB e-s)0 )] A
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=1immw'[ V[ A Yo (eims) + 5 5P 0em5)0 A s)] dA (8.3-55)
xe5(0,4)

However, on account of Equations (8.3-32) and (8.3-33), (8.3-35)—(8.3-40), (8.3-41) and
(8.3-42), and (8.3-44)—(8.3-49) we have

j V[ B 520500, (0,m8) + B 0ms)0 )] dA
x€0D

S

= I V[ 552 ) Vi + P53 A0e,s)] Bl-s) exp(sBxs/c) dA
xeo D
= (sp) P o) " (Bs) (8.3-56)
and

J V[ 5P ms)0p ) + B A0 0,ms)| dA
xe0D*

= J. Vi [13 S;B(x,ms)V,,’:‘ +P A\?,fl;B(x,—s)} a(s) exp(—sagx /c) dA
xe0D*
= (o) P a(9)p P () . | (8.3-57)

Furthermore, we have

limy_,.. = j b [B)0 m5) + B P5)0n ) | a4
xe$(0,4)

=@M | Ea [P NESTRE ) + BIPE ey A E ) dA
&eQ

=@ poy | pIES P BE-s) dA, (8.3-58)
&en

where £ is the sphere of unit radius with its centre at 0. Equations (8.3-55)—(8.3-58) lead to
the desired reciprocity relation for the far-field scattered wave amplitudes:

PPb(-5)p ¥4 (Bs) + Pa(s)p "2 (a,~s)
=—@n) sty | PR ES PR E s dA. (8.3-59)
£

At this pointitis, again, elegant to express the linear relationship that exists between the far-field
scattered wave amplitude and the incident wave field, in both state A and state B. Substitution
of Equations (8.2-59) and (8.2-60) in Equation (8.3-59) yields

PEPAN=s)d(s)S A(B,a.s) + P AP Ba(s)b(-5)S B(a,Bi~s)
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=82 sle) PAPBa)b(=s) | §AE.as)SBEB-s)dA. (8.3-60)
&eQ

Taking into account that Equation (8.3-60) has to hold for arbitrary values of P2, PB, 4(s) and
b(—s), we end up with

§2Bas) +8Ba,p-s)=—8nc) |  $HE.as)SPEps)dA (8.3-61)
&eQ

as the final expression of the complex frequency-domain reciprocity property under considera-
tion.

In a theoretical analysis the reciprocity relations derived in this section serve as an important
check on the correctness of the analytic solutions as well as on the accuracy of numerical
solutions to scattering problems. Note, however, that the reciprocity relations are necessary
conditions to be satisfied by the scattered wave field (in the far-field region), but their
satisfaction does not guarantee correctness of a total analytic solution or a certain accuracy of
a total numerical solution. In a physical experiment, the redundancy induced by the reciprocity
relations can be exploited to reduce the influence of noise on the quality of the observed data.

Exercises

Exercise 8.3-1

Show that Equatfon (8.3-61) follows from Equation (8.3-31) by taking the time Laplace
transform.

8.4 An energy theorem about the far-field forward scattered wave
amplitude

A special case arises when in the reciprocity relations of the time correlation type derived in
Section 8.3, states A and B are taken to be identical. Since the superscripts A and B are then
superfluous, they are omitted in the present section.

Time-domain version of the energy theorem

In the time-domain version of the theorem we start from Equation (8.3-19), take state Aidentical
to state B, and consider the result at zero correlation time shift. Furthermore, for the case of an
acoustically penetrable scatterer, the fluid occupying the scattering domain D% is no longer
assumed to be time reverse self-adjoint, i.e. it may have non-zero acoustic losses. Thus, we are
led to consider the expression
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J VmCt(pJ;(vm);x,O)dA=-f VilCr (T (D), %,0) dA
x€0D* xedD*

= J. dt’J’ U [P Wt dA = -W?,  (8.4-1)
t'eR x€0D*

where
W= j' P3(t")dr (8.4-2)
t'eR.
is the total acoustic energy absorbed by the scatterer and
Pt =- J Vo [ DGO YV (,t)] dA (8.4-3)
x€0D’

is the instantaneous acoustic power absorbed by the scatterer. (Note that the minus sign in front
of the integral sign on the right-hand side of Equation (8.4-3) is due to the fact that power
absorption by the scatterer is effected by an inward power flow, while v,, points away from the

scatterer.)
Next, we substitute in the right-hand side of Equation (8.4-3) the relation

v} = (P +p W +05) (8.4-4)

and observe that the incident wave dissipates no net energy upon traversing the domain D*
occupied by the scatterer when this domain has the acoustic fluid properties of the (lossless)
embedding. Hence, with

Ply=~ J V[P Whur')| dA (8.4-5)
xedD*

as the instantaneous acoustic power that the incident wave carries across 0D° towards the
domain D%, we have

wi= J. Pitdr =0. (8.4-6)
Y'eR.
Furthermore, with the uniform incident plane wave
PN = (PV,alt - agc) , (84-7)
for which
V,=YPa,, (8.4-8)

we have, upon using Equations (8.1-22)—(8.1-27),

J' dt'J V[Pt Wi 0t) + PGt it dA
t'eR. xe0D°

=plp J a@)L, p*(ar) dr'. (8.4-9)
t'eR.
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Finally, the fotal acoustic energy carried by the scattered wave across 0D° towards the
embedding is introduced as

w? =j Pi("dr, (8.4-10)
teR
where
Pt = V[P0 W t')]| dA (8.4-11)
xedD’

is the instantaneous acoustic power that the scattered wave carries across 9" towards the
embedding.
Combining Equations (8.4-1)—(8.4-6) and (8.4-9)—(8.4-11) we end up with

Wisws=—plp J' at), p> (a,t’) dt’. (8.4-12)
teR.

Equation (8.4-12) is the desired time-domain energy relation. It relates the sum of the acoustic
energies absorbed and scattered by the object to the scattered wave amplitude in the far-field
region, for observation of this wave in the direction a of propagation of the incident plane wave,
i.e. in the “forward” direction, or “behind” the scatterer (Figure 8.4-1).

1t is noted that for a lossless acoustically penetrable scatterer we have W2 = 0. Also, W? =
0 for an impenetrable scatterer, since the right-hand side of Equation (8.4-3) then vanishes in
view of the pertaining boundary conditions (Equation (8.1-3) or Equation (8.1-4)). Note also

Figure 8.4-1 Acoustic scattering configuration for the energy theorem about the far-field forward
scattered wave amplitude.
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‘that in the derivation of the result we have nowhere used the linearity in the acoustic behaviour
of the scatterer. Therefore, Equation (8.4-12) also holds for non-linear acoustic scatterers,
subject to the condition, of course, that the embedding retains its linear properties.

Complex frequency-domain version of the energy theorem

In the complex frequency-domain version of the theorem we start from Equation (8.3-50) and
take state A identical to state B. Furthermore, for the case of an acoustically penetrable scatterer
the fluid occupying the scattering domain D° is no longer assumed to be time reverse
self-adjoint, i.e. it may have non-zero acoustic losses. Thus, we are led to consider the
expression

i— j Vi [ DO5)D,,(6,-5) + P(,~85),(%,5)] dA = =P %(s) , (8.4-13)
xe0D*

where the symbol on the right-hand side and the factor % on the left-hand side have been chosen
because of the equivalence with the time-averaged acoustic power flow for time-harmonic wave
fields (for which s = jw, with weR). It must be emphasised, however, that P 3(s) is not the time
Laplace transform of P (¢) as given by Equation (8.4-3).

In the left-hand side of Equation (8.4-13) we now substitute the relation

(B9} = (p'+p01+05), (8.4-14)
and observe that
1 Al Al Al Al .
7 J‘ Vin [p (XS, (=) + p (x,—-s)vm(x,s)] dA=0, (8.4-15)
xe0D*

since the fluid in the embedding has been assumed to be time-reverse self-adjoint.
Furthermore, with the uniform incident plane wave

{p ‘, f),i }x,s) = {P,V,}a(s) exp(—sagx,/c) , (8.4-16)
for which
V,=YPa,, (8.4-17)

we have, upon using Equations (8.3-59)—(8.3-64),

i—j V[ 55)0506=5) + B (=)D L0,5) + P 0650 0r,s) + B 8D mr—s)| dA
xeoD*

1 - A A §,00 A A §loo
=7 (60 'Plats)p ¥ (@s) ~ d(-5)p (@) . (8.4-18)
Finally, we introduce the quantity

P(s) =% J Vin | 6500065 +  *(e-5)P5(x,5)] dA (8.4-19)
x€0D*
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that is, for time-harmonic waves, associated with the acoustic power carried across 0D° by the
scattered wave, where it must be emphasised that P %(s) is not the time Laplace transform of
P %(t) as given by Equation (8.4-11).

Combining Equations (8.4-13)—(8.4-15), and Equations (8.4-18) and (8.4-19), we end up
with

Bs)+B(s)= -——(sp) Lp[a(s)p 5 (a,-s) — a(-5)p “(a5)] (8.4-20)

Equation (8.4-20) is the desired complex frequency-domain energy relation. It relates the sum
of the quantities P 3(s) and P 5(s) to the scattered wave amplitude in the far-field region for
observation of this wave in the direction of propagation of the incident plane wave, i.e. in the
“forward” direction, or “behind” the scatterer.

Equation (8.4-20) can be rewritten in a more elegant form by using the linear relationship
between the far-field acoustic pressure scattered wave amplitude and the incident wave field.
Using Equations (8.2-59) and (8.2-60), we have

Ps)+ PS(s)=— % (s0)"'P %a(s)i(~s) [S(a,a,~s) - S(aa,s)]. (8.4-21)
Introducing the complex frequency-domain quantity

§ite) =L (o) P Zats)d 4-22

) =3 (pe) ™ PZa(s)ic-s) (84-22)

that is associated with the acoustic power flow density in the incident plane wave, Equation
(8.4-21) takes the form

Bo(s)+ PS(s)=— — € s is) [S(@,a,-s5) - S(@,a,5)] . (8.4-23)

Now, from Equations (8.4 13), (8.4-19) and (8.4-22) it is clear that P (s) = P (—s), P(s) =
PS(=s)and §i(s)=$ l(—s), respectively, which is in accordance with Equation (8.4-23).

It is noted that for a lossless acoustically penetrable scatterer we have P2=0. Also, P2=0
for an impenetrable scatterer, since the left-hand side of Equations (8.4-13) vanishes in view
of the pertaining boundary conditions (Equations (8.1-42) or Equation (8.1-43)).

For imaginary values of s, i.e. for s = jo, with weR, Equation (8.4-23) is known as the
extinction cross-section theorem. Note that in the complex frequency-domain result (contrary
to the corresponding time-domain result) the linearity in the acoustic behaviour of the scatterer
has implicitly been used since the space-time wave quantities have been represented, through
the Bromwich integral, as a (linear) superposition of éxponential time functions.

References to the earlier literature on the subject can be found in De Hoop (1959, 1985).

Exercises

Exercise 8.4-1

Consider in the complex frequency-domain energy relations (Equations (8.4-20) and (8.4-23))
the case s = jw. Observe that the quantity P %(s) as introduced in Equation (8.4-13), the quantity
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S(s) as introduced in Equatlon (8. 4 19) and the quantlty S’(s) as introduced in Equation
(8.4-22) satisfy the property P 3(s) = P3(~s), P 5(s) = P3(=s) and § i(s) = § (—s) in the common
domain of regularity of both the left-hand and the right-hand sides. The latter property certainly
holds for imaginary values of s and hence P?(jw), P (jw) and §'(jw) are real-valued for
weR. Furthermore, let

6%(s) = P(5)/ss) (8.4-24)
denote the complex frequency-domain absorption cross-section of the scattering object and
%) =Bs)/Is'(s) (8.4-25)

its complex frequency-domain scattering cross-section. Note that ¢ %(s) = & *(—s) and 7 5(s) =
6 5(=s) in the common domain of regularity of both the left-hand and the right-hand sides. The
latter property certainly holds for imaginary values of s and hence & (jw) and J %(jw) are
real-valued for s = jo, with weR.. Show that Equation (8.4-20) leads to

¢ Im| Pa(-jw)p ¥ (a,jw)]

6°(jw) +6 (jo) =— v (8.4-26)
P la(jw)l
and Equation (8.4-23) to
Aa, . as,, (€ 4 .
6%(jw) + 6 *(jo) = — Im [S(a,a,jw)| . (8.4-27)
w

Equations (8.4-26) and (8.4-27) are known as the extinction cross-section theorem (De Hoop
1959). (Note: Extinction cross-section = Absorption cross-section + Scattering cross-section.)

8.5 The Neumann expansion in the integral equation formulation of the
scattering by a penetrable object

In this section we discuss the Neumann expansion in the integral equation formulation of the
acoustic scattering problem. The expansion is an analytic procedure that applies to a penetrable
scatterer. The procedure is iterative in nature and is expected to converge for sufficiently low
contrast of the scatterer with respect to its embedding.

Time-domain analysis

In the time-domain presentation of the method we start from Equations (7.9-5) and (7.9-20)—
(7.9-23), which, through combination of the time convolutions, we write for the present
configuration as

pt) = pi(x’, ) — {B,Ct(Gp T4 — x0(2), pyx’,x,0)

xeD*

+3CAGH i, ~ POy X )| AV forxex’, 8.5-1)
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and

v (x5 = vi,(x’, £ — J [B,C,(G,WI, x S — x0(b), Dix5x,t)

+ 8,C,(G,‘:{/,/4ksr, r — POy ,',vr/;x’,x,t)] v forx’eg’. (8.5-2)

For x’e D%, Equations (8.5-1) and (8.5-2) constitute a system of linear integral equations of the
second kind to be solved for {p,v,} for xeD® and re® , and with {p ,v,} as forcing terms. To
solve these equations analytically, an iterative procedure, known as the Neumann expansion,
is set up. The successive steps in this procedure will be labelled by integer superscripts enclosed
in brackets ([...]). The procedure is initialised by putting

p[O] = pi for x’e?f, (8.5-3)
[0] = vr for X'eR’. 8.5-4)
Next, the procedure is updated through

P =- J [8,C(GP% 1 — wd(e),p" )
xeD*

+3,C/(GH s v — pO@Sy i x| AV for x'ex’ and n=0,12, etc. (8.5-5)

and

W 1y =~ j [8,C/(G x° - wd(t),p ™5’ x,0)
xeD*

+8,Ct(G,‘:{', ks,’r, — PO , v, Lex t)] dv forx'ex’ andn =0,12, etc. (8.5-6)

As can be inferred from these updating equations, the terms of order [n+1] can be expected to
be “smaller” than their counterparts of order [n], provided that the contrast quantities are “small
enough”, On account of this, it can be conjectured that for sufficiently small contrast of the
scatterer with respect to its embedding the procedure is convergent and we can put

p=Y p"  forxer’, (8.5-7)
=¥ M forxer’. (8.5-8)

Assuming that the series on the right-hand sides of Equations (8.5-7) and (8.5-8) are uniformly
convergent, it can easily be proved that {p,v,} as defined by these equations indeed satisfy
Equations (8.5-1) and (8.5-2). To this end we observe that

- J ‘[atc, (GPq, x® = xd(t), p;x',x,t)+ 0,C, {G,?f,,u,fr‘ r = PO ,»,vr/;x’,x,t) ] dv
xeD*
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J- xeD’

9C|G

PT oS — (), z p["],x'xtJ

+8,C [le, K ~p5(t)6k'r,z Vr ,x x,} dv
n=0
=-3 | [3Gi(67x° - 1000w )+ 0.C. (GE st - 000y, )] av

Ny

=2 " =3 e - =pwin -pley  forrer’,  859)
n=0 m=0

and

- J. [B,C, [Grvq, % = x(t), p;x’,x,t]+ o.C, (Gr‘:ir,y,f'_ r = PO(O)Sy ,f,v,:;x',x,tﬂ dv
xeD*

-[ xeD*

+9,C,

9Ct|G

Y9 S — K1), 2 p[”],x'x,J

dv

rk/,/,tk/ , - pd(t)ékl r/,z V£ ],x/x, ]

—z j ,C, Y g — xé(t),p["],x'x, )+ B,C,( ,{g,uk/ + — k(1)0y vr Ly, x,t]] dv

_Z Wl iy = 2 Wi 00 = v =iy forxex’,  (8.5-10)

where Equations (8.5-3)—(8.5-8) have been used and the interchange of the summations with
respect to n and the integrations with respect to x is justified by the assumed uniform
convergence of the series expansions. Equations (8.5-9) and (8.5-10) are evidently identical to
Equations (8.5-1) and (8.5-2), and, hence, the expansions given in Equations (8.5-7) and (8.5-8)
indeed solve the problem.,

Complex frequency-domain analysis

In the complex frequency-domain presentation of the method we start from Equations (7.9-28)
and (7.9-43)—(7.9-46), which are combined to
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Fs) =5 - | (6P %9 - 5] o)

+ G5 [E8, (05) — POy | dpes)} v forx'ex, 8.5-11)
and
5 =diws) - | {6190 750 — 5] Bws)
xeD*
A Vf ’ &S A ’ 3
+ G W) [E8 (5) — spdyg | Pptes)f AV forxer. 8.5-12)

For x’e D%, Equations (8.5-11) and (8 5 12) constitute a system of linear integral equations of
the second kind to be solved for {p,V,} for xeD®, and with { Pt v‘} as forcing terms. The
Neumann procedure to solve these equations in initialised by putting

=5 forwer’, (8.5-13)
ﬁr[O] = ﬁri for x'e'&s. (8.5-14)

Next, the procedure is updated through

R COES j (67,9 [0 - s1c] p )
xeD*

+ G0, x.5) £ (0.5) - 5y | 0,[!‘](x,s)} dv forx’e®> andn=0,1,2, etc. (8.5-15)
and

3 o) = - J {6190 x5) [17005) - s ] 5 M)
xeD*

+ GArf{f (xx,5) [E 1 r (%6,5) = spdy ,'] G,L"](x,s)} dv for ¥'e®> andn=0,1,2, etc. (8.5-16)

Assuming that the procedure is convergent, we can put

I|

p Z 5] forx’eﬂ(?, (8.5-17)
n=0

=39 ™ forxe®’. (8.5-18)
_0

Assuming that the series on the right-hand sides of Equations (8.5-17) and (8.5-18) are
uniformly convergent, it can easily be proved that { 5,,} as defined by these equations indeed
satisfy Equations (8.5-11) and (8.5-12). To this end we observe that

-J. {6709 [°0e) = 1] ) + GFlewi ) [ €2, () - s, o} av
xeD*
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=— J- {ép U’ x,s) [ﬁ Sx,) — sx] i 5 Me,s)
xeD’

n=0

+ G ) [£8,e5) ~ spdg ] X 04 o)} av
n=0

==Y | {67xs [55ws) - 5 5 Mons)
n=0 xeD*

+ (A?,f,f (x'x,s) [C K, 1 (%,8) — sp0g »] (x, s)}

oo

=Y 5= Y, 5w - 00 = pe) - i) forxe®  @519)
n=0 m=0
and

- J {érvq(xﬁx,s) [ﬁ S(x,5) — sx] plx,s) + CA},‘% (x,x,s) [f ks,, r (%,5) — 50y r,] ﬁr,(x,s)} dv
xeD*

=- j G, x,5) [7°0s) - 51 S p M)
xeD*® n=0

+ G ) [6, 59 - 500, ] 398 o)l av
n=0

oo

=_ Z {é,vq(xﬁx,s) [ﬁ Sx,5) — sx] M x,s)

S
n=0 xeD

+ GHowns) (€8 ) — sp0y |98 ()} av

2 v "+1](xs) 2 v[m](xs) ﬁr[ ](x,s) =P,(x,5) — vr(xs) for ¥'e®’, (8.5-20)
n=0 m=0

where Equations (8.5-13)—(8.5-18) have been used and the interchange of the summations with
respect to n and the integrations with respect to x is justified by the assumed uniform
convergence of the series expansions. Equations (8.5-19) and (8.5-20) are evidently identical
to Equations (8.5-11) and (8.5-12), and, hence, the expansions given in Equations (8.5-17) and
(8.5-18) indeed solve the problem.

The construction of convergence criteria for the Neumann expansion is complicated by the
singularities of the Green'’s functions. For the simpler case of the scattering problem associated
with the scalar wave equation, a convergence criterion has been derived (De Hoop, 1991).

The nth term in the Neumann expansion is also known as the nth Rayleigh-Gans—-Born
approximation.
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8.6 Far-field plane wave scattering in the first-order Rayleigh-Gans-Born
approximation; time-domain analysis and complex frequency-domain
analysis for canonical geometries of the scattering object

In this section the far-field plane wave scattering in the first-order Rayleigh-Gans—-Born
approximation is further investigated. In particular, closed-form analytic expressions are
derived for the far-field scattered wave amplitude associated with the plane wave scattering by
a homogeneous object in the shape of an ellipsoid, a rectangular block, an elliptical cylinder of
finite height, an elliptical cone of finite height, or a tetrahedron. A structure consisting of the
union of the listed objects can, in the first-order Rayleigh—-Gans—Born approximation, be dealt
with by superposition.

Time-domain analysis

In the time-domain analysis, the expressions for the scattered wave amplitude in the far-field
region in the first-order Rayleigh—Gans-Bom approximation follow, with the use of Equations
(8.1-1) and (8.1-2), (8.1-5)«8.1-7), (8.1-16)—(8.1-19), and (8.5-3) and (8.5-4) as (Figure 8.6-1)

P(En) = —Pc 2 [AXEle - ale) + EALEle - ale)a), (8.6-1)
and

V(& = (po) P TENE, 8.6-2)
where

Aun=| dav J' ) (x5, )i 82| 9Fat — ¢ + ugxy) d (8.6-3)

xeD* t'=0

and

Al ) = J dv J B (148 6" p = 8, 8t | 8Falt = 1 + ugxy) d. (8.6-4)

xeD* =0

Note that these scattered wave amplitudes depend in their directional characteristics only on
the difference &/c — a/c between the slowness &/c in the direction of observation & and the
slowness a/c in the direction of propagation a of the incident uniform plane wave. This property
only holds in the first-order Rayleigh—Gans—Born approximation and is not exact.

For a homogeneous object, Equations (8.6-3) and (8.6-4) reduce to

A = r (2 =o@)| rue - 1) ar, (8.6-5)
=0

and

A i) = J' [V = 84,80 Tt — ) o, 866)
t'=0



260 Acoustic waves in fluids

incident
plane wave

T T T T T~
&£ = scattered wave field >~ N

Figure 8.6-1 Far-field plane wave scattering in the first-order Rayleigh-Gans—Born approximation.

in which
r@n=\| ofa(t+uzx)dv (8.6-7)
xeD*

is the time-domain shape factor corresponding to the domain D® occupied by the scatterer. From
Equation (8.6-7) it immediately follows that for £/c = a/c, i.e. for observation “behind” the
scatterer or “forward scattering”, we have

Y ©0,0)=V°da(), (8.6-8)

where V* is the volume of the scatterer. Note, again, that Equation (8.6-8) only holds in the
first-order Rayleigh—Gans-Born approximation, and is not exact.

Below, we derive closed-form analytic expressions for the shape factor ¥ = Y'(u,t) for a
number of canonical geometries of the scatterer.

Ellipsoid
Let the scattering ellipsoid be defined by (see Equation (A.9-21) and Figure 8.6-2)

D° = {xex’ 0 < (xy/ay)* + (5y/a)" + (x3/a) < 1. (8.69)

Its volume is
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V= (4n/3)aaa; . A (8.6-10)
In the integral on the right-hand side of Equation (8.6-7) we introduce the dimensionless
variables

y1=x1lay, y,=xlas, y3=xs3las (8.6-11)

as the variables of integration. In y space, the domain of integration is then the unit ball
{yer3; 0<y% + y% +y%<1). The integration over this unit ball is carried out with the aid of
spherical polar coordinates {r,0,9}, with 0<r<1, 0<0<zm, 0S¢ <27, about the vector
u1a1i(1) + upayi(2) + uza3i(3) as polar axis. Then

UK = U1X] + UnXy + Usx3 = (Wyay)yy + (uaay)yy + (U3asz)y; = Ur cos(6) , 8.6-12)
where

U=[100) + (932)” + (u303)’] 30, (8.6-13)
while

dV = ajayayr’sin(6) dr d6 dg . (8.6-14)

The integration then runs as follows:

1 2 4 2 9
Y1) = ajayaz J- rodr J‘ sin(6) d@ J d;a [t + Ur cos(6)] dg
=0 0=0 $=0

. 1 b4
=2maya,a3 J. ” drj 92alt+ Ur cos(6)] sin(6) do
r=0 6=0

1
= 2na1a2a3U_l J. [B,Za (t+ Ur)-o,a(t - Ur)] rdr
r:o

incident
Elc - plane wave

Figure 8.6-2 Scatterer in the shape of an ellipsoid.
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=2na,a,a; {U Zat+U)-U> [La(t+ U) - La(®)]

+Ua(t - U) + U [La(t - U) - La()]}
=@V U at+ U+ at- V)] - U™ [LaGt+ U) - La(t- U)]}.  (86-15)

By using the Taylor expansion of the right-hand side about U = 0 and taking the limit U40, it
can be verified that the result is in accordance with Equation (8.6-8).

Rectangular block

Let the scattering domain be the rectangular block defined by (see Equation (A.9-14) and Figure
8.6-3)

'—'{fog y—a1<xi<ap, —ap <x2<a2, —a3<Xx3 <d3} . (86-16)
Its volume is given by
V*=8ajaa; . (8.6-17)

In the integral on the right-hand side of Equation (8.6-7) we introduce the dimensionless
variables

Y1 =x1/a1, ) =x2/a2, Y3 =x3/a3 (8.6-18)

as the variables of integration. In y space the domain of integration is then the cube
{yex3; —l<y;<1, -1<yy<1, —1<y3<1} with edge lengths 2. With

Uy =way, Uy=uyay, Uz=uzas, (8.6-19)
furthermore, we have
UgXg = U1X] + UpXy + UsXs
= (a)yy + (upap)ys + (u3a3)y3 = Uy y; + Upyr + Usys, (8.6-20)
while
dV = aaya3 dy; dy, dy; . (8.6-21)
The integration then runs as follows:

1 1 1

2

T (u,t) = ayaza; J. d)@J dsz- dra(t+ Upy + Upyy + Usys) dy
3 =-1 y2=—-1 yl=—1

1 1
-1
= (11612613(]1 J‘ dy3 J' [B,a(t + Ul +U2y2 + U3y3)
Y3 =-1 _y2=—1
= 0,a(t— Uy + Usys + Uz y3)] dy,

1
-1
=a1aa3(U1Uy) [a(t+ Uy +Uy + Uz y3) —a(t + Uy — Uy + Us y3)
y3=-1

—a(t— Uy + Uy + Usy3) +a(t = Uy = Uy + Uz y3)] dys
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incident
plane wave

1

Figure 8.6-3 Scatterer in the shape of a rectangular block.

=a1a2a3(U1U2U3)—1 [I,a(t+ Uy +U, + U3) - I,a(t+ Ui+Uy- U3)
—La(t+ Uy - Uy + Uz) + La(t + Uy — Uy — U3) = La(t = Uy +U, + Us)
+ I,a(t— Ul + U2 - U3) + I,a(t— Ul - U2 + U3) - I,a(t - Ul - U2 - U3)] . (8.6-22)

Special cases occur for either U;—0, Up—0, and/or U3—0. The corresponding limits easily
follow from Equation (8.6-22) by using the pertaining Taylor expansions on the right-hand side.
In particular, it can be verified that for U;—0 and U,—0 and U3—0 the result is in accordance
with Equation (8.6-8).

Elliptical cylinder of finite height
Let the elliptical cylinder of finite height be defined by (Figure 8.6-4)

2 ={xer’; 0<:dlal +5/ah<1, ~h<x;<h}. (8.6-23)
Its volume is
V®=2naah . (8.6-24)

In the integral on the right-hand side of Equation (8.6-7) we introduce the dimensionless
variables

y1=x1/a1, yo=%lay, y3=x3/h (8.6-25)

as the variables of integration. Iny space, the domain of integration is then the Cartesian product
of the unit disk 42 = {(y;,y)€R% 0<y? + y4< 1} and the interval {y;€R ; =1<y3<1} along
the axis of the cylinder. Then, with

Ul =uiag, Uz = Upay, U3 = u3h N (8.6—26)
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Figure 8.6-4 Scatterer in the shape of an elliptical cylinder of finite height.

we have
WXy = UXq + UpXy + UzXy
= (w1a1)y1 + (aa2)yz + (ush)y; = Uyyy + Upyp + Uz y3 (8.6-27)
while
dV=ayah dy; dy, dy; . (8.6-28)
The integration then runs as follows:

1

2

dy; d)’zj dra(t+ Uy y; + Upyp + Usys) dys
y5=1

Y (u,t) = ajarh J.
(yl:y2)GAz

1

= a1aphUs J- [0ia(t+ Uyyy + Upy, + Us)
@1».?2)542

- a,a(t + Uiy +Uzyp - U3)] dy; dy2 . (8.6-29)

Next, we observe that
2
da(t + Uy + Usyp 2 Us) = 0;La(t + Uy yy + Uy, = Us)
= (UL + UD '@, + 0 Lalt+ Upyy + Upyp 2 Us)  for UL +U; 20, (8.6-30)

Now, applying Gauss’ divergence theorem to the integration over 42, we obtain

2
I 2@; +0) )La(t + Uyyy + Upyy £ Us) dyy dy,
())liyZ)EA

= -[ 2@18},1 +y28y2)I,a(t + Uy + Uy, £ Uz) do
(y]_vyz)ec
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= J. 2(U1y1 + U2)’2)l1(t+ U1y1 + U2y2 T U3) do, (8.6-31)
Ouyr)eC

where do is the elementary arc length along the unit circle C? that forms the closed boundary
of the unit disk 42, and where we have used the property that the unit vector along the normal
to 2 pointing away from A2 is given by v =y i(1) + y5i(2). In the integral on the right-hand
side of Equation (8.6-31) we introduce the polar coordinates {r,¢}, with r = 1 and 0<¢ <2m,
about the vector Uyi(1) + U,i(2) as polar axis, as the variables of integration. This yields

J Ui+ Upyyp)a(t+Upyy + Uyy, £ Us) do
(ylvy’),)ec

2
= J. U cos(¢p)a[t+ U cos(¢p) + Uz)] dg, (8.6-32)
¢=0
where
U=UE+UH"20. (8.6-33)
Collecting the results, we end up with
a1 [
Y(ut) = ayahU " Us I cos(g) { a[t + U cos(p) + Us)]
¢=0
—alt+Ucos(@) - Us)}do . (8.6-34)

Special cases occur for Ul0 and/or Us—0. The corresponding limits easily follow from
Equation (8.6-34) by using the pertaining Taylor expansions on the right-hand side. In particular,
it can be verified that for U10 and Us—0 the result is in accordance with Equation (8.6-8).

Ellitical cone of finite height

Let the elliptical cone of finite height be defined by (Figure 8.6-5)

D*={xex’; 0<la} + Blay <5/, 0<xs <h}. (8.6-35)
Its volume is

VS =majayhl3 . (8.6-36)

In the integral on the right-hand side of Equation (8.6-7) we introduce the dimensionless
variables

y1=x1/ay, yp=xplay, y3=x3/h (8.6-37)

as the variables of integration. In y space, the domain of integration is then { yer3; 0< y% + y%
<3, 0<y3<1}. Then, with

Ul =uay, U2 = Uras, U3 = u3h s (8.6-38)



266 Acoustic waves in fluids

incident
plane wave

Figure 8.6-5 Scatterer in the shape of an elliptical cone of finite height.

we have

UgXs = U1X1 + UpXy + UzX3

= (u1apy1 + (pa2)y2 + (u3h)ys = Uy y1 + Uzy2 + Usys (8.6-39)
while |
dV=ajayh dy| dy, dy; . (8.6-40)
The integration then runs as follows:
Y'(W.t) = ajarh J. 1 dy, j 92a(t+ Uy y, + Upy, + Usys) dy; dy,, (8.6-41)
¥5=0 O1y)ed(yy)

where 42(y3) = {(y1,y,)€R%; 0<y? + y3<)3} is the circular disk of radius y;. With a reasoning
similar to that used in Equations (8.6-30)—(8.6-32), we obtain

2
J dra(t+ Uy y + Upyy + Usys) dyy dyp
0’1»)’2)6420’3)
-1 e
=U }'3J cos(¢)dat+ Uyscos(g) + Usys]dg , (8.6-42)
¢=0
in which
U=UE+UH">0. (8.6-43)
Furthermore,

1
'[ y30sa [t + U y3cos(9) + Usys) dys
)’3=0
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-1
=[Ucos(¢) + Us] a[t+ U cos(¢) + Us]

—[U cos(d) + Us] > {Ta[t + U cos(@) + Us] - La() b (8.6-44)

Collecting the results, we end up with

2
Y (u,6) = ajahU ™! J cos(¢) {[U cos(¢) + U3]_1a [t+ U cos(¢) + Us]
¢=0

—[U cos(@) + Us] > { a1+ U cos(@) + Us) - La(}} dg (8.6-45)

Special cases occur for U0 and/or U3—0. The corresponding limits easily follow from
Equation (8.6-45) by using the pertaining Taylor expansions on theri ght-hand side. In particular,
it can be verified that for U0 and U;—0 the result is in accordance with Equation (8.6-8).

Tetrahedron
Let the tetrahedron be defined by (see Equation (A.9-17) and Figure 8.6-6)

3 3
p°=|xer®;x= ADx(D, 0<iD<1, Y MD=1}, (8.6-46)
=0 =0

in which {x(0),x(1),%(2),x3(3)} are the position vectors of the vertices and {A(0), A(1),
A(2),A(3)} are the barycentric coordinates. Its volume is (see Equations (A.10-29) and
(A.10-33))

VS =det [x(1) — x(0),x(2) — x(1),%(3) — x(2)] /6 . (8.6-47)

In the integral on the right-hand side of Equation (8.6-7) we replace 4(0) by 1-A1) -
A(2) — A(3) and introduce {A(1),A(2),A(3)} as the (dimensionless) variables of integration. In
{A(1),A4(2),A(3)} -space the domain of integration is then {0<A(1)<1, 0<A2)<1 —A(1),
0<A3)<1-A(1) - A(2)}. Then, with

U =ux(l) forl=0,1,2,3, (8.6-48)
we have
ugxs = A0)U0) + A(1)UQ) + A2)U(2) + A(3)U(3)
=[1- A1) - A2) - A(3)] U(0) + A(1)U() + AQ)U(2) + A(3)U(3)
= U(0) + [U(1) - UO)] A1) + [UQR) - UO)] A2) + [UB) - UO)] AB3) ,  (8.6-49)
while, with the Jacobian (see Equation (A.10-31))

W) _ s (8.6-50)

AMDAR)AG)]

the elementary volume is expressed as



268 Acoustic waves in fluids

incident
&l . . plane wave

/. ‘ x(3)

x(2)

x(0)

;r(l)

Figure 8.6-6 Scatterer in the shape of a tetrahedron (3-simplex).

dv=6V"* di(1) dA(2) dA(3) . (8.6-51)
After some lengthy, but elementary, calculations it is found that

I"(u,t)=6Vs{ 1 L L Lapr+UO)

U@) - U(1) U©)-U(2) U©)-UQA)

1 1 1
¥ U(l) - U0) U(1)-UQ) U(l)-U®B)

1 1 1
+
U@2)—-U) U@2)-Ul) UE2)-UB3)

La [t + UQ1)]

Lat+ U@2))

P 1 L 1ap+ U(3)]}. (8.6-52)

U@3)-U@0) UB)-UQ1) UB)-U2)

In a symmetrical fashion, this result can be written as

3
1 1

Tw,t) = 6V° 2 1
o uh-UuWy U —-Uuk U -UlL)

Lat+UWD)], (8.6-53)

where {I,J,K,L} is a permutation of {0,1,2,3}.

Special cases occur for U(I) = U(J) and/or U(I) = U(K) and/or U(I) = U(L). The easiest way
to arrive at the expressions for the relevant cases is to redo the integrations that need
modifications.
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Complex frequency-domain analysis

In the complex frequency-domain analysis, the expressions for the scattered wave amplitude
in the far-field region in the first-order Rayleigh~Gans-Born approximation follow, with the
use of Equations (8.1-45)—(8.1-48), and Equations (8.5-13) and (8.5-14) as (Figure 8.6-7)

PY=(Es) =—Pc [ AMElc - ale,s) + AL Ele - ales)a,), (8.6-54)
and
352 s) = (po) " P (ESE, (8:6-55)
where
A¥(u,5) = 5°4(s) j [x S(e,8) e — 1] exp(suzx;) AV, (8.6-56)
xeD’
and
Al (u,5) = 5°(s) J [ﬁ,:r(x,s)/p - 6,(,,} exp(sugx,) dV . (8.6-57)
xeD*®

Note that these scattered wave amplitudes depend in their directional characteristics only on
the difference &/c — a/c between the slowness &/c in the direction of observation & and the
slowness a/c in the direction of propagation a of the incident uniform plane wave. This property
only holds in the Rayleigh—Gans—Born approximation and is not exact.

For a homogeneous object, Equations (8.6-56) and (8.6-57) reduce to

A¥us) = s%a(s) (£ sy - 1) Fw,s) (8.6-58)
and
Al s) = 50(s) [ (5 p = 8] T(ws) (8.6-59)
in which |
I'(u,s) =I exp(su,x;) AV (8.6-60)
xeD*

is the complex frequency-domain shape factor corresponding to the domain 2° occupied by the
scatterer. From Equation (8.6-60) it immediately follows that for £/c = a/c, i.e. for observation
“behind” the scatterer or “forward scattering”, we have

70,5)= V", (8.6-61)

where V* is the volume of the scatterer. Note, again, that Equation (8.6-61) only holds in the
first-order Rayleigh—~Gans-Bom approximation, and is not exact.

Below, we shall derive for a number of canonical geometries of the scatterer, closed-form
analytic expressions for the shape factor g (,5).
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Figure 8.6-7 Far-field plane wave scattering in the first-order Rayleigh~Gans-Born approximation.

Ellipsold
Let the scattering ellipsoid be defined by (see Equation (A.9-21) and Figure 8.6-8

D ={xe®’; 0<(mlap’ + (xylar)’ + (xylas) < 1} (8.6-62)
Its volume is

V= (4n/3)ajazas . (8.6-63)

In the integral on the right-hand side of Equation (8.6-60) we introduce the dimensionless
variables

= x1/a1, Y= X2/l12, 3= JC3/(23 (86-64)

as the variables of integration. In y space, the domain of integration is then the unit ball
{ye®3; 0<y? +)3 + y3 < 1}. The integration over this unit ball is carried out with the aid of
spherical polar coordinates {r,0,¢}, with 0<r<1, 0<0<m, 0<¢<2m, about the vector
w1a1i(1) + uyayi(2) + usazi(3) as the polar axis. Then

UsXs = UgXy + UpXy + UsXy = (Uya1)yy + (Uaay)y, + (Uzas )y = Ur cos(6) , (8.6-65)

where
1

U=[(a))” + (pa,)” + (u303)’] 50, (8.6-66)
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Figure 8.6-8 Scatterer in the shape of an ellipsoid.

while
dV = ayapayr’sin(6) dr d0 d¢ . (8.6-67)

The integration then runs as follows:

R 1 2 n 2
Y'(u,5) = ajaa; j r er. sin(6@) d()J exp [sUr cos(6)] d¢
r=0 0=0 $=0

1 k.4
=2ma a3 J- 7 dr J. exp [sUr cos(8)] sin(6) d6
r=0 6=0

1
= ZJiralaza3(sU)_1 J. [exp(sUF) — exp(—sUr)] r dr
=0

1
= 2na1a2a3(sU)_2 [exp(sU) +exp(—sU) — j [exp(sUr) + exp(—sUr)] dr
r=0

= 2aaan(sU) [exp(sU) + exp(—sU)- (U)”" [exp(sU) ~ exp(-sV)}}

s sU cosh(sU) — sinh(sU)
60’

By using the Taylor expansion of the right-hand side about U = 0 and taking the limit U40, it
can be verified that the result is in accordance with Equation (8.6-61).

(8.6-68)

=3V
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Rectangular block

Let the scattering domain be the rectangular block defined by (see Equation (A.9-14) and Figure
8.6-9)

Ds = {xe’](3 s —a1<x1<a;, —ap <x2<a2' —az<xj <a3} . (86-69)
Its volume is given by
Vs = 861102613 . (86-70)

In the integral on the right-hand side of Equations (8.6-60) we introduce the dimensionless
variables

y1=x1/ay, Yo =xlay, y3=1x3la; (8.6-71)

as the variables of integration. In y space the domain of integration is then the cube
ye®?; -1 <y1<1, =1<y,<1, —1<y3<1} with edge lengths 2. With

Ui =way, Uy=way, Us=usas, (8.6-72)
furthermore, we have
UXs = UpXy + UpXy + UzXy
= (mapy + (aaz)ys + (3a3)y3 = Uryy + Uz yr + Uz ys, (8.6-73)
while
dV = aya,a; dy; dy, dys . (8.6-74)

The integration then runs as follows:

1 1 1
I'(u,s) = ayayay J‘ dys J- dmj exp [s(Uyy1 + Uz yp + Uz y3)] dyy
y3 = —1 y2=—1 y1=-—l

1

exp(sUzy7) dyzj exp(sU; y1) dy;
h2t =-1

1 1
=a1a2a3 j exp(sU3 y3) dys j
y3=-1 y=-1
exp(sUs) —exp(-sU3) exp(sU,) —exp(-sU) exp(sU) — exp(—sU))
SU3 SU2 SUl

=aayas

- sinh(sU3) sinh(sU,) sinh(sU;)
SU3 SU2 SU] .

(8.6-75)

Special cases occur for either U;—0, U,—0, and/or U3—0. The corresponding limits easily
follow from Equation (8.6-75) by using the pertaining Taylor expansions on the right-hand side.
In particular, it can be verified that for U;—0 and Uy—0 and U3—>0 the result is in accordance
with Equation (8.6-61).
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Figure 8.6-9 Scatterer in the shape of a rectangular block.

Elliptical cylinder of finite height

Let the elliptical cylinder of finite height be defined by (Figure 8.6-10)
D ={re®’; 0</a] +5lap<1, ~h<x;<h}.

Its volume is

VS = 2:m1a2h .

(8.6-76)

(8.6-77)
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In the integral on the right-hand side of Equation (8.6-60) we introduce the dimensionless

variables

y1=x1/ay, y,=xlay, y3=x3/h

(8.6-78)

as the variables of integration. Iny space, the domain of integration is then the Cartesian product
of the unit disk 42 = {(yl,yz)exz; OSy% + y%< 1) and the interval {y;€®; —~1<y3<1} along

the axis of the cylinder. Then, with

Uy =way, Uy=uyay, Us=uszh,
we have

UgXg = U1X] + UpXy + UzXs

= (uyay)y; + (upap)y, + (ush)ys = Uy y1 + Upyp + Usys,

while

dV = aja,h dy; dy, dy; .
The integration then runs as follows:

?(u,S) = a1a2h J

1
dy; dyzj exp [s(Uyy, + Uy, + Uszy3)l dys
0’1’)’2)‘5412

y=-1

(8.6-79)

(8.6-80)

(8.6-81)
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Figure 8.6-10 Scatterer in the shape of an elliptical cylinder of finite height.

= aIaZh.[ (sU3)™ fexp [s(U1y1 + Upyy + U3)]
Opy)ed’

~exp [s(Uyy1 + Upy, — Us)l} dyp dys . (8.6-82)
Next, we observe that
2.2 2212 2
exp [s(U1y1 + Upyp £ U3)l = (s"UT +57Us) (9, +9), ) exp [s(Uyy; + Upyp = Us)]
for U+ US #0.  (8.6-83)

Now, applying Gauss’ divergence theorem to the integration over A2, we obtain

2,2
J z(ayl +0, ) exp[s(U y, + Upy, £ Us)] dy, dy,
()’1»)?2)‘54
=J' ) 019y, +20y,) exp[s(Uyy; + Uy, = Us)] do
0’11}’2)6(:

=J ) S(Ulyl + U2y2) CXP[S(UI i+ U2y2 + U3)] do, (8.6-84)
Opyec

where do i 1s the elementary arc length along the unit circle ¢ that forms the boundary of the
unit disk 42 and where we have used the property that the unit vector along the normal to ¢2
pointing away from 4?2 is given by v = y;i(1) + y,i(2). In the integral on the right-hand side of
Equation (8.6-84) we introduce the polar coordinates {r,¢}, with » = 1 and 0<¢ <2, about
the vector Uyi(1) + U,i(2) as polar axis, as the variables of integration. This yields

J , U111+ Uay,) expls(Uy y1 + Uz y, £ Us)l do
(yl,yz)GC
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2
= J U cos(¢) exp[sU cos(@) + sUz] d¢ = 2xU exp(xsU3)I(sU) , (8.6-85)
¢=0

where I; is the modified Bessel function of the first kind and of order 1 (Abramowitz and Stegun,
1964) and

U=+ UD"%20. (8.6-86)
Collecting the results, we end up with
T'(u,5) = 27aya0hs U " U5 1, (sU) [exp(sUs) — exp(—sUs)]
=2V 20" U5 1 (sU) sinh(sU3) . (8.6-87)

Special cases occur for U0 and/or U;—0. The corresponding limits easily follow from
Equation (8.6-87) by using the pertaining Taylor expansions on the right-hand side. In particular,
it can be verified that for U10 and U;—0 the result is in accordance with Equation (8.6-61).

Elliptical cone of finite height
Let the elliptical cone of finite height be defined by (Figure 8.6-11)

D ={rex’; 0<}/a} + Bl <3N, 0<xy<h}. (8.6-88)
Its volume is
V®=mayahl3 . (8.6-89)

In the integral on the right-hand side of Equation (8.6-60) we introduce the dimensionless
variables

Y1 =x1/a1, y2=x2/a2, y3 =X3/h (86-90)

as the variables of integration. In y space, the domain of integration is then {ye:lf;
0<y? +y3<y3, 0<y3<1}. Then, with

Ui =uay, Up=uyay, Uz3=ush, (8.6-91)
we have
UgXg = U1Xy + UpXy + UaXy
= (uapy + (wa@)yy + (ush)yy = Uyyy + Upyp + Uz ys s (8.6-92)
while
dV=ayah dy; dy, dy; . (8.6-93)
The integration then runs as follows:

1
T'(u,s) =d102’lJ. dys J exp [s(Uyy1 + Upys + Usy3)l dy; dyp . (8.6-94)
¥5=0 87

3 1>)’2)€A2()’3)

where 4%( O3 ={01, y2)ER?;0< y2+y3< y%} is the circular disk of radius y;. With a reasoning
similar to the one as used in Equations (8.6-83)—(8.6-85), we obtain
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Figure 8.6-11 Scatterer in the shape of an elliptical cone of finite height.

I expls(Uyy; + Uy, + Usys)] dy; dy,
(}’1:)’2)542()’3)
-1 e
=(sU) 'y, J cos(¢) exp[s(Uy;cos(@) + Usy3)] dg , (8.6-95)
$=0
in which
U=WZ+UH”>0. (8.6-96)
Furthermore,

1
J y3 expls(Uyscos(@) + Uz ys)] dyz
¥5=0

1

exp[s(U cos(g) + U3)] - exp[s(Uyz cos(®) + Usy3)] dy;
}’3=0

= [s(U cos(@) + Us)] ™"

= [s(U cos(@) + Us)] ~expls(Ucos(g) + Us)]
~ [3(U cos(@) + U3)] ™ {expls(Uys cos(@) + Uy)] - 1. (8.6-97)

Collecting the results, we end up with
A -1 2
Y'(w,5) = 6V (sU) cos(¢)
¢=0

y i exp [s(U cos(¢) + Us)] _ exp [s(U cos(g) + U)] - 1
2| s(Ucos(g) + Us) (U cos(g) + Us)*

(8.6-98)

o
<
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Special cases occur for U0 and/or U3—0. The corresponding limits easily follow from
Equation (8.6-98) by using the pertaining Taylor expansions on the right-hand side. In particular,
it can be verified that for U10 and U3—0 the result is in accordance with Equation (8.6-61).

Tetrahedron .
Let the tetrahedron be defined by (see Equation (A.9-17) and Figure 8.6-12)

3 3
D ={xex’; x= 3 Ax(D), 0<AD<1, Y AD=1}, (8.6-99)
=0 ‘ =0

in which {x(0),x(1),%(2),x(3)} are the position vectors of the vertices and {A(0), A(1),
A(2),A(3)} are the barycentric coordinates. Its volume is given by (see Equations (A.10-29) and
(A.10-33)) '

V* = det[x(1) — x(0),%(2) — x(1),x(3) = x(2)] /6 . (8.6-100)

In the integral on the right-hand side of Equation (8.6-60) we replace A(0) by 1-A(1) -
A(2) - A(3) and introduce {4(1),4(2),A(3)} as the (dimensionless) variables of integration. In
{A(1),A(2),A(3)} space the domain of integration is then {0<A(1)<1, 0<A2)<1 —A(1),
0<A(3)<1-A(1) - A(2)}. Then, with .

UD=ux(D) forI=0,1,2,3, (8.6-101)
we have
ugx, = AO)U(O) + AU + AR2)UR) + A3)UA)
=[1-A(1) = A2) — A(3)] U(0) + AU +AUQ) + X(3)U(3)
=U(0) + [UQ1) - U(0)] /1(1)‘+ [U(2) - UO)] A22) + [UB) - UO)] A3) , (8.6-102)
while, with the Jacobian (see Equétion (A.10-31))

_ Oborpvs) 6V°, : (8.6-103)
a [A(1),A(2),A(3)]
the elementary volume is expressed as
dv=6V° di(1) dA(2) dA(3). (8.6-104)
After some lengthy, but elementary, calculations it is found that
T(us) = 6VS;~‘3 { 1. 1 : 1 exp[sU(0)]
U©) - U(1) U©0)-U2) U©O)-U@A)
+ 1 1 1 explsU(1)]
i U@l) - U0) UQ)-U2) U1)-U@B3)
po—L - L explsUQ)]
U@R)-U@©O) UR)-UQ1) UR)-URB)

+ 1 1 1
U@B3)-U0) UB)-U1) UB)-UQ2)

exp[sU(3)]} . (8.6-105)
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incident
plane wave

’ x(3)

x(2)

x(1)

Figure 8.6-12  Scatterer in the shape of a tetrahedron (3-simplex).

In a symmetrical fashion, this result can be written as

3

Pus)=6VSss™ 2 1 1 L oplsUM],  (8.6-106)
o v -Uu@W) U -UKk) Ui)-UuwL)

where {I,J,K,L} is a permutation of {0,1,2,3}.

Special cases occur for U(I) = U(J) and/or U(I) = U(K) and/or U(I) = U(L). The easiest way
to arrive at the expressions for the relevant cases is to redo the integrations that need
modification.

(Note: Since the first-order Rayleigh—-Gans—Born approximation is additive in the domains
occupied by the scatterers, the scattering by an arbitrary union of canonical scatterers follows
by superposition. In particular, the result for the tetrahedron is the building block for scatterers
in the shape of an arbitrary polyhedron.)

The first-order Rayleigh-Gans—Born scattering finds numerous applications both in the
forward (direct) and the inverse scattering theory. References to the earlier literature can be
found in Quak et al. (1986).

Exercises

Exercise 8.6-1

Show that Equation (8.6-60) follows from the time Laplace transform of Equation (8.6-7).
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Exercise 8.6-2

Show that Equation (8.6-61) follows from the time Laplace transform of Equation (8.6-8).

Exercise 8.6-3

Show that Equation (8.6-68) follows from the time Laplace transform of Equation (8.6-15).

Exercise 8.6-4

Show that Equation (8.6-75) follows from the time Laplace transform of Equation (8.6-22).

Exercise 8.6-5

Show that Equation (8.6-87) follows from the time Laplace transform of Equation (8.6-34).

Exercise 8.6-6

Show that Equation (8.6-98) follows from the time Laplace transform of Equation (8.6-45).

Exercise 8.6-7

Show that Equation (8.6-106) follows from the time Laplace transform of Equation (8.6-53).

Exercise 8.6-8

Show that for U0, Equation (8.6-15) becomes Equation (8.6-8). (In this case, u = 0.)

Exercise 8.6-9
Show that for U3—0, Equation (8.6-22) becomes
Y (0) = 2a,0,a5(U1 Uy) ™ [a(t + Uy +Usy) — a(t + Uy = Uy)
—a(t-Up+Uy) +a(t- Uy =Uyp)]. (8.6-107)

(In this case, u is parallel to the x;,x, plane.)

Exercise 8.6-10
Show that for Uy—0 and U3—0, Equation (8.6-22) becomes
Y1) = 4ayara3U;5 " [,a(t + Uy) — d,a(t — Uy . (8.6-108)

(In this case, u is parallel to the x; axis.)
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Exercise 8.6-11

Show that for U} —0, Up—0 and U3—>O, Equation (8.6-22) becomes Equation (8.6-8). (In this
case,u=0.)

Exercise 8.6-12
Show that for U0, Equation (8.6-34) becomes

Y'(t) = mayarhUs " [9,a(t + Us) - d,a(t - Us)]. ' (8.6-109)

(In this case, u is parallel to the axis of the cylinder.)

Exercise 8.6-13

Show that for U3—0, Equation (8.6-34) becomes

o .
Y (ut) =2aya,hU -1 J. cos(¢)d,a [t + U cos(¢)] dg . ' (8.6-110)
¢=0

(In this case u is perpendicular to the axis of the cylinder.)

Exercise 8.6-14

Show that for U0 and Uz—0, Equation (8.6-34) becomes Equation (8.6-8). (In this case,
u=0) ‘ ' '

Exercise 8.6-15

Show that for UL0, Equation (8.6-45) becomes
Y () = nayah (U3 [3,a(t + Us) = 2U5 a(t + Us))
+2U3° [La(t + Us) = La®]} (8.6-111)

(In this case, u is parallel to the axis of the cone.)

Exercise 8.6-16

Show that for U3—0, Equation (8.6-45) becomes )

2
Y'(ut) = ajahU -1 J- {[U cos(9) 1 -1 a(t + U cos(¢)) -
¢ .

— [U cos(@)] *[La(t + U cos(¢)) - La(t)]} cos(¢) dg . (8.6-112)

(In this case, u is perpendicular to the axis of the cone.)
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Exercise 8.6-17

Show that for {10 and U3—0, Equation (8.6-45) becomes Equation (8.6-8). (In this case,
u=0.)

Exercise 8,6-18

Show that for U(J)—U(I), Equation (8.6-53) becomes

Y(us)=6V* L 1 alt+ U]
U - UK) UI)-UL)

B R K N | alr+ (]
) - U VD - VD) U@ - UE) [0 - VD)

" D 70
[UK)-UWD)] "~ UK)-UL)

+ L L rar+umnl], (8.6-113)
[UL)-uml~ UL - UK)

where {I,J,K,L} is a permutation of {0,1,2,3}. (In this case,  is perpendicular to the edge

connecting the vertex x(J) with the vertex x(J).)

Exercise 8.6-19
Show that for U(J)—U(I) and U(L)—U(K), Equation (8.6-53) becomes

L (alt+ UM +alt+ UG
[UQ) - UK)]

2 (Lalt+ U] - Lalt+ UK, (8.6-114)
[U() - U(K)]

Yt =6V* [

where {I,J,K,L} is a permutation of {0,1,2,3}. (In this case, # is perpendicular to the edge
connecting the vertex x(I) with the vertex x(J), as well as perpendicular to the edge connecting
the vertex x(K) with the vertex x(L).)

Exercise 8.6-20

Show that for U(J)—U(I) and U(K)—U(I), Equation (8.6-53) becomes
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L dalr+u@) - L

— S U
Q) - U wa-va? !

Y'(ut)=6V* (

1

E— {I,a [t+ U] -Lalt+ U(L)]} , (8.6-115)
[UM - Um)]

where {I,J,K,L} is a permutation of {0,1,2,3}. (In this case, u is perpendicular to the plane
containing the triangle of which x(1), x(J) and x(K) are the vertices.)

Exercise 8.6-21

Show that for # = 0, Equation (8.6-53) becomes Equation (8.6-8).

Exercise 8.6-22
Show that for U10, Equation (8.6-68) becomes Equation (8.6-61).

Exercise 8.6-23
Show that for U3—0, Equation (8.6-75) becomes
sinh(sU,) sinh(sU;)

sU, sUy

Tus)=V> (8.6-116)

and show that the result follows from the time Laplace transform of Equation (8.6-107). (In this
case, u is parallel to the x;,x, plane.)

Exercise 8.6-24
Show that for U,—0 and U;—0, Equation (8.6-75) becomes
sinh(sU;)

sUy

and show that the result follows from the time Laplace transform of Equation (8.6-108). (In this
case, u is parallel to the x; axis.)

F(us)=Vv* (8.6-117)

Exercise 8.6-25

Show that for U;—0, U,—0 and U3—0, Equation (8.6-75) becomes Equation (8.6-61). (In this
case, u=0.)

Exercise 8.6-26
Show that for U10, Equation (8.6-87) becomes
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T(u,5) = 2ayazhs U3 'sinh(sUs) (8.6-118)

and show that the result follows from the time Laplace transform of Equation (8.6-109). (In this
case, u is parallel to the axis of the cylinder.)

Exercise 8.6-27
Show that for U3—0, Equation (8.6-87) becomes
F'(u,5) = dmayarhs U L (sU) (8.6-119)

and show that the result follows from the time Laplace transform of Equation (8.6-110). (In this
case, u is perpendicular to the axis of the cylinder.)

Exercise 8.6-28

Show that for U0 and Usz—0, Equation (8.6-87) becomes Equation (8.6-61). (In this case,
u=0.))

Exercise 8.6-29

Show that for U0, Equation (8.6-98) becomes
1 (u,5) = mayanhs {[w;‘ ~ 2052 + 25705 % exp(sUs) — 257" U3‘3} (8.6-120)

and show that the result follows from the time Laplace transform of Equation (8.6-111). (In this
case, u is parallel to the axis of the cone.)

Exercise 8.6-30

Show that for U3—0, Equation (8.6-98) becomes

21
T(us) = alazhs_zU -1 J {[U cos(¢)] —lexp [sU cos(¢)]
¢=0

— 57" [U cos(@)] 2 [exp(sU cos(¢)) — 11} cos(¢) dop (8.6-121)

and show that this result is the time Laplace transform of Equation (8.6-112). (In this case, u is
perpendicular to the axis of the cone.)

Exercise 8.6-31

Show that for U0 and U3—0, Equation (8.6-98) becomes Equation (8.6-61). (In this case,
u=0)
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Exercise 8.6-32
Show that for U(J)—U(I), Equation (8.6-105) becomes

U - UKy ul-Uul)

- ! 5 L + L L 5 s exp [sU()]
(U -UK1* v)-uw) UD)-UK) [UD)-UD]

T'(u,s) = 6VSs 2 H 1 L exp [sU(I)]}

+ 1 5 1 s Lexp [sUK)]
[UK)-UL)] " UK)-UL)

* : 2 : s exp [sUDL |, (8.6-122)
(U - Uum]* UL) - UKK)

where {I,J,K,L} is a permutation of {0,1,2,3} and show that this result follows from the time
Laplace transform of Equation (8.6-113). (In this case,  is perpendicular to the edge connecting
the vertex x(I) with the vertex x(J).)

Exercise 8.6-33
Show that for U()—U(l) and U(L)— U(K), Equation (8.6-105) becomes

f”(u,s) =6V ——————l———z {exp [sU(] + exp [sUK)]}
[UM - UK)]

-1
- B (exp [sUWD)] - exp [sU(L)]ﬂ, (8.6-123)
[U() - U(K)]

where {I,J,K,L} is a permutation of {0,1,2,3} and show that this result follows from the time
Laplace transform of Equation (8.6-114). (In this case, u is perpendicular to the edge connecting
the vertex x(I) with the vertex x(J) as well as perpendicular to the edge connecting the vertex
x(K) with the vertex x(L).)

Exercise 8.6-34
Show that for U(J)—U(I) and U(K)—U(I), Equation (8.6-105) becomes

F(us) = 6V —— exp [sUD] - ———1——2 exp [sU(D)]
u) - U(K) [UW) - UK)]

-1
+ -——L——3 {exp [sU(D)] - exp [sUD)]}|, (8.6-124)
(U - UK)]
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where {I,J,K,L} is a permutation of {0,1,2,3} and show that this result follows from the time
Laplace transform of Equation (8.6-115). (In this case, u is perpendicular to the plane containing
the triangle of which x(J), x(/) and ¥(K) are the vertices.)

Exercise 8.6-35
Show that for = 0, Equation (8.6-105) becomes Equation (8.6-61).
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