16

Plane wave scattering by an object in
an unbounded, homogeneous,
isotropic, lossless embedding

In this chapter, the simplest scattering configuration is investigated in more detail. It consists
of anunbounded, homogeneous, isotropic, lossless embedding in which a plane wave is incident
upon a scattering object of bounded extent. First, the reciprocity properties of the amplitudes
of the scattered waves in the far-field region are investigated. Next, an energy theorem
{(“‘extinction cross-section theorem”) is derived that relates the sum of the energies carried by
the scattered waves and the energy absorbed by the scattering object to the amplitude of the
scattered waves in the far-field region when observed in the forward scattering direction.
Finally, the first term in the Neumann solution to the relevant system of integral equations (the
so-called “Rayleigh—-Gans-Bormn approximation”) is determined for penetrable, homogeneous
scatterers of different shapes. The analysis is carried out in the time domain as well as in the
complex frequency domain.

16.1 The scattering configuration, the incident plane waves and the far-field
scattering amplitudes

The scattering conﬁguration consists of a homogeneous, isotropic, lossless embedding that
occupies the whole of %3, The elastodynamic properties of the embedding are characterised by
either its volume density of mass p and its Lamé coefficients /l and u, or its volume density of
mass p, l1ts compressional wave speed cp=[(A+ 2;L)/p]/2 and its shear wave speed
cs = (ulp) %, Here, P, 4, cp and cg are positive constants and A is a constant satisfying the
condition A > —(2u/3). The related stiffness is

Ad 6i,j+/4(6 0 +(§ aqt)

P‘Iv‘] Pi%q.j

and the compliance is

_~-1
Siipa=Cijpa-:
In the embedding, an elastic scatterer is present that occupies the bounded domain 2. The
boundary surface of D° is denoted by 02° and v is the umt vector along the normal to 9D*°

oriented away from D°. The complement of DU in &3 is denoted by D (Figure 16.1-1).
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Figure 16.1-1  Scattering object occupying the bounded domain ©* in an unbounded elastodynami-
cally homogeneous, isotropic, lossless embedding with volume density of mass p and compressional
wavespeed cp and shear wavespeed cg: (a) incident plane P-wave; (b) incident plane S-wave,
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Time-domain analysis

In the time-domain analysis of the problem, the elastodynamic properties of the scatterer are,
if the scatterer is an elastodynamically penetrable object, characterised by the relaxation
functions
S S S S
trijp.ad = Mirip.ad 1)

which are causal functions of time. The equivalent contrast volume source densities of
deformation rate and force are then given by (see Equations (15.9-18) and (15.9-19))

fe ==0,C (y.» ~ POy 5O Vyixt)  forxeD’, (16.1-1)
hi 1= 0,C; jpg = Sijpa®DiTp gty forxed’, (16.1-2)

in which the total elastic wave field {t,, ;,v,} is the sum of the incident wave field {, q,v,} and
the scattered wave field {t q,vr} (see Equation (15.9-5)). If the scatterer is elastodynamzcally
impenetrable, either of the two boundary conditions

1m0 Af . pgVmTp. g +ivt) =0 for xedD* (16.1-3)
or

limygv,(x + i) =0  forxedD’® (16.1-4)
applies.

For the incident wave we now take a uniform plane wave. This can be either a uniform plane
P-wave or auniform plane S Wave For the incident plane P-wave propagating in the direction
of the unit vector a® G.e. as as = 1) we have, on account of Equations (14.4-7), (14.4-13) and
(14.4-14),

{Tpgvr) = (Tyg Vi Ya (e = dxglep), (16.1-5)
with

cp=[(h+21)/p)", (16.1-6)

vE=@val, (16.1-7)
and (see Equation (14.4-10))

1} =5 (48, o V) + 2l VDol |, (16.1-8)

where ' () denotes the normalised pulse shape.
For the incident plane S-wave propagating in the direction of the unit vector a’d (ie.
asaS = 1) we have, on account of Equations (14.4-7), (14.4-15) and (14.4-16),

{7 ppvrt =17 ,q,V }a (t- asxs/cs) (16.1-9)
with
_ Y
cg=(ulp)’, (16.1-10)
avy =0, (16.1-11)

and (see Equation (14.4-10))
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Ty, =~Cs W@SV) +agvy), (16.1-12)

where a°(#) denotes the normalised pulse shape.
For an elastodynamically penetrable scatterer we use for the scattered wave the constrast
volume source integral representations (see Equations (15.9-20) and (15.9-21))

—rpq(x H= J C,( pq, ;i ,J,x x,t)+C,( o,k fks;x',x,t)]dV forx’eﬂt_3 (16.1-13)

and

Vi) = J. [CUGE b3 jet) + CUG Y fewxn)| AV for w'ek’ (16.1-14)

in which (see Exercise 15.8-9, with x and x’ interchanged)

p g ](x xt)=-Cp gy 1,]H(t)5(x —-X)- P Cpan er,m,i,jar: O LG, (%), (16.1-15)

qk(x xH=p C b On Gri(xix0) , (16.1-16)
rll(x xH=—p Ckm,, 9m Grpx'x0), (16.1-17)
,,k(x x=p B,G,,k(x,x,t) , (16.1-18)

with
, ot~ |x' —x|/cg)
¥ty = —————> 8,

4nc§ X" — x|

(t— |x"—xl|/cp)H(t - |x" - x|/cp)
47 |x" - x|

+3.9}

(t - &' = xlleg)H(t — ¥’ - xl/cs)

for |x’'—x|#0. (16.1-19)
47 |x’ - x|
Here, d,,, denotes differentiation with respect to x,,;.
In the far-field region, the expansion
| o VG = ep) | (g ) Gt = I ey)
{r Tp, qavr}(xvt)
4ncp Ix’| 4nc5 %]
x[1+0(¢1 )] as I¥l—ee with ¥ =|x'|E (16.1-20)
holds, where (see Equations (13.8-7)—(13.8-9))
s;P,oo 1y g f5Pyo -1 1P 00
(g t) =p a ¢ (5 t) + (pCP) Ckmz,]fma (prkz,] (g t) (161‘21)
Sy00 - 15,00 Iy 35500
V(8 = D@L S E ) + (0 Comy BT EN) (16.1-22)

in which (see Equations (13.8-2), (13.8-3) and (13.8-5), (13.8-6))

of PEn=ge | fimrenden av, (16.1-23)

xeD’
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& S (0 = (0,0 &80 J ftet+Exes) dv, (16.1-24)
and
r',‘k HEGOE grékJ. hit(xt + Ex lcp) dV (16.1-25)
xeD*
rhk DG =G &80 hi j(xt+ Egxgles) AV, » (16.1-26)
xeD*
while (see Equations (13.8-13)~(13.8-15))
T3P = cpl 16, G + 28, ) (16.1-27)
T = S VT + B, (16.1-28)

For an elastodynamically impenetrable scatterer the elastic wave field is not defined in the
interior D° of the scatterer and we have to resort to an equivalent surface source integral
representation that expresses the scattered wave field in the exterior D% of the scatterer in terms
of the wave field on the boundary surface dD° of D°. This representation is, on account of
Equations (15.12-38) and (15.12-39),

s ) th + s,
_Tp,q(xc Dy o8 (x) = [Ct(Gp,q,i, j’Ai, jnrY mvrvx,axat)
x€0D’

+CUCT B gty X wD|dA  for xe®  (16.1-29)
and

S vh L+ s
Vi(x D1 (x) = [Ct(Gr,i,j’Ai.j,n,r"’n"r"’x,’x't)
xedD’

+ CUG B p e gXoxD)| A for ¥er. (16.1-30)

Note that these expressxons have resulted from applying Equations (15.12-38) and (15.12-39)
to the domam D% exterior to the scatterer and that the unit vector along the normal is oriented
towards D° .

In the far-field region, the expansion given in Equation (16.1-20) holds, where, based upon
Equations (16.1-29) and (16.1-30), we have

VP ) = o 9,8 PEE D) + (pep) Comi End P E D) (16.1-31)
VS = p‘la cbaf S=E0) + (069 o End BT EN) (16.1-32)
in which
afs;P,oo — S
dsr (g,t) = ErEkJ- Bfk(x,t + (:,:SXS/CP) da, (16.1-33)
x€0D’

&Y S E = (6,4 - &,Ek)J. Afe(xt +Egxleg) dA, (16.1-34)
x€0D* '
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with
afks=—A?c-,m,p,qurps,q B (16.1-35)
and
ah P 0o S
rkt N €En= ErEkJ‘ Bh,-'j(x,t + ESXS/CP) dA, (16.1-36)
ea S
95?,}1?.55"”(5 D)= Orp— &£ oh; j(xt+ Egxgles) dA (16.1-37)
xe0D*
with
R} 1= AL jnp¥nVe (16.1-38)

while Equations (16.1-27) and (16.1-28) yield the far-field scattering amplitude for the dynamic
stress.

However upon applying Equations (15.12-12) and (15.12-19) to the incident wave field
r} and to the domain 2%, we have (note that the incident wave field is source-free in

{ q’v
o5
_T;.q(x” Dxps(x’) =— J- [C,( Gp.aijo Tj,n,r"n";;x,’x’t)
xe0D*
+C,(G ( q © Akmp gV rp» q';x’,x,t)] dA for x'e 17(3 (16.1-39)

and

VDY (X)) = —J. [ ,(Gr, J,A iy VXX, 1)
xed D’

+ CUGH Db pgtmiog®ord)]  for Xeg’ . (16.1-40)

Subtraction of Equation (16.1-39) from Equation (16.1-29) and of Equation (16.1-40) from
Equation (16.1-30) leads to

~Tp (X5 DX () + T o (%) 1 p5(x")
+ ot
=f [C'( i i, jn, VX %o1)
xe0D*
+CUG kB VTt XoH0) | dA for xe R (16.1-41)

and

V(DX 0¥ () = V¥, D pe(x)
vh +
=j [Ct(Gr,i,j’Ai,j,n,r' nvr';x”xvt)
xe0D’

+ oG Bl pmTp g Xobt)| dA  for e’ (16.1-42)

In the far-field region, again the expansion given in Equation (16.1-20) with Equations
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(16.1-27) and (16.1-28) holds (note that y ,s(x") = 0 for '€ D "and hence in the far-field region),
in which, based upon Equations (16.1-41) and (16.1-42), we now have

s ’°°(§ 0 =p"9,8F"&,0 + ©0cp) " Ciomy, &m0 d’a]liijm(g £, (16.1-43)
520 =070 0Y €0 + (009 Cpmy Emd BT EN) | (16.1-44)
in which
AfiPoo g o _
oXP=(E = ek, f it + Egxylep) dA, (16.1-45)
x€0D*
&5 (60 = (6,5~ £,5) j At +Esxsleg) dA, (16.1-46)
xedD*
with
ofy = —A;, mypg¥mTp.q ' (16.1-47)
and
P
Do G0 =& J Ohy j(x,t + Egxilep) dA, (16.1-48)
xe0D*
}Ilcf;o(g t) (‘5rk - gr‘gk) J. ahi,j(x’t + Exxs/CS) dA ’ (16'1"49)
xe0D’
with
Bhij=A,*-'jnrv,,v,, (16.1-50)

Of course, the equivalent surface source representations also apply to the case of an
elastodynamically penetrable scatterer. For x’€?® (i.e. outside the scatterer), Equations
(16.1-13), (16.1-14) and (16.1-29), (16.1-30) and (16.1-41), (16.1-42) must then all yield the
same result. Similarly, in the far-field region, Equations (16.1-21)—(16.1-26), (16.1-31)—
(16.1-38) and (16.1-43)—(16.1-50) must all yield the same result. Note, however, that for
x’eD’ (i.e. in the interior of the scatterer) the results of the different representations differ.

Equations (16.1-13) and (16.1-14), when taken for x’eD®, provide the basis for the
time-domain domain integral equation method to solve problems of the scattering by penetrable
objects. For solving problems of the scattering by impenetrable objects, Equations (16.1-41)
and (16.1-42) provide, when taken for x’ed D", the basis for the time-domain boundary integral
equation method and, when taken for x’e D%, the basis for the time-domain null-field method.
For general scatterers, all three methods need numerical implementation.

Complex frequency-domain analysis

In the complex frequency-domain analysis of the problem, the elastodynamic properties of the
scatterer are, if the scatterer is an elastodynamically penetrable object, characterised by the
functions
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(Ceriilipal = Cerhis pal@s).
The equivalent contrast volume source densities of deformation rate and force are then given
by (see Equations (15.9-41) and (15.9-42))

£ ==&¢,—spd )b, forxed’, (16.1-51)
1= lipg = Sijpa)ipg  forxed’, (16.1-52)

in which the total elastic wave field {1, ;,9,} is the sum of the incident wave field (f;,q,ﬁ,i} and
the scattered wave field {fps’ q,flrs} (see Equation (15.9-28)). If the scatterer is elastodynamically
impenetrable, either of the two boundary conditions

im0 AL p gVmitp g6+ IV,8) =0 for xedD® (16.1-53)
or

limy,oP,(x + hv,s) =0 for xedD® (16.1-54)
applies.

For the incident wave we now take a uniform plane wave. This can be either a uniform plane
P-wave or a uniform plane S-wave. For the incident plane P-wave propagating in the direction
of the unit vector a’ G.e. af af =1) we have, on account of Equations (14.1-3), (14.2-19) and
(14.2-20)

(B} = {Tp Vi )aT(s) exp(-saxilep) (16.1-55)
with

cp=[(h+24)/p)", (16.1-56)

vE=tvhdl, (16.1-57)
and (see Equation (14.2-10))

1P == (18,40 VE) + 2uaf VDl ], (16.1-58)

where ¢ © (s) denotes the normalised pulse shape.
For the incident plane S-wave propagating in the direction of the unit vector a’ (ie.
afaf =1) we have, on account of Equations (14.1-3), (14.2-22), and (14.2-23)

(B0} = {Tp, V2 )a%(s) expl-sagnyley) (16.1-59)
with
PN
cs=(ulp)™, (16.1-60)
sV =0, (16.1-61)
and (see Equation (14.2-10))
S -1 Ss,8 Ss,S
Tpq==Cs e Vy +a,Vp), (16.1-62)

where @ 5(s) denotes the normalised pulse shape.
For an elastodynamically penetrable scatterer we use for the scattered wave the contrast
volume source representations (see Equations (15.9-43) and (15.9-44))
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2 ’ ATh ’ [ A ’ 2
@9 = | (g @mohlins) + GT (' x)fi ()| av
xeD
for x'e®’ (16.1-63)

and
AS 2N Avh s S AV, s 7S
Pi,s) = J (628 (ms)hi () + G20 f ()| av
xeDt

for x'eﬂ(_S , (16.1-64)
in which (see Exercise 15.8-10 with x and x” interchanged)

pq,J(x xX,5)=-s Cpq,]é(x x) —(sp) C,q,,,,Ckm,JB O G,k(x x,5), (16.1-65)

p 4, k(x x,8) = p Cp.qnron Gr (X%, (16.1-66)
r,i,j(x 1%,8) =P Cimi,jOm Crp%:5) , (16.1-67)
Gl x,s) = 507 Gy 0,s) (16.1-68)
with
Gy (¥ 3,5) = c5° G 1,50, + 570, 3 [Gp(x'x,5) = G’ ,9)] (16.1-69)
and
Gp 5(x'%,5) = XS =P for 1y —xl 20, (16.1-70)

47|x’ — x|

Here, 9, denotes differentiation with respect to x,,.
In the far-field region, the expansion

exp[—slx’l/cp] exp[—slx’l/cs]

(£3,08) = | (E5P= 5 3P ) ) ———5 0 + (g 0 TV E)
4mcp Ix'| 4 |¥')
< [1+0(x1™D] as Il with x'= I (16.1-71)

holds, where (see Equations (13.7-18) and (13.7-19))

v, P = SP_l ‘f’fs;P‘w +s (PCP)—lck,m i ng r’,'k f?j ’ (16.1-72)

055 57 55 1 (o) Chm, ST (16.173)
in which (see Equations (13.7-12), (13.7-13) and (13.7-15), (13.7-16))

& P Es) = g,ng' exp(sEgxslep) f(xs) dv, (16.1-74)

xeD
SIS = G- 6,80 J exp(sEysles) f(es) AV, (16.1-75)

and
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rhk,P,“(é:' 5) = Er«fkj exp(sEx,/cp)hj(6,5) AV, (16.1-76)
xeD
r}fkff@ 5)= (O~ Erfk)J exp(sEsxsleg)h(x.s) AV, (16.1-77)
while (see Equations (13.7-25)—<13.7-27))
A ;P,N -1 A PM A PDO
tpq  =—Cp [ g @ )+ 2uEPE )Epsq], (16.1-78)
fszqsw ~c5 (G0, S°°+§q},ss°">. (16.1-79)

For an elastodynamically impenetrable scatterer the elastic wave field is not defined in the
interior D° of the scatterer and we have to resort to an equivalent surface source integral
representation that expresses the scattered wave field in the exterior D% of the scatterer in terms
of the wave field on the boundary surface dD® of D°. This representation is, on account of
Equations (15.12-40) and (15.12-41),

pq(x Hxpr(x) = j pq,j(x xs)A,j,,,vv HEX)

A ’ A 53
- p,q,k(x,x,s)A;m,p',qrer;fyq'(x,s)]dA for xX'e® (16.1-80)
and

ASe ’ h
Vrs(x )Xoy (x) = [G ¢ J(x x’S)A i, jnr’ Vpbp 5(%,5)
x€oD*

G XA P gs)| 44 for xe®’. (16.1-81)

Note that these expressions have resulted from applying Equations (15.12-40) and (15.12-41)
to the domain D% exterior to the scatterer and that the unit vector along the normal to 07" is
oriented towards D%,

In the far-field region the expansion given in Equation (16.1-71) holds, where, based upon
Equations (16.1-80) and (16.1-81), we have

558 = g B Y P 4 s(pep) I i, j5m® 3% 0 (16.1-82
ﬁrS;SN SP ‘paf e + s(pcs) Ckm i jgm ralil,t,i oo, (16.1-83)
in which
&Y ") = ErEk_[ exp(sEys/cp)Ofii(x,s) dA (16.1-84)
xe0D*
(ﬁraf ;S'm(g,s) = (Ors— £rE0) exp(sEsx;/c)df (x,5) A , (16.1-85)
xe0D*
with

Aff =M pgmtg (16.1-86)
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and

h " P,oo a

,?k,,,j’ (&) =E,&, j exp(s&,x/cp)oh; j(x,s) dA (16.1-87)

xe0D*
B2 FUES) = G £, exp(s&xs/cs)oh;’ (x,s) dA (16.1-88)
xedD’

with

' y= A7 j by (16.1-89)

while Equations (16.1-78) and (16.1-79) yield the far-field scattering amplitude of the dynamic
stress.
However, upon applying Equations (15.12-30) and (15.12-37) to the incident wave field
{z; é’ aVr v} and to the domain D®, we have (note that the incident wave field is source-free in
D)

ATh + A
[Gp,q,i,j (x5 )Ai, jnr nVr (X,5)

_Api,q(x: X (x) =~ J

xed D’

— G kXS g Vm ®9)] A for xe®®  (16.1-90)
and
Al , ’ AVh . Al
O, ) pp(x') == J' (S EETNIRLTD)
xe0D*
~ Ch I p i g®S)]dA for xe®. (16.1-91)

Subtraction of Equation (16.1-90) from Equation (16.1-80) and of Equation (16.1-91) from
Equation (16.1-81) leads to

pq(x )xp(x) +1, ,q(x,s)x@s(x)
= J [HATCERIREEIED
xe0D’

= Gl k& XN Vit (ES)]| A for e R (16.1-92)
and
Dy (K0 x) = I (8 S p(x)

vh + A
= j [Gr, ](x’,x,s)A,-’ ot Vop(%,8)
xc0D*

B pgmipge)|dA  for xe® (16.1-93)

Inthe far-field region again the expansion given in Equation (16.1-71) with Equations (16.1-78)
and (16.1-79) holds (note that y p,s(x”) = O for x ‘e’ and hence in the far-field region), in which,
based upon Equations (16.1-92) and (16.1-93), we now have
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Qrs;P, =sp ¢afP + s(pCP)—ICkm 1,]§m r?l?tiw ’ (16.1-94)
ﬁrs 5 = sp- ¢r8f;S, +s(pcg)” Ck m,l,jgm 2}? 'SJ°° ’ (16.1-95)
in which
A aﬁp’w _ A
D, &.5)=E&.5; J‘ exp(s&gx,/cp)ofi(x,s) dA , (16.1-96)
xe9D*
ST 5) = G- £k J eXp(sExs/c5) i (xs) A, (16.1-97)
xe0D
with
0fk =D pg¥ming (16.1-98)
and
BT Eg =, ng' exp(sE,x,/cp)ohy j(x,s) dA (16.1-99)
xedD*
h; 8,00 [
ST ES) = Op- 680 | explsEgxlegdhy j(xs) dA, (16.1-100)
xe0D’
with
a”;ij=A;"-jannf) . . (16'1‘101)

Of course, the equivalent surface source representations also apply to the case of an
elastodynamically penetrable scatterer. For x ‘eps’ (i.e. outside the scatterer), Equations
(16.1-63) and (16.1-64), (16.1-80) and (16.1-81), and (16.1-92) and (16.1-93) must then all
yield the same result. Similarly, in the far-field region, Equations (16.1-72)-(16.1-77),
(16.1-82)—(16.1-89) and (16.1-94)—(16.1-101) must all yield the same result. Note, however,
that for x’eD® (i.e. in the interior of the scatterer) the results of the different representations
differ.

Equations (16.1-63) and (16.1-64), when taken for x’e D5, provide the basis for the complex
frequency-domain domain integral equation method 1o solve problems of the scattering by
penetrable objects. For solving problems of the scattering by impenetrable objects, Equations
(16.1-92) and (16.1-93) provide, when taken for x’ed D", the basis for the complex frequency-
domain boundary integral equation method and, when taken for x’e D%, the basis for the complex
[requency-domain null-field method. For general scatterers, all three methods need numerical
implementation.

The representations in this section will be needed in the remainder of this chapter.

Exercises

Exercise 16.1-1

Show that from Equations (16.1-41) and (16.1-42) it follows that
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, i th + .
=T (% DX (X)) = = p,,,(x',z)+LEa S[Cz(G 2, 0, jin, VnV XX, 8)
D

FCUGH, B prg ity E|dA  for x¥e®®  (16.1-102)
and

4 ? i ’ h
V(X D) x e () = V(' ) + j [C,(G,‘:,-' j,AZ i VnVy XX 0)
xeoD*

+CUG Yl ~BhmpaimTpg®otd)]  for xe®’. (16.1-103)

(Hint: Consider the cases x'€D® " x'=9D%and ¥'e D5)

Exercise 16.1-2
Show that from Equations (16.1-92) and (16.1-93) it follows that

A " Al Ath + A
~tp,g (X5 )X (X)) = =8, 4(x'5) + J. [Gp,q,i,j(x"x‘s)Ai,j.n,r"n"r(x’s)
xedD*

el

T KL Vb )| A for x'eR® (16.1-104)

WPHg Tmp

and

A Al Avh + A
DU, )y ps' (X)) = Dp(x ) + J [G,’i’ XD VP (X,5)
xed D’

— G XS A p i g(B5)| A for Xe®. (16.1-105)

(Hint: Consider the cases x'e D’ " x'=00° and x'eD".)

16.2 Far-field scattered wave amplitudes reciprocity of the time convolution

type

In this section we investigate the reciprocity relations of the time convolution type that apply
to the far-field scattered wave amplitudes at plane wave incidence upon an elastodynamically
penetrable or impenetrable object. The scattering configuration of Figure 16.1-1 applies. Two
states in this configuration are considered; they are denoted as state A and state B, respectively.
In state A, either a uniform plane P-wave that propagates in the direction of the unit vector
a?® or a uniform plane S-wave that propagates in the direction of the unit vector a § is incident
upon the scattering object; in state B, either a uniform plane P-wave that propagates in the
direction of the unit vector ,BP or a uniform plane S-wave that propagates in the direction of the
unit vector ﬁs is incident upon the scattering object. It will be shown that the far-field scattered
P- and S-wave amplitudes in state A when observed in the direction of observation § = ~f Ps
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are related, via reciprocity, to the far-field scattered P- and S-wave amplitudes in state B when
observed in the direction of observation & = —a P (Figure 16.2-1).

The corresponding relationships in the time domain and in the complex frequency domain
will be derived separately below.

Time-domain analysis

In the time-domain analysis, the incident wave in state A is taken either as the uniform plane
P-wave

;AP AP AP APy P
(g P ) = Ty VY (- dgxilep) | (16.2-1)
with
AP ~1 P AP P AP, P P
Tpq =—cp [wp,q(akvk ) + 240y Vi )apaq], (16.2-2)
or as the uniform plane S-wave
{T;f: ;S,Vlr;A;S} = {T,,[,\‘,I;‘S‘,VrA S1aS@ - afxs/cs) , (16.2-3)
with
A;S -1 S, A;S S, AsS,
Tpq =Cs H(ayVy )+aqu ). (16.2-4)

In the far-field region, the scattered wave in state A is represented as

$;A;Peo _$3A;P,00 ;A 8,00 8;A;S,00
SA SAV N {rp,q Wy }(&t - ‘x,VCP) {rp,q Vr }(&.t— Ix"/cs)
{ }(x >t) - +

Ty Vr
P4 4nc‘,73 Ix’} 4ﬂc§ x|

x[1+00x¥1 D] as I¥loe with x'=I¥IE, (16.2-5)

in which, on account of Equations (16.1-27), (16.1-28) and (16.1-31)—(16.1-38) (note that the
surface source representation for the far-field scattered wave amplitudes is used),

VAP 1y = p G APSE D + (pep) ™ Com Sl Brity €D (16:2:6)
fps’;qA;P,m = —'C;l [Aép‘q(gkvlsc;A;P,w) + Zﬂ(gkvi;A;P,w)gpgq] ’ (16'2'7)
with
o AP = ‘Erng- WA+ Exglep) dA (16.2-8)
xe0D*
BT E D = §r5kj St + Egxglep) dA (16.2-9)
xed D’ :

and

1AiS 0 - " A8, -1 5 AS 00
VA= ) = p 9, 8Y ASVE D) + (e Cum jEndiPrkity €D, (16:2-10)
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16.2-1(0) £=-p" P

16.2-1(b)
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16.2-1(c) af

§=-a’

Figure 16.2-1 Configuration for the far-field scattered wave amplitudes reciprocity of the time
convolution type: (a) two incident plane P-waves; (b) two incident plane S-waves; (c) an incident plane
P-wave and an incident plane S-wave.

oS = U E A 1 g RS (16.2-11)
with
o S )= Ga-&& | AP+ Earleg)da, (16.2-12)
xe0D*
?}Ilc z,t‘]\ sm@. 1) = (0, — &1 J. ahl i (x,t +Exglcg) dA . (16.2-13)
Similarly, the incident wave in state B is taken either as the uniform plane P-wave
(g Wi} = (T Vi W0 (= B 3l (16.2-14)
with
Tpid =5 (A BV + 218 ViED B By | (16.2-15)

or as the uniform plane S-wave

(g o) = (T VP~ Bxles), (162-16)
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with
B;S SyBiS | gSyBiS
Tq = S wBpVy " +BgVp ). (16.2-17)

In the far-field region, the scattered wave in state B is represented as

:B;P,oo  §;B;P,00 15,00 18,00 ’
(55 ) < (g W NGt = W ep) | (P VGt~ )
47ch x| 4.7t'cs x|
x[1+0(|x’l_1)] as |x'j—e  with x'=|x|€, (16.2-18)

in which, on account of Equations (16.1-27), (16.1-28) and (16.1-31)—(16.1-38) (note that the
surface source representation for the far-field scattered wave amplitudes is used),

WP =p 00 PPEN + (oep) oy jE A BRI €D (162-19)
Tpg = =Cp (A8 gER ) + 2B I . (16:2-20)
with
d}?f ;B;P,oo(g,t) = ":-Erng. afk ;B(x»t + Esxs/CP) d4, (16.2-21)
x€0D*
Er),}llc 171-3; Poe(g f= ErEkJ‘ ahi,s‘;jB(x,t_*_ Exglcp) dA (16.2-22)
xedD*
and
VBSE ) = 00,0 PSPE ) 4 (0 Comy D BEBS(E ) (16.2-23)
TPS’,qB,Soe_ cs/l(Ep ZBSm+§q;BS ), (16'2-24)
with
& P20 = (8, £,&p) ,[ AP (xt + Egxles) dA, (16.2-25)
x€0D*
ah 3B;S,e0
&0 55 E ) = (0, £ED j Ot + Egxsles) A, (16.2-26)

If the scatterer is penetrable, its elastodynarmc properties in state B are assumed to be the adjoint
of the ones pertaining to state A. If the scatterer is impenetrable, either of the two boundary
conditions given in Equation (16.1-3) or Equation (16.1-4) applies. These boundary conditions
apply to both state A and state B, and are, therefore, self-adjoint.

To establish the desired reciprocity relation, we first apply the time-domain reciprocity
theorem of the time convolution type Equation (15.2-7) to the total wave fields in the states A
and B, and to the domain D° occupied by the scatterer. For a penetrable scatterer this yields

A;,,,p,qj [ Ci—ThgVEmt) = CylTh pvint) | dA =0, (16.2-27)
xe0D*

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
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scatterer, Equation (16.2-27) holds in view of the boundary conditions upon approaching 07"
via 0. In Equatxon (16.2-27) we substitute

(i) = (Tt + oA 1A (16.2-28)
Pq P9
and

{thgvr) = (myp +io W8 4050y | (16.2-29)

Next, the time-domain reciprocity theorem of the time convolution type is applied to the
incident wave fields in the states A and B and to the domain 9°. Since the incident wave fields
are source-free in the interior of the scatterer and the embedding is self-adjoint in its
elastodynamic properties, this leads to

A;,,,MJ‘ U [Cilmpig W Pix) - Clmpig i | a4 =0, (16.2-30)
xed D’

Finally, the time-domain reciprocity theorem of the time convolution type is applied to the
scattered wave fields in the states A and B and to the domain D% Since the embedding is
self-adjoint in its elastodynamic properties and the scattered wave fields are source-free in the
exterior of the scatterer and satisfy the condition of causality, this leads to

Arrog _[ . P [CoTS Pt - C i it da =0. (16.2-31)
xe0D’

From Equations (16.2-27)—(16.2-31) we conclude that

+ ;A _s;B s;A 1B
Am,,,p,qj Y [CUTpg Wi ot) + Col=tpig Wy )
xedD*

~ Cy-rp it ~ Cl=rp it da=0. (162-32)
Equation (16.2-32) holds for both incident P- and incident S-waves. The ensuing reciprocity

properties have to be discussed for the two types of incident waves separately.

Two incident P-waves

In the case of two incident P-waves we take {rp ,vrA} {r‘ AP ‘ AP } (BEquations (16.2-1)
and (16.2-2)) and {735,viB} = {r S8 \iBiP} (Equations (16 2-14) and (16.2-15)). Then, on
account of Equahons (16 2- 6)—-(16 2 13) we have

A _I;B;P, B P _sA
A MJ. (T NNt B o & LR B 1
AL s, BiP B P s:A
mr,p,qJ. J' Vm ps,q @V, ATV (xt)]b (- ﬂs xlcp— 1) dA
te

P ;A P B;P
=J‘ b (¢—t"ydr” A*,;,,,, P J- Vi [—rps”q (x,t" = Bs xlcp)Vy >
t"eRr. xe0D*
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+ TB va A(x " — ﬂsp xS/cP)] da

=pVBF J- Bt - I ShP gt 1y dr” (16.2-33)

t”GR,
and on account of Equations (16.2-19)~(16.2-26)
P P
A;,,MJ Y [CHa e AP ) ~ i B )] dA
AP B
,,,,Mj J BN 70 V2] a" (- afxglep— 1) dA

t'e xea@

= J. a1y de” A;,,,, Y J Vm [—r; ;;;(x,t" ~ aSP xs/CP)VrA"P
t xcoD*

IIEK
+ TA P fB(x " —ay xs/cp)]
=pV AP J- @ - VB al yar . (16.2-34)
t”EK

Equations (16.2-32), (16.2-33) and (16.2-34) lead to the desired reciprocity relation for the
far-field scattered wave amplitudes:

V,B"’f B = Iy ar

t”E.'R_

= AP J' - BPeal iy ar . (16.2-35)
t”ER_

At this point it is elegant to express the linear relationship that exists between the far-field

scattered P-wave amplitude and the incident P-wave amplitude, both in state A and state B. To

this end, we write

VAP = y AP J L) Eal -y ar (16.2-36)
'eR.

and

i (- j st st -1y ar, (16.2-37)
t'eR

where S, APP and Sk B PP are the configurational time-domain particle velocity far-field P—~P
scatterlng tensors. Substntution of Equations (16.2-36) and (16.2-37) in Equation (16.2-35) and
rewriting the convolutions, we obtain

v V,f\;PI,j BF(e") dr” J- st al -1 -y dr
t"eR, r'eR.

=y V,BPI,J. a (t”)dt”J. vyl gl -yar,  (162-38)
t"eR, teRr,
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where, in accordance with the rules applying to the time convolution, the operator I, has been
brought in front of the mtegral signs. Taking into account that Equation (16.2-38) has to hold
for arbitrary values of Vk P VB P af (#) and bF(#), and using the causality of the scattered
waves, we end up with

APP(ﬂ of =SB

as the final expression of the time-domain reciprocity property under consideration.

BPP_of gt s (16.2-39)

Two incident Swaves

In the case of two incident S-waves we take {r pid AViA) = {7 r‘ AS ViAS) (Bquations (16.2-3)
and (16.2-4)) and {781} = (¢ 5B:S 1By (Bquations (16 2-16) and (16.2-17)). Then, on
account of Equatlons (16 2-6)—( 16 2 13) we have

+ s;A _1;B;S, 1BS S;A
Am r,p,qJ- [Cp(_ Wy X0 — C( p.q VX, t)]

' A
mrp.qJ J pq(xt)V sti (xt)]b(t ~BSxleg~ 1) dA
t'e xeaﬂs

S . .
=j b(t—1") dt” A, Y '[ Vi [—-rps,’:(x,t” - ﬂf xs/cS)VrB'S
t"eR. xe0D’

+ TSy A (et - Bx leg)] dA

=erB;SJ b (t 1) S;A;S,‘”(_ﬁs’t") dr” (162-40)
f”EK'
and on account of Equations (16.2-19)—(16.2-26)
i;A;S S s;B
Snnpa | rnlCeoi inn - G Pino]an
mr,p,qJ. J Tg WOV + TSR] 5o - adxles - 1) A
te xeam

=J. as(t —t")yd” A;,r,p,q J. Vm [—r;,f(x,t" - assxs/cs)V,A o
t"eR xe0D*
+ TSR et - ax leg)|da

=pv S j a(t -t aS ) dr (16.2-41)
t”ER
Equations (16.2-32), (16.2-40) and (16.2-41) lead to the desired reciprocity relation for the

far-field scattered wave amplitudes:
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V’}S;SJ 51 )It:ASoo 51" dr”
t"eR.

=V,A"SJ‘ S-S aS ¢y dr (16.2-42)
t”EK

At this point it is elegant to express the linear relationship that exists between the far-field
scattered S-wave amplitude and the incident S-wave amplitude, both in state A and state B. To
this end, we write

VNS = VkA;SJ )5 Eadt-r) ar (16:2-43)
t'er.
and
e VP‘SI B (S B 1-1) dr (162-44)
r'eR.

where S, ¢ A35S and S,?,;S’S are the configurational time-domain particle velocity far-field S—S
scattermg tensors. Substituting Equations (16.2-43) and (16.2-44) in Equation (16.2-42) and
rewriting the convolutions, we obtain

VASIJ‘ bs(t,,)dt,,J‘ SO)SASSpSaS i~ rydr
t"eR. t'eR

= Sy RSy J. Q") dr” J b)se S ab - -y ar (16.2-45)
t"eR, t'eR.

where, in accordance with the rules applying to the time convolution, the operator I, has been

brought in front of the 1ntegral signs. Taking into account that Equation (16.2-45) has to hold

for arbitrary values of Vi AiS VB 5, a5(9) and b(¢), and using the causality of the scattered waves,

we end up with

ASS(—ﬂ, 1) = SkBrSS( 5850 (16.2-46)

as the final expression of the time-domain reciprocity property under consideration.

An incident P-wave and an incident Swave

In the case of an incident P-wave and an incident S-wave we take (Tha ybAY =
LAP AP iiB ;B iBiS iBiSy

{r w7} (Equations (16.2-1) and (16.2-2)) and {r ,v1 }= {r wy°»} (Bquations

(16 2—16) and (16.2-17)). Then, on account of Equations (16 2-6)-(16. 2 13) we have

+ ;A 1;B;S, i;B;S _s;A
Arrpa J P |Colpig WD) = Cylryia i) dA

_A;,’qu f [oa ot WS + TS )| 6%~ Bxsles — 1) dA
t'e xeal)s
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S ” ” ;A B S
=j b'(t—1¢")de Afn,r,p’qJ- Vi [— ps,q (x,t" ﬁs xslcg)V,
t"er. xedD*

+TESAG” — Bx leg) dA

=pV S J (T v
I”EK

and on account of Equations (16.2-19)—(16.2-26)

+ sB i: AP 1AP s;B
Am r,qu' [ t( P ’vr s t) C(_ ,Vr ,x,t)]

B¢ dr” (16.2-47)

A ’,
,,,,,,,,qj f e W+ TR )] af(~ abx dep— 1) dA
t'e

=J' Fe-eyae oy, q.[ V|t e = af % lep) VT
t’eR. xe0D*

+ TAP f,B(xt '-astS/CP)]dA

= pvAF J. - al ) ar . (16.2-48)
t”ER
Equations (16.2-32), (16.2-47) and (16.2-48) lead to the desired reciprocity relation for the

far-field scattered wave amplitudes:

VrB;SJ bS(t—- t”)It ’S-A S°°( ﬂs,t”) dtl/
t”GK

=yAP J d - SBP=alf 7y ar . (16.2-49)
t"eR.

At this point it is elegant to express the linear relationship that exists between the far-field

scattered S-wave amplitude and the incident P-wave amplitude in state A and the far-field

scattered P-wave amplitude and the incident S-wave amplitude in state B. To this end, we write

VA e = AP J s ea -1y e (16.2-50)
t'eR.
and
PrE0= v | Poskes -, (16:2-5D)
teR,
where S5 and Sk, B; iP5 are the configurational time-domain particle velocity far-field P—S

and S—-)P scattermg tensors, respectively. Substituting Equations (16.2-50) and (16.2-51) in
Equation (16.2-49) and rewriting the convolutions, we obtain
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yBiSy AP I,J. b5y dr J ) sKFpSal -1 -y ar
t"er. ter.

= yPy RSy, j &y ar J v’ )se S —af B i-1 - 1) ar, (16.2-52)
t"eR, t'eR.
where, in accordance with the rules applying to the time convolution, the operator I, has been
brought in front of the integral signs. Taking into account that Equation (16.2-52) has to hold
for arbitrary values of VrA;P , V,B "S, P (H) and bs(t), and using the causality of the scattered waves,
we end up with
55> 8% =555l B0 (16.2-53)

as the final expression of the time-domain reciprocity property under consideration.

Complex frequency-domain analysis

In the complex frequency-domain analysis, the incident wave in state A is taken either as the
uniform plane P-wave

{EEAF o EAPY o (T HE v AP)aF (5) exp(osalxslep) (16.2-54)
with

TP = 51 (16, @ ViMD) + 2ual V0 S o |, (16.2-55)
or as the uniform plane S—wave

(@SS 558y (1A y A3 5(5) exp(saxiles) , (16.2-56)
with

A;S ~1 Sy, AS S A;S
Tpa =5 u@y V" +agVy o). (16.2-57)

In the far-field region, the scattered wave in state A is represented as

AsAAsA}(x 5)= AsAPooAsAPoo}(gs) exp[—-s|xl/(:p]

{ ’ {
Tp, Vr
Tpq q 162,,,

R o o exp[—slx’l/cg]
+{ SAS ,VSAS }(g’ e S Tt ™ o

47ck ||
x[1+0(0x1™]  as I¥l—e with x'=IE, (16.2-58)

in which, on account of Equations (16.1-76), (16.1-77) and (16.1-80)—(16.1-87) (note that the
surface source representation for the far-field scattered wave is used),

A S AP0 _ =1 2 f AP O APeo

by =3p dsrf +s(pcp) Ck mi, jEm Pre . j ) (16.2-59)
as AP -1 5 SiAPse  5;A;Pyo0

5P o 5 (10, @B + 2uE S NP IEE, (16.2-60)

with
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@ AP frEkJ. exp(sExs/cp)dfi A (ns) dA (16.2-61)
xedD*
‘1’312 JA gt §r§kj exp(sEx,/cp)oh M) dA, (16.2-62)
xedD*
and
poASe sp‘lq‘saf A5 4 506 Clmi fEm ,?,ﬁ'ij‘s >, (16.2-63)
T (R ey (16.2-64)
with
A S.A. o0 A 'A
‘pr?{,i’,j 5 = G- ) J exp(sEgx les)df s (x,s) dA (16.2-65)
xe0D*
BIMINS= =60, ~EED | exp(sEgxylog)Ohsins) dA . (16.2-66)
xe0D*
Similarly, the incident wave in state B is taken either as the uniform plane P-wave
EE 0 BE) = (TP VP16 (5) exp(=sB i xslcp) | (16.2-67)
with .
B;P -1 P_,B;P B:P, ,P,P
Tpg =—cp [ B Vi) + 208 Vi By By } , (16.2-68)
or as the uniform plane S-wave
A S A B B: ~
{2 05y = (TS V2516 %(s) exp(-sByxles) (16.2-69)
with
B:S _ S B;S.
Tpq =—Cs u(ﬂp q %)+ BaVp ) - (16.2-70)

In the far-field region, the scattered wave in state B is represented as

LB R - - exp[—slx’l/cp]
(2 sB 5By s) = (2 sBP SBPEyE pl L P
4ﬂCPlxl‘

+ {AsB S 5 5BIS=) (£ ) exp[—slx’l/cg]

4Jrc§ lx’]
x[1+00x1™]  as =  with x'=E, (16.2-71)

in which, on account of Equations (16.1-76), (16.1-77) and (16.1-80)—(16.1-87) (note that the
surface source representation for the far-field scattered wave is used),

ith $;B;Pyoo _ Sp—lqg'?f BiPyeo s(ocp) Ckm i r?l}clllja P00 , (16272)
A B P 00 A B P 00, N B P 00,
tg = [ oGP )+ 2 EE )E,,Eq], (16.2-73)

with
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¢ PP~ Erng. exp(sEox,/cp)0f P (x,s) dA , (16.2-74)
x€0D*
2 9h°*B:P oo
Dy =§r§kj exp(s&x,/cp)Oh; Pls) da, (16.2-75)
xeo D
and
A S, 'Soo -1 2 s- +S o0 00
05 = g B B 4 o0 Cop Em bR (16276)
2 8;B; " 00 A 00
o = S u(E ST 4 g By (16.2-77)
with
q’r?f.z,?sm—(ér,k &) J eXP(sssxs/cs)af Bxs) dd, (16.2-78)
¢ah :B; 8,00
ki, = (5r,k grék)-[ eXP(S-’;"sxs/Cs)ah (x s)dA . (16.2-79)

If the scatterer is penetrable, its elastodynamic properties in state B are assumed to be the adjoint
of the ones pertaining to state A. If the scatterer is impenetrable, either of the two boundary
conditions given in Equation (16.1-51) or Equation (16.1-52) applies. These boundary
conditions apply to both state A and state B, and are, therefore, self-adjoint.

To establish the desired reciprocity relation, we first apply the complex frequency-domain
reciprocity theorem of the time convolution type Equation (15.4-7) to the total wave fields in
the states A and B, and to the domain D° occupied by the scatterer. For a penetrable scatterer
this yields

Anrpa J Vs [0, (0,8) + Epg(8)9 ()] dA =0, (16.2-80)
xedD*

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
scatterer, Equation (16.2-80) holds in view of the boundary conditions upon approaching 9%
via 2%, In Equation (16.2-80) we substitute

R B A Mt Rl A (16.2-81)
and
B2y = (B0 + 250 0B + 058y (16.2-82)

Next, the complex frequency-domain reciprocity theorem of the time convolution type is
applied to the incident wave fields in the states A and B and to the domain 2%, Since the incident
wave fields are source-free in the interior of the scatterer and the embedding is self-adjoint in
its elastodynamic properties, this leads to

A1B

pisB o (6,504 (,5)] dA = 0. (16.2-83)

+
Bmyr,pg j "'n[ o (x SV’
xe0D*

Finally, the complex frequency-domain reciprocity theorem of the time convolution type is
applied to the scattered wave fields in the states A and B and to the domain 2%, Since the

(x,5)+7
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embedding is self-adjoint in its elastodynamic properties and the scattered wave fields are
source-free in the exterior of the scatterer and satisfy the condition of causality, this leads to

b i m[pig 0B (05) + £ ()9 (1,5)| dA =0, (16.2-84)

From Equations (16.2-80)—(16.2-84) we conclude that

asA

+ X,5) — Tpq (%, s)v (x 5)

I B
Am, X 4 [— Dq (x,S)V 5 (
7 xe0 D

+ )0 (5) + 2.5 (2,509 A, s)]da=o0. (16.2-85)

Equation (16.2-85) holds for both incident P-waves and incident S-waves. The ensuing
reciprocity properties have to be discussed for the two types of incident waves separately.

Two Incident P-waves

In the case of two incident P-waves we take {71 (‘;\ LAY = (¢l ;\ SR ‘A P} (Equations (16.2-54)
and (16.2-55)) and {2,75,9,B} = {2 1B:P ”BP} (Equanons (16 2- 67) and (16.2-68)). Then, on
account of Equatxons (16 2- 59)—(16 2 66) we have

;B; A1;B;P ASA
T J V|~ A0 B (es) + £ ‘q (x,8)0. 58, s)]
xedD*

A ;A ;P B PA A
= A;',’ p,qj Vi [—r; 7 (x,s)VrB +T 8; (x,s)] b7 (s) exp(—s,B_, xs/cp) dA
xe0D*

=5 oV BFE P (50 AP _gF ) (16.2-86)
and on account of Equations (16.2-72)—(16.2-79)

A;,,'p,qj e (xs)ﬁ““’(xs)+”;‘P(xs)ﬁ,sB(xs)]
xe0D*

A ;B A,P A A s;B
= A;’,,p,qJ‘ Vm [— ; q &SV + T, 'P s (x, s)]a ©) exp(—-sas xg/cp) dA
xe0D*

AP, P(s)osB P°°(—a 5). (16.2-87)

Equations (16.2-85)—(16.2-87) lead to the desired reciprocity relation for the far-field scattered
wave amplitudes:

VEFE P ()9 54 pF ) = vAFa P ()0 SBP=(aPs) . (16.2-88)

=5 pV

At this pointit is, again, elegant to express the linear relationship that exists between the far-field
scattered wave amplitude and the incident P-wave amplitude, both in state A and in state B. To
this end, we write, in accordance with Equations (16.2-36) and (16.2-37)

§IAPE ) = VAP E(s )SAP,P(g,aP’ 5) (16.2-89)
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and
55BP=E 5 = VBB PSP P B s) (16.2-90)

where S}, § APP and Si B P.P are the configurational complex frequency-domain particle velocity
far- ﬁeld scattermg tensors Substitution of Equations (16.2-89) and (16.2-90) in Equation
(16.2-88) yields

vEPVARE P 98T ST B  abs)
= VAPV BEG P b P Spir P —ab Bs) . (16.2-91)

Taking into account that Equation (16.2-91) has to hold for arbitrary values of Vi* AP V,B;P ,aP(s)
and b ¥ (s), we end up with

SAPPBh b5 =8 a" B9 (16.2-92)

as the final expression of the complex frequency-domain reciprocity property under considera-
tion.

Two incident SSwaves

In the case of two incident S-waves we take {7 ‘? LAy = {rl; A 5L A8} (Bquations (16.2-56)
and (16.2-57)) and {£5B,51B} = (£ 5 1B S} (Equations (16. 2-69) and (16.2-70)). Then, on
account of Equations (16 2-59)—(16.2-66) we have

At J' i [0 P55 5) + g (6500, A )] dA
XE(

m,r,p,q
DS
A A A A r
=A:;,,,‘p,qj‘ U [ )V + Tis5 8 ,0)] 5 (5) exp(-sByx,leg) dA
xe0D*
= 5 VB S(5)p A5 (55) (16.2-93)

and on account of Equations (16.2-72)—(16.2-79)

A roa J [ (505 ,s) + £ 00, ,5)) A
x€0D*

” ASA B
=A:;,,,,p,qJ' Vg )V 3P (x.5) %) explsayxgles) dA
x€dD'

A8 S50 585 aSs) . (16.2-94)

Equations (16.2-85), (16.2-93) and (16.2-94) lead to the desired reciprocity relation for the
far-field scattered wave amplitudes:

ASASW AS S ASBS
%9 =V,

(s

At this point itis, again, elegant to express the linear relationship that exists between the far-field

=5 pV

vESE S5y, “as). (16.2-95)
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scattered wave amplitude and the incident S-wave amplitude, both in state A and in state B. To
this end, we write, in accordance with Equations (16.2-43) and (16.2-44)

AsAsoo(g 5)= AS s( )SASS(g,aS,s) (16.2-96)
and
W) =V 085 €89 (16297

where S f}css and SA,E,ES’S are the configurational complex frequency-domain particle velocity

Sar-field S—S scattering tensors. Substitution of Equations (16.2-96) and (16.2-97) in Equation
(16.2-95) yields

vV s)a 985 -p5a%s)
=V VRS 596 59805 (-a5 85 s) . (16.2-98)

Takin§ into account that Equation (16.2-98) has to hold for arbitrary values of V;* AS VB S a5 (s)
and b°(s), we end up with

$455-B5a55) = $&55a’ 85 ) (16.2-99)

as the final expression of the complex frequency-domain reciprocity property under considera-
tion.

An incident Prwave and an incident SSwave

In the case of an incident P-wave and an incident S-wave we take {r A} =
{£ 5P 5 EAPY (Bquations (16.2-54) and (16.2-55)) and {£,8,01B) = (25BiS p 1B: S} (Equatlons
(16 2 69) and (16.2-70)). Then, on account of Equations (16 2—59)—(16 2 66) we have

Arrpa J. V[ S0P ) + £ (r,5)0 A )] dA
xedD*
A S3A ASIA
=A;,r,p,qJ‘ [~rsq @)V BS > (xs)]b (s) exp(=sBx,/cg) dA
xe0D°
=57 Vb s A5 (-5 5) (16.2-100)

and on account of Equations (16.2-72)—(16.2-79)

A rpa J U [~Epig (S0 A (,5) + 20 (.00, x,5) A
xeoD*

2$;B APnsB

=Arp J [PV + T B 0,5)| 47 (s) explsalx lcp) dA
xed Dt

= s VAP (55 B P=af 5 . (16.2-101)
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Equations (16.2-85), (16.2-100) and (16.2-101) lead to the desired reciprocity relation for the
far-field scattered wave amplitudes:
A 8;B;P,eo

ASASm(ﬂ 5) = VAP P()v

V b ( SV,
At this point it is, again, elegant to express the linear relationship that exists between the far-field
scattered S-wave amplitude and the incident P-wave amplitude in state A and the far-field
scattered P~wave amplitude and the incident S-wave amplitude in state B. To this end, we write,
in accordance with Equations (16.2-50) and (16.2-51),

b, (16.2-102)

i OR A O (X (16.2-103)
and

AR OB A A OV (N DY (162-104)
where S, ;}‘S’P and S,fr;P S are the configurational complex frequency-domain particle velocity

far-field P—S and S—P scattering tensors, respectively. Substitution of Equations (16.2-103)
and (16.2-104) in Equation (16.2-102) yields
B S A Py & A;S,P
b3(s)a ()Srk -8%a"5)
=V APVESE P (bS8 8PS (a5 s) . (16.2-105)

Taking into account that Equation (16.2-105) has to hold for arbitrary values of Vk AP V,B;S,
4P (s) and b S(s) we end up with

SASPBS a5y = SBPSCal g5 5 (16.2-106)

as the final expression of the complex frequency-domain reciprocity property under considera-
tion.

In a theoretical analysis, the reciprocity relations derived in this section serve as an important
check on the correctness of the analytic solutions as well as on the accuracy of numerical
solutions to scattering problems. Note, however, that the reciprocity relations are necessary
conditions to be satisfied by the scattered wave field (in the far-field region), but their
satisfaction does not guarantee the correctness of a total analytic solution nor the accuracy of
a total numerical solution. In a physical experiment, the redundancy induced by the reciprocity
relations can be exploited to reduce the influence of noise on the quality of the observed data.

References to the earlier literature on the reciprocity relations of the type discussed in this
section can be found in Tan (1977).

Exercises

Exercise 16.2-1

Show by taking the Laplace transform with respect to time that Equation (16.2-92) follows from
Equation (16.2-39).
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Exercise 16.2-2

Show by taking the Laplace transform with respect to time that Equation (16.2-99) follows from
Equation (16.2-46).

Exercise 16.2-3

Show by taking the Laplace transform with respect to time that Equation (16.2-106) follows
from Equation (16.2-53).

16.3 Far-field scatiered wave amplitudes reciprocity of the time correlation

type

In this section we investigate the reciprocity relations of the time correlation type that apply to
the far-field scattered wave amplitudes at plane wave incidence upon an elastodynamically
penetrable or impenetrable object. The scattering configuration of Figure 16.3-1 applies.

Two states in this configuration are considered; they are denoted as state A and state B,
respectively. In state A, either a uniform plane P-wave that propagates in the direction of the
unit vector a® or a uniform plane S-wave that propagates in the direction of the unit vector
a’ is incident upon the scattering object; in state B, either a uniform plane P-wave that
propagates in the direction of the unit vector ﬂP or a uniform plane S-wave that propagates in
the direction of the unit vector 8% is incident upon the scattering object. It will be shown that
certain relations exist between the far-field scattered wave amplitudes in states A and B. The
corresponding relationships in the time domain and in the complex frequency domain will be
derived separately below.

Time-domain analysis

In the time-domain analysis, the incident wave in state A is either taken as the uniform plane
P-wave

(T P AAR) = (TP VAP (- abxfep), (16.3-1)
with
AP P, AP P AP, PP
Tol =—cp [A84(0x Vi) + 2uag Vil | (16.3-2)
or as the uniform plane S-wave
(T i) = (T Ve (e - agxleg) (163-3)
with
A;S -1 , S St/ A;S.
T,q ==¢s ,u(apV +a V ). (16.3-4)

In the far-field region, the scattered wave in state A is represented as
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16.3-1(a)

16.3-1(b) - ~
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16.3-1(c)

Figure 16.3-1 Configuration for the far-field scattered wave amplitudes reciprocity of the time
correlation type: (a) two incident plane P-waves; (b) two incident plane S-waves; (c) an incident plane
P-wave and an incident plane S-wave,

sA say | {Tpg AP E - W) (SRS g e
{rp"q Ve Hx ) = : 3 + . 2
4mcp 1x| 4cs x|
X[+0(0¢1 D] as Il with ¥ =|¥IE, (16.3-5)

in which, on account of Equations (16.1-27), (16.1-28) and (16.1-31)—(16.1-38) (note that the
surface source representation for the far-field scattered wave amplitudes is used),

1APyee =15 231 APo -1 I’ AP oo
vy &n=po0Y &0 +cp) Comi im0 Pris;  &:1) (16.3-6)
AP oo - 5 Ay P00 JAyP oo
T = =cp [0, €T + 20 € AT, (163-7)
with
o AP =&, j At + Exglep) dA (16.3-8)
xe0D*
s: 400 A
ol /4" (€,t)=§,§kJ' onSR s+ Exslep) A, (16.3-9)
xe0D*
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and

A= = plo,0Y A= ) 4+ (0cs) " Cmi, jg,,,a,cb?f,‘:j,-jjis""’(g,t) , (16.3-10)

Tpg o =~ TS 4 Eiy, (16.3-11)
with

B S ) = (Or— &5 A+ Esxles) dA, (16.3-12)

xe0D*
‘3’2 i ’}‘ S=E N = O~ EE) J ah,-f}”‘(x,t +Exlcg) dA . (16.3-13)

Similarly, the incident wave in state B is taken either as the uniform plane P-wave

(e 5BP PRy = (e VP (- B xslep) (163-14)
with

T3 =~ [0, ,BEVED) + 2uBE VDB By | (163-15)
or as the uniform plane S-wave

(g 025 = {Tpa V)b - Byxsles), (16.3-16)
with

Tpl,;t}s =5 (Vg +/3,f VS, (16.3-17)

In the far-field region, the scattered wave in state B is represented as

$;B; P00 sBPoo ’ s;B;S,00 sBSoo ’
{ SB,viB}(x t) { pq W r }(gt ‘x VCP) + { P.q WV r }(gt Ix '/CS)
4Jrcp x| 4chs [x]
x[1+0(¥I D] as I¥loee with x'=IxIE, (16.3-18)

in which, on account of Equations (16.1-27), (16.1-28) and (16.1-31)—~(16.1-38) (note that the
surface source representation for the far-field scattered wave amplitudes is used),

;B;P,w -1 50 S;B;P.m -1 Oh'\B;P,eo
VBP=E = p o, &N +(pcp) Cim,i, EmOPrii; 6D (16.3-19)

e 3B = 2! 18, Gt + 20T ey . (163-20)
with
& B ) = E,Ekj OByt + Egx lep) A, (16.3-21)
x€0D*
dﬁf’z’c ,B,P (€D =55 J ah,-ff(x,t +Exglcp) dA, (16.3-22)
xed D
and

S ) = 57,8 BIE )+ o9 Cim kP ED . (16329



538 Elastic waves in solids

T (e Rt (16.3-24)
with

af BiSeEn = (Or = &:E0) J (x,t+§sxs/cs)dA (16.3-25)

?’i PISEE) = Ori— EE0 SRt + Egxsleg) dA . (16.3-26)

xe0D*

If the scatterer is penetrable, its elastodynamic properties in state B are assumed to be the
time-reverse adjoint of those pertaining to state A. If the scatterer is impenetrable, either of the
two boundary conditions given in Equation (16.1-3) or Equation (16.1-4) applies. These
boundary conditions apply to both state A and state B, and are, therefore, time-reverse
self-adjoint.

To establish the desired reciprocity relation, we first apply the time-domain reciprocity
theorem of the time correlation type, Equation (15.3-7), to the total wave fields in the states A
and B, and to the domain D° occupied by the scatterer. For a penetrable scatterer this yields

Ao J | Cl-Toig T R)0) + Co(T @p i) dA =0, (16.3-27)
xe0D*

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
scatterer, Equation (16.3-27) holds in view of the boundary conditions upon approaching 0"
via 0. In Equation (16.3-27) we substitute

(Tt} = {ryg + Ty it 4 ph (16.3-28)
and
(T i) = (oop +2SBB 4 5By (163-29)

Next, the time-domain reciprocity theorem of the time correlation type is applied to the incident
wave fields in the states A and B and to the domain 2°. Since the incident wave fields are
source-free in the interior of the scatterer and the embedding is time-reverse self-adjoint in its
elastodynamic properties, this leads to

Ahrpa J V|-t T ) + C (T i) da =0, (16.3-30)
xe0D*

Finally, the time-domain reciprocity theorem of the time correlation type is applied to the
scattered wave fields in the states A and B and to the domain D°. Since the embedding is
time-reverse self-adjoint in its elastodynamic properties and the scattered wave fields are
source-free in the exterior of the scatterer and satisfy the condition of causality, this leads to

At rpa J‘ Y [Cilotpig T + Cul (g v )] a
xedD*

= limA_*mAL,,,p,qJ’ [C,(— Jy ) x,0) + Co(=J (7, 7 ) vy ,x t)} dA ,(16.3-31)
x€5(0,4)
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where $(0,4) is the sphere of radius 4 with centre at origin O of the chosen reference frame.
From Equations (16.3-27)—(16.3-31) we conclude that

+ ;A ;B , s;A i;B,,
Am,,,p,qJ‘ i [Cimy g T OFRt) + Clltia T 0 )iit)
xe0D*

+CT @it + CiT e v ] dA

i A ;B
+limp Ay, g J (A At A )
xeS5(0,4)
$;B, . S1A,
+ Ty hn]da=0. (16.3-32)

Equation (16.3-32) holds for both incident P- and incident S-waves. The ensuing reciprocity
properties have to be discussed for the two types of incident waves separately.

Two Incident P-waves

In the case of two incident P-waves we take {r;ff;,vi,;A} = {rpif;‘;P ,vi,‘A;P } (Bquations (16.3-1)

and (16.3-2)) and {z,’8,vi®} = {57 yBF} (Equations (16.3-14) and (16.3-15)). Then, on

account of Equations (16.3-6)—(16.3-9) we have

+ S;A 1;B;P, | LBP, SA,
Arrpa J W [Col=rpt PPy t) + G apg Vi )| dA
S

xedD
+ , A B;P B;P_s;A P P
= Am,r,p,qJ' dt f Vm [—r; w )W, =T, 0, (x,t')] b (t' - Bs xslcp—t) dA
t'eR. xedD®

=J' B =y dt Ay g J' V[t et - B xlepyVEE
t xed

”ER D
B,P s;A, .4 P
~Tpg Vet — By xs/cp)]dA
=pv P I P - 1 pFAP T vy a (16.3-33)
t"eﬂ(,

and on account of Equations (16.3-19)—(16.3-22)

+ s;B, ;AP i,A;P $;B,,
AmmJ. I [T ) + Cilryg 10 P ) da

xe0D
= Mo J dt’J- V[ ~img WP — TP )| a (¢ - afx,lep — 1) dA
reR. & xedD’

_—_J aP(t” —-fd” A;,,,, P J‘ Vi [-—r; ;:(x,t” + aSP xs/c}p)VrA P
t'er. xedD*
- Tp’?‘;Pvi;B(x,t” + asP xs/cp)] dA
=pV AP J & -y @h myar . (16.3-34)
t =3
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Furthermore, we have

lmp el pg f V| CHT e TP )0) + CT ) vs A )] dA
xes(o,A)
APoo s ALS, 00 ’,
[ aa : g &' = |xlicp)  tpp (& - Ixlle)
m’»qu m 2 2
VeR, drcp 4rmcs

4rch P 47rc§

B P,oo ’ 1B;S,00
T EY = xllep=1) Ty (& - /e~ 1)

4nc% 4nc§

y (V?B;P "G - Isllep=1) | PTG lalieg = )

ySabemE bellcp) VA= ¢ [xllcg)

2
4.7'[6‘ P 47 S

1 -3 §;A;P,00 iBiP,oo, g s
=— J' [ Vi AP WP 1 - 1)
8 t'eR. e

where £ is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-32)—(16.3-35) lead to the desired reciprocity relation for
the far-field scattered wave amplitudes

erB;PJ- bP(t” _ t)ItVf-;A;P’m(ﬂP ;/) dt"+pV J dP(t”_t)ItVf.;B;P oo(aP t”) dt”
teRr. t”ER

- _[ pep i NPT E WY -
8 reR. Jgeq

+pcs VNS EWIEITE Y - 1) dA . (16.3-36)

Two incident SSwaves

In the case of two incident S-waves we take { Ty, q A} ={ r‘ A ‘ AS } (Equations (16.3-3)
and (16.3-4)) and {z55,viB} = (i8S ,iBiS} (Bquations (16 5. 16) "and (16.3-17)). Then, on
account of Equatlons ( 16 3-10)—(16.3-13) we have
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:B:S. 1B;S.
A;,,,,p‘qJ. Vo | ClTa TP 0) + Cy =T (055 o A aa
x€0 D
B:S s;A
mrp,qJ‘ j pq(xt)v ~4pg : (x,t)]b(t "ﬂsX/cS 1) dA
te

= j V(" - 1) at" A, J V|2 + Bxil e VS
t"eR. xeoD*

BS sA

—Tpq vr (xt"+ ﬂs X, /cs)]

=pv S j b5 = LSS5 1) dr (16.3-37)
t”ER.
and on account of Equations (16.3-23)—(16.3-26)

SA; A;
A;r,P,qJ. [C,( - q),lr sxt)"‘C,(- A 0SB )xt)}
A TP J j p q (x t )V TpAqu,s. Blxt )] a (t - asxs/cs -9dA
t'e xeaa)‘

S B N A;S
= J. a@ -rd” Am - J. Ym [—Tps,q (et +agxg/cg)Vy
t"eR. xeoD*

AS sB

=T vy xt"+a xs/CS)]

=pv S J A" - VB =@S ry dr” . (16.3-38)
t

"7 e R‘
Furthermore, we have

limA__,mA;’r%qJ‘ Vs | Celtpig TIOE).0) + T ) vy )] dA
xE.S(OA)

APM 1AS 00 ’

5 Tg Gt = Ixllcp) Ty (& ~ Ixlicg)

=| A g | Enl|- - >
teR 4.7!CP 4.7[CS

VyBP=E Y Ixllcp - 1) . VB  ~ xlleg~ 1)

4mct P 4Jrc§v

s B Poo $;B;8,00
G —Ixllcp=1) T2 (X ~ Ixlicg~ 1)

4nca P 4nc§

wAP=E ¢~ 1xl/ep) L ASe (g 1~ xlles)

Aricy P 4nc§

dA
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1 ’ =3 $;A;Po0 e s $iBiPeo g
) J. dt J. [PCP vy W T - 1)
8 t'eR, &en

+pes ViNSmE WP — )] aa (16.3-39)

where £ is the sphere of unit radius and centre at 0 and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-32) and (16.3-37)—(16.3-39) lead to the desired
reciprocity relation for the far-field scattered wave amplitudes:

pvy ;SJ- b~ DLy ) dr
l”EK

+pV S J' A" - OIS0 1y ar
t"eﬂ(_
dtl

1 =3 SiAPo g i ;BP0 g
=—— J [ v AP~ WP 1~ 1)
8 t'eR &eQ

+pes VPSS E ST - ] aa. (16.3-40)

An incident P-wave and an incident Swave

In the case of an incident P-wave and an incident S-wave we take {ri;A,vir‘A} =
LAP (AP . iiB i:B i;B;S iBiSy bk .
{rp;q’ 2y} (Equations (16.3-1) and (16.3-2)) and {rp;q V)= {7pig "v2 "} (Equations

(16.3-16) and (16.3-17)). Then, on account of Equations (16.3-10)—(16.3-13) we have

A i;B:S. i;B;S, s;A
Do J- Y [Cutpig 3075 + C-T @ iR da

x€dD
= A, MJ' dr’ J Y [Ty G WE = TS SR ) b5 - B v fo - 1) da
t'er. xeoD*

= J‘ b5 " -0nde” A;’r’ P J‘ Vm [—r; ;;(x,t” + ,Bss xs/cS)V,B;S
t"eR. x€0D*

- Tp}?,}svi;A(x,t” + ,BSS xs/cs)} da

=pV S J B - p1ySAS=85 1y ar (16.3-41)
t”GK
and on account of Equations (16.3-19)—(16.3-22)
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3A; ; ;
Al ,,Mj Y [CHT @D B xt) + Col=ri a5 dA
Ahrna J J 2@ W - TR ) d (¢ - afxdep - 1) dA
t'e

P + ;B P A;
+J' a(t"=0dt" By pg j Vi [—-r; 7 (xt” +og xg/cp)Vy P
t’eR. xe0D’

~ TP + afx fep)| da
=pV AP f aE @ = )Pl ar . (16.3-42)
I”EK

Furthermore, we have

1imA_>wA:;,r,p,qj V|G T OEP)0) + (T Ty v )] dA
xe.s‘(O,A)
A o0 AiS00, e,
o T G~ llep) T S E L = Ixlicy)
= At Apyrpq Em 2
reR 4Jrcp 4ncg

WP & - Ixlicp - 1) n R el )

41!0%: 47“‘??

o~ Wllep=1) TSN —lxI/cs-—t)

+
4JICP 4.7ICS
5;A; P00 s;A;S, 00
V). (&t —Ixllcp) v, (&t = Ixl/cg)
2 + 2
4rcp 4rcy

=—;—J' dt’j [ocr AP @B g -
t'eR. &en

+pes VST EWEPSTE - 1) dA (16.3-43)

where £ is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-32) and (16.3-41)-(16.3-43) lead to the desired
reciprocity relation for the far-field scattered wave amplitudes
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pVB'SJ bs(t” t)Itvi sA; Sw(ﬂs,f”) dr” +erA;PJ. aP(t” - t)I,Vf-;B;P’w(aP,t”) ds”
t

I/Ex
R (A 9 Vol (F )
tex e
+pes VRS E WS gy~ )] dA. (16.3-44)

Complex frequency-domain analysis

In the complex frequency-domain analysis, the incident wave in state A is taken either as the
uniform plane P-wave

(BP0 AP) = (1P v A)a P (s) explsafxlep) (16.3-45)

with
AP_ -1 P, AP P,AP, P P

Ty =~cp' |40, V) + 2uel VDot e | (16.3-46)
or as the uniform plane S-wave

(Bpig S0 A5 = (TS vA)1a(s) exp(-sagxles) (16.3-47)
with

TpAqS —c5' #(aSVA Sy asVA 5. (16.3-48)

In the far-field region, the scattered wave in state A is represented as

2 S;A o  SAPoe 5 AP —slx’l/
{ps;\ SA}(x 5) = { AP 3 AP, }(g’s)exp( slx’l/cp)

2
4scp 1x'|

+ {ASASm’AsASoo}(g )exp(—slx l/cs)

4rck ||
x [1+0(x'| —1)] as |x’|oe with x"=[x|E, (16.3-49)

in which, on account of Equations (16.1-76) and (16.1-77) and (16.1-80)—(16.1-87) (note that
the surface source representation for the far-field scattered wave is used),

A SiAPeo _ =1 2 0f APy ah JAPyoo
pShPe o1 +5(0p)” Cooms fEmPeri s (16.3-50)
~ 83 AP0 -1 A S AP0 A 8;ALPeo
B = 3 18, (&™) + 2SI IEE, ), (16.3-51)
with
¢ P =§r§kJ. exp(sésx,/ep)df A xs) dA (16.3-52)
xe0D*

B =68 J exp(sEsx/cp)h (x,s) dA (16.3-53)
xe0D*
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and
038 = g BT A 1 (009 Copm En B (16.3-54)
A S AS A A 00, A A 0,
Eo S = =S P A + £ (16.3-55)
with
A8, 00 S:A
(pr?f.u 5= Opi— £ J CXP(SEsxsks)af (x,5)dA, (16.3-56)
A S;A; 00 ‘ AsiA
BN = (6, - E5) j explsE e A 0es) dA (16.3-57)
xe0D°
Similarly, the incident in state B is taken either as the uniform plane P-wave
(5B 5By - (7B VEPYEP(s) exp(-sBTx lep) (16.3-58)
with
B;P -1 Py, B:P
Tpq =cp [ q(ﬂk Ve + ouBl v )ﬂpﬂq] (16.3-59)
or as the uniform planc S-Wave
~1B;S 4 i;B;S ;s X S
{ 3 , b} = AT, pq WV, 2Yb (s) exp(=sBy xglcs) » (16.3-60)
with
B:S Sy BS Sy BS
Ty =—Cs HBy Vg ) +BaVp ) . (16.3-61)

In the far-field region, the scattered wave in state B is represented as

exp(-six’|/cp)

A A A B 00 A B Cd
(g0 PYws) =| {ipg T B0y (G ) ———5—
4recp |x'|
oo - ’/
+ {AsBsoo,AsBs 1€, )SXP( Sile'cs)
4mcs |x|
X [1+ O(x’| _1)] as |x'|>oe  with x'=[x|§, (16.3-62)

in which, on account of Equations (16.1-76), (16.1-77) and (16.1-80)—(16.1-87) (note that the
surface source representation for the far-field scattered wave is used),

5 SiBiPoo _ 1 53 B;Pyeo A°\B;P oo
vs =sp qsi‘af +s(pcp) Ckm i ]'Sm rak,;,J , (16.3-63)
z B P°° _1 3 B P°° A B Poc
tg = =Ch [0 &) + 2OV, (16.3-64)
with
Y B gl | explElepdfitxs) A, (16.3-65)
xe0D*

‘:ﬁrt?l}cl,i,;}3 Pk rEkJ . exp(s&xs/ Cp)aﬁi,sjp(x,S) da, (16.3-66)
xeoD*
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and
55855 = s Y B 4 (0™ Comi om B, (16.3-67)
< 5:B;S 00 L sBiSeo | asiBiSeo
BB TP TEST + E P (16.3-68)
with
‘75?".:3 5% = - &80 exp(sEsx,/c)df o (x,s) dA (16.2-69)
xc0D*
2 9h°;B;S,00 o g
Prrii =0k E50) j exp(sExslcs)oh; jB(x,s) dA . (16.3-70)
x€0D°

If the scatterer is penetrable, its elastodynamic properties in state B are assumed to be the
time-reverse adjoint of the ones pertaining to state A. If the scatterer is impenetrable, either of
the two boundary conditions given in Equation (16.1-51) or Equation (16.1-52) applies. These
boundary conditions apply to both state A and state B, and are, therefore, time-reverse
self-adjoint.

To establish the desired reciprocity relation, we first apply the complex frequency-domain
reciprocity theorem of the time correlation type, Equation (15.5-7), to the total wave fields in
the states A and B, and to the domain D° occupied by the scatterer. For a penetrable scatterer
this yields

Arrpa J Vo [ (502 (eim5) = Ty (s}, ()| dA =0, (16.3-71)
XE

DS

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
scatterer, Equation (16.3-71) holds in view of the boundary conditions upon approaching 9D°
via 5. In Equation (16.3-71) we substitute

{ApAq’ A}_{AIA Aps:,uA_'_{}sA} (16.3-72)
and
(g2 = (B + im0 P 4977y (16.3-73)

Next, the complex frequency-domain reciprocity theorem of the time correlation type is applied
to the incident wave fields in the states A and B and to the domain %. Since the incident wave
fields are source-free in the interior of the scatterer and the embedding is time-reverse
self-adjoint in its elastodynamic properties, this leads to

A:z,r,p,qJ‘ V[ ~Epia (.50 (ms) = £ (,-5)0 A (x,5) | dA = 0 (16.3-74)
xeoD*

Finally, the complex frequency-domain reciprocity theorem of the time correlation type is
applied to the scattered wave fields in the states A and B and to the domain ¥, Since the
embedding is time-reverse self-adjoint in its elastodynamic properties and the scattered wave
fields are source-free in the exterior of the scatterer and satisfy the condition of causality, this
leads to
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B va [~pig 09 Rms) - £ 6994 w,5)] dA

=limy oA s 5 g j [~ ) P ms) ~ £ R ()0 S A ) A, (163-75)
%€$(0,4)

where $(0,4) is the sphere of radius 4 with centre at the origin 0 of the chosen reference frame.
From Equations (16.3-71)—(16.3-75) we conclude that

aSA AlB

A .;A
A;.r,p,q j Ym [—r;,q (xvs) (x"‘s) Tpq XSV, (x,-5)
xe0D*

~i;B A S1A P s;B ALA
= Tpig (X,=8)V,. " (x,8) = T q XSV,

. +
+lmp e by 75 g J

(x.)]dA

[—f 5 : (5,59, 5B (x,—s)

xe5(0,4)
~tyr (s x5 dA = 0. (16.3-76)

Equation (16.3-76) holds for both incident P-waves and incident S-waves. The ensuing
reciprocity properties have to be discussed for the two types of incident waves separately.

Two incident Pwaves

In the case of two incident P-waves we take {r‘ AT Ay = ( ‘1; é“ P ‘ APy (Bquations (16.3-45)
and (16.3-46)) and {755,018} = {E 18P 1B P) (Equatlons (16. 3-58) and (16.3-59)). Then, on
account of Equahons (16 3 50)—(16 3 53) we have

A;,,., p’qj v, [ 'y (x s)v,l (x,—s) - 2 Tpg (x,—s)v (x,s)] dA
x€0D*
ASA B;Pas;A
= A;,,r’ p’qJ- v [— ps q &% )V -Thq ,s (x, s)] b (—s) exp(sf, xS/cP) dA
xedD*

=5 oV BB s S AP 8P ) (16.3-77)
and on account of Equations (16.3-63)—(16.3-66)

Anroa J Vi [ =)0, A (5 = £ (0,599, 5B2-)] A
xedD*
8B APA B
=A:;’r,p’q J. [ ps g % s)V TpgV s (x,—s)]a (s) exp(—sa, xg/cp) dA
xe0D*

=5 pv AP sy BP0l ) . (16.3-78)

Furthermore, we have
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R + A S A ~s;B # s;B A SIA
limp ool p g J‘ V|~ (505 (ms) = B (,-5)0, (x,5)] dA
xe5(0,4)

ASAPOO(g ) ASASN(g )
J- En —29——————— exp(~slx|/cp) - -M————-—- exp(-sixl/cs)
€ 4JTCP 47 CS

A 8;BiP,oo A 8;B;S 00
v - v -
4 (f exp(six|/cp) + -r——-—(g——fz exp(slxl/cg)
4stcp 4mcy

ASBPOO(g_ ASBSN(g )
+ —M—————-—— exp(sixl/cp) - —M————-—— exp(slxl/cg)

4Jl’Cp 471'Cs
A 8;A;P00 A 8;A8,00
v 9
e ~r———-i(—§—) exp(—slx|/cp) + _____@__2 exp(-slxl/cg) || dA
4.7[CP 4.71'CS

= 12j (e 58P )5 (8 )
e

87
+ pes 9N E s B ) A (16.3-79)

where £ is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-76)—(16.3-79) lead to the desired reciprocity relation for
the far-field scattered wave amplitudes

pVBP GPCggpSAP=gP o | Loy AP GP o sBiP o P

) I L D )

e

+pcs 3AS A;S,e0 (g )ASBSM(g,—S):IdA . (163-80)

Two incident Sswaves

In the case of two incident S-waves we take {r‘ {;‘ BAY = {i‘ sAS $LASY (Bquations (16.3-47)
and (16.3-48)) and {£18,95B} = (23S ‘BS) (Equatlons (16 3- 60) and (16.3-61)). Then, on
account of Equations (16 3-54)-(16.3- 57) we have
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+ A BS A BS a A
Am,r,p,qj i [ pq(x 9,5 ,-5) - 1;‘1 (=), (x,s)}
xeo0D

B Sa A PS S
=A:Ln,r’p,q J. st [ oy (x,s)V Tpq o (x,s)}b (—s) exp(sfs xs/cg) dA
xeo

= 5 pVBSp S5y 54585 ) (16.3-81)
and on account of Equations (16.3-67)—(16.3-70)

A P AS
Arpa j V[~ E )0 A5 (5) = £)35 00,00 5P () | A
xe0D*

As;B A S s;B
= A b J- V[ s VS = Ti5 3P x,-5)] @ 5(s) exp(-sasxsles) dA
xe0D*
=5 pvASa ()9 SBS=(aS ) | (16.3-82)
Furthermore, we have
HmA el 7 pg J [~ (50, B t,m8) — 20 ()0, ()] dA
xeS5(0,4)
A 8;A;P,00 A S, A S
T (D) T “(&.5)
= A:;,r, P j Enll— ~E~q———2—— exp(—slx|/cp) - _g_q______ exp(-slxl/cg)
4.7TCp 4.7!?Cs
A ;B P,oo A $;B;S,00
\ s -s
X ~r————~—(2§——2 exp(slxl/cp) + ———-—(Zg—ﬂ exp(slxl/cg)
4rcp 4rcy
A 8;B} P00 2 8B;S 00
7, \—S
+ |- _e_q__(f_) exp(six|/cp) — -Lq(—g exp(slxl/cg)
4JTCP 47[CS
A S; AP0 A S3A;S, 00
Y S
X —1———~2(—§——) exp(—slx|/cp) + ___gg_) exp(=slxl/cg) || dA
» 4JL'CP 4.7ICS
1 —_3A OO A oo
=—;J' (e 5 5P o B5P =g )
Een
+pes DS PE —) aA, (163-83)

where £ is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-76) and (16.3-81)—(16.3-83) lead to the desired
reciprocity relation for the far-field scattered wave amplitudes:
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2 83A;8,00 AsS S AsBS°°

5oV PS 65 35785 5) + 57 pv A 85 (5)0 P50 S —s)
== | [P B )
&eQ
+pe S48 90 5B (g )| aa (16.3-84)

An incident P-wave and an incident Swave

In the case of an incident P-wave and an incident S-wave we take {r pia ‘A} =

{£585P AP (Bquations (16.3-45) and (16.3-46)) and {718,958} = (£ 1835 5 BiS} (Equations
(16 3 60) and (16.3-61)). Then, on account of Equations (16.3-56) and (16.3-57) we have

+ ASA A1;B;S A1B;S ASA
Mrpa j V[ )0 B ,m8) = B S =) 4 ,5)] dA
x€dD'

- A SIA
N _[ V|5V - TB55 5 1,9)] 5 5(s) exp(spSxyleg) dd
xeoD*

=S_1p Bsb - )As,Asmw 5) (16.3-85)

and on account of Equations (16.3-63)—(16.3-66)

D J;ewu [~ B )54 (r,5) = 2P () B (,s)] dA

8B APA B
= A;,r,p,q .Lea [ ps q s)V S (2~ s)] a (s) exp(—sa, x,/cp) dA
D

A,PP

=5V AFaP (5 5B @f —5) . (16.3-86)

Furthermore, we have

0SB ms) = B ()0, A ,5)] dA

limA._),‘,A;',' g J Vi [ (x SV
x€5(0,4)

ASAF (g 5) ,\sASw(g 5)
= f £ |- 2L explsirticy) — 2L—= exp(-six/cs)
47KCP 4JTCS
(o 5B;Poo p B
V, ) ¢ S
x r_# exp(slxl/cp) + r__(f__) exp(six/cs)

( g SBPee ) § SIS o)
+ _zg_______ exp(sixl/cp) — J’—q————-——- exp(slxl/cs)

4.7TC P 4.7'5(.‘ S
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AS;A;P,‘” ASAS»
v, "y
X ~r__2L§_) exp(-slx|/cp) + -—-£—) exp(=slxl/cs)
4.71:(_?p 4 S

— — 3ASAP ASBP” _
=7 geg[pc “(E5)0 (g )

T pcs S SAS=(g, )AsBSw(g’_s)]dA’ (16.3-87)

where £ is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-76) and (16.3-85)—(16.3-87) lead to the desired
reciprocity relation for the far-field scattered wave amplitudes:

s—lerB;SB - S)OSASoo(ﬂ 'S 45 pVAP AP(s)f)sBPw(aP,__s)
1 =35 8AP00 g o §;B;Pyoo
=== | [pp 03P (08Bl )
e
+pcs B S5 (E 50 5B (g ~5)] dA (16.3-88)

In a theoretical analysis, the reciprocity relations derived in this section serve as animportant
check on the correctness of the analytic solutions as well as on the accuracy of numerical
solutions to scattering problems. Note, however, that the reciprocity relations are necessary
conditions to be satisfied by the scattered wave field (in the far-field region), but their
satisfaction does not guarantee the correctness of a total analytic solution or the accuracy of a
total numerical solution. In a physical experiment, the redundancy induced by the reciprocity
relations can be exploited to reduce the influence of noise on the quality of the observed data.

16.4 An energy theorem about the far-field forward scattered wave
amplitudes

A special case arises when in the reciprocity relations of the time correlation type derived in
Section 16.3, state A and state B are taken to be identical states. Since the superscripts A and B
are then superfluous, they will be omitted in the present section.

Time-domain version of the energy theorem

In the time-domain version of the theorem we start from Equation (16.3-27), take state A
identical to state B, and consider the result at zero correlation time shift. Furthermore, for the
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case of an elastodynamically penetrable scatterer, the solid occupying the scattering domain

D*is no longer assumed to be time-reverse self-adjoint, i.e. it may have non-zero elastodynamic
losses. Thus, we are led to consider the expression

Arpa j VmCr(=Tp, Ty (v)i%,0) dA
xe0D*

= A;J'.Pv‘IJ‘ VmCt(Jt(-r ,q):vr;xio) dA
X0

=4y, MJ. dt’J U [~Tp, gt W, (x1") ] dA = -W*, (16.4-1)
teR, xeoD*
where
Wa=j P dr (16.4-2)
reR

is the total elastodynamic energy absorbed by the scatterer and

PYt) =0 pg J V[T gt W, (0,0")] dA (16.4-3)
xe0D'

is the instantaneous elastodynamic power absorbed by the scatterer. (Note that the minus sign
in front of the integral sign on the right-hand side of Equation (16.4-3) is due to the fact that
power absorption by the scatterer is affected by an inward power flow, while v,,, points away
from the scatterer.)

Next, we substitute in the right-hand side of Equation (16.4-3) the relation

{tp,q.v,) = {T;,q + T’i q,vi, + vi} , (16.4-4)
and observe that the incident wave dissipates no net energy upon traversing the domain D%
occupied by the scatterer when this domain has the elastodynamic properties of the lossless
embedding. Hence, with

Pi(t’) = —A;,,,_p’q f Vi [—r;,q(x,t’)vi,(x,t')]dA (16.4-5)
xedD*

as the instantaneous elastodynamic power that the incident wave carries across 02° towards
the domain D°, we have

wi=| Piar=o0. (16.4-6)
t'eR,

Furthermore, the total elastodynamic energy carried by the scattered wave across dD° towards
the embedding is introduced as

ws= J Pt dr, (16.4-7)
t'eR.
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where

Pt) =M pa J. V[~ Tp gt W) dA (16.4-8)
xe0 D

is the instantaneous elastodynamic power that the scattered wave carries across 09° towards
the embedding. Using Equations (16.4-4)—(16.4-8) in Equations (16.4-1)—(16.4-3), it follows
that

- J dt’ B s o J Vo [T gt WAOE') = T3 g0 ()] dA
teR xedD*
= Wa+ WS' (16.4'9)

Equation (16.4-9) holds for an arbitrary incident wave field, in particular for both an incident
plane P-wave and an incident plane S-wave. The ensuing energy theorem differs for the two
kinds of incident waves and the two cases will, therefore, be discussed separately below.

Incident P~wave

First, the incident wave is taken to be the uniform plane P-wave

{Tpl,q,vlr} { pq,V Pvfa- axxs/cP), (16.4-10)
with
Ty =~cp' [0, ok V) + 2 Vbt . (16.4-11)

Using Equations (16.4-10) and (16.4-11) in Equations (16.1-31), (16.1-33) and (16.1-36) it
follows that

__J. d¢ Am’r 2. J. Vi [—-‘L’;‘ q(x,t')v,s(x,t’) - 1:;' q(x,t')vir(x,t')] dA
r'eR. x€0D°
=—pv’ J NSt vy ar. (16.4-12)
t'er
Substitution of Equation (16.4-12) in Equation (16.4-9) leads to
—-erPJ a (t )I,vipm
t'eR.

@ ydr=wi+w". (16.4-13)

Equation (16.4-13) is the desired P-wave time-domain energy relation. It relates the sum of the
elastodynamic energies absorbed and scattered by the object to the scattered P-wave amplitude
in the far-field region, for observation of this wave in the direction al of propagation of the
incident plane P-wave, i.e. in the “forward” direction, or “behind” the scatterer (Figure 16.4-1).
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Figure 16.4-1 Elastodynamic scattering configuration for the energy theorem about the far-field
forward scattered P-wave amplitude.

Incident SSwave

Secondly, the incident wave is taken to be the uniform plane S-wave

{ r},q,vi} = {Tpsiq,VrS}as(t — agxlcs), (16.4-14)
with
s -1 S8 S8 . ‘
Tpq=—cs W@V +agVy) . (16.4-15)

Using Equations (16.4-14) and (16.4-15) in Equations (16.1-32), (16.1-33) and (16.1-37) it
follows that

At i s i
_J dt Amrpg J Vi [— pyq(x,tf)vﬁ(x,t') -7, q(x,t')v;(x,t/)] dA
teR. xedD*

=—pV* J SV @Sy ar. (16.4-16)
teR.
Substitution of Equation (16.4-16) in Equation (16.4-9) leads to

VS J- SOV @ rydr =wr+ w". (16.4-17)
t'eR.
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—— —

Figure 16.4-2 Elastodynamic scattering configuration for the energy theorem about the far-field
forward scattered S-wave amplitude.

Equation (16.4-17) is the desired S-wave time-domain energy relation. It relates the sum of the
elastodynamic energies absorbed and scattered by the object to the scattered S-wave amplitude
in the far-field region, for observation of this wave in the direction @’ of propagation of the
incident plane S-wave, i.e. in the “forward” direction, or “behind” the scatterer (Figure 16.4-2).

1t is noted that for a lossless elastodynamically penetrable scatterer we have W2 = 0. Also,
W? = 0 for an impenetrable scatterer, since the right-hand side of Equation (16.4-3) then
vanishes in view of the pertaining boundary conditions (Equation (16.1-3) or Equation
(16.1-4)). Note also that in the derivation of the result we have nowhere used the linearity in
the elastodynamic behaviour of the scatterer. Therefore, Equations (16.4-13) and (16.4-17) also
hold for non-linear elastodynamic scatterers, subject to the condition, of course, that the
embedding retains its linear elastodynamic properties.

Complex frequency-domain version of the energy theorem

In the complex frequency-domain version of the theorem we start from Equation (16.3-71) and
take state A identical to state B. Furthermore, for the case of an elastodynamically penetrable
scatterer the solid occupying the scattering domain 2® is no longer assumed to be time-reverse
self-adjoint, i.e. it may have non-zero elastodynamic losses. Thus, we are led to consider the
expression
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L Anrpa Lea Vi [~ g(6,8)P,(X,=8) = 2, 4 (5:=5)D,(%,5)] dA = P *(s) , (16.4-18)
st

where the symbol on the right-hand side has been chosen for reasons of equivalence with

Equation (16.4-3) and the factor ~ in the left-hand side has been included because of its

occurrence in the time-averaged elastodynannc power flow of sinusoidally in time-varying

wave fields. It must be stressed, however, that £ 3(5) is not the time Laplace transform of P 2(2).
In the left-hand side of Equation (16.4-18) we now substitute the relation

{Tpg¥r) = &, tpgt Tpgdr 100, (16.4-19)
and observe that
LA g J' |2 08I0 5i=5) = £ 5)9, )| dA =0, (16.4-20)
xedD’

since the solid in the embedding has been assumed to be time-reverse self-adjoint.
Furthermore, we introduce, by analogy with Equation (16.4-8), the quantity

P =1 A0 0a J. Vi [—-‘f;’q(x,s)ﬁ,s(x,—s) -, q(x,—s)ﬁf(x,s)] dA (16.4-21)
xedD*

that is associated with the elastodynamic power carried by the scattered wave. Using Equations
(16.4-19)—(16.4-21) in Equation (16.4-18), it follows that

+ Al AS AS Al
- % Anrpa J. Vi [—tp’q(x,s)vr (x,—8) — Ty g(X.5)Vy (X,-5)
xe0D’

B DS (8,8) = g (1), (0,5)| A = B (s) + P(s) . (16.4-22)

Equation (16.4-22) holds for an arbitrary incident wave field, in particular for both an incident
P-wave and an incident S-wave. The ensuing energy theorem differs for the two kinds of
incident plane waves, and the two cases will, therefore, be discussed separately below.

Incident P-wave

First, the incident wave is taken to be the uniform plane P-wave

{7 pq,ﬁl}-( p’q,V }a (s) exp(——sasxs/cp) (16.4-23)
with A
P -1 Py, P P, P P
Ty =—Cp [A8, gt Vi) + 2u(af Vo | (16.4-24)

Using Equations (16.4-23) and (16.4-24) in Equations (16.1-82), (16.1-84) and (16.1-87) it
follows that
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Figure 16.4-3 Elastodynamic scattering configuration for the energy theorem about the far-field
forward scattered P-wave amplitude.

1 + A 1 AS AS A i
~iBmrpaq J. Vi [— 0,gCESWVr (X,—8) — T, 1 (X,5)V,.(x,—5)
xeoD*

— B} )P (05) = B3 4(6)P (k)] A
=157 [VFaP 0P @5 - via s Pl s)). (16.4-25)
Substitution of Equation (16.4-25) in Equation (16.4-22) leads to
== 157 [VFa (5950 (ah -5) - VAT (=0 5P (@F5)| = B¥s) + B¥s) . (16.4-26)
Equation (16.4-26) is the desired complex frequency-domain P-wave energy relation. It relates
the sum of the quantities P 3(s) and P 5(s) to the scattered P-wave amplitude in the far-field

region for observation of this wave in the direction of propagation of the incident plane P-wave,
i.e. in the “forward” direction, or “behind” the scatterer (Figure 16.4-3).

Incident Swave

Secondly, the incident wave is taken to be the uniform plane S-wave
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{f’;f,q’ﬁri }= {Tps,q,VrS}ﬁ S(s) exp(-sajxlcs) , (16.4-27)
with
T;fq =5 [a,quS + agV,f] . (16.4-28)

Using Equations (16.4-27) and (16.4-28) in Equations (16.1-83), (16.1-85) and (16.1-88) it
follows that

+ Al AS AS Al
- % Amrpg J. Vin [——rp’q(x,s)v, (x,—5) = Tp g (X,5)Vr(X,—5)
xe0D*

— i (SIS (0,8) = B3 (=) P,)] A
=157 0[S0 (@9 - Vi 05 @ 9. (16.4-29)
Substitution of Equation (16.4-29) in Equation (16.4-22) leads to
=35 P [V at 5@ -9 - Vi T = P + %) . (164-30)

Equation (16.4-30) is the desired complex frequency-domain S-wave energy relation. It relates
the sum of the quantities P?(s) and P(s) to the scattered S-wave amplitude in the far-field
region for observation of this wave in the direction of propagation of the incident plane S-wave,
i.e. in the “forward” direction, or “behind” the scatterer (Figure 16.4-4).

e ———

- ~

~ —

TS e e

Figure 16.4-4 Elastodynamic scattering configuration for the energy theorem about the far-field
forward scattered S-wave amplitude.
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It is noted that for a lossless elastodynamically penetrable scatterer we have P2=0. Also,
P2a=0foran impenetrable scatterer, since the left-hand side of Equation (16.4-18) vanishes in
view of the pertaining boundary conditions (Equation (16.1-53) or Equation (16.1-54)). For
imaginary values of s, i.e. s = jo with we®, Equations (16.4-26) and (16.4-30) are known as
the “P- and S-wave extinction cross-section theorems”, respectively (see Exercises 16.4-1 and
16.4-2). Note that in the complex frequency-domain result (contrary to the corresponding
time-domain result) the linearity in the elastodynamic behaviour of the scatterer has implicitly
been used since the space-time wave quantities have been represented, through the Bromwich
integral, as a (linear) superposition of exponential time functions.

References to the earlier literature on the subject can be found in De Hoop (1985), De Hoop
(1959), and Tan (1976).

Exercises

Exercise 16.4-1

Consider, in the complex frequency-domain P-wave energy relation Equation (16.4-26), the
case s = jo. Observe that, since all time-domain wave quantities are real-valued, the quantities

P5(s) as introduced in Equation (16.4-18) and P(s) as introduced in Equation (16.4-21) have
the property P(s) = P?—s) and P5(s) = P3(~s). As a consequence, P ?(jw) and PS(jw) are
real-valued. Next, introduce the quantity

§¥s) =L pepv Vet (s)a (=) (16.4-31)

that is associated with the elastodynamic power flow density in the incident P-wave. Also§1 (s)
= §i(—s) and hence, $( jw) is real-valued. Furthermore, let

6%s)=Ps)I8(s) (16.4-32)
denote the complex frequency-domain absorption cross-section of the scattering object and
65(s) = P5(s)IS(s) (16.4-33)

its scattering cross-section. Note that ¢ ¥(s) = 7 %(—s) and 6 6 %(s) = 6 5(—s), which entails that
G ¥jw) and 6 *(jw) are real-valued. Show that, for s = jw, Equation (16.4-26) leads to

Im[V; 4P (jw)p 5" @ jo)]
6 %jw) +6°(jw) = oG P P(ja))|2 (16.4-34)
r r

for the uniform plane P-wave incidence. Equation (16.4-34) is known as the extinction
cross-section theorem for the scattering of plane P-waves (see Tan, 1976). (Note: Extinction
cross-section = absorption cross-section + scattering cross-section.)
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Exercise 16.4-2

Consider, in the complex frequency-domain S-wave energy relation Equation (16.4-30), the
case s = jo. Observe that, since all time-domain wave quantities are real-valued, the quantities

P2(s) as introduced in Equatlon (16 4-18) and P %(s) as introduced in Equation (16. 4-21) have
the property P (s) = P3-s) and P(s) = P5(s). As a consequence, P 3(jw) and P 5(jw) are
real-valued. Next, introduce the quantity

$¥(s) =1 pegV v, aS(5)a (=s) (16.4-35)

that is associated with the elastodynamic power flow density in the incident S-wave. Also S 1(s)
= §i(—s) and hence, § i jw) is real-valued. Furthermore, let

6%s) =P )18 (s) (16.4-36)
denote the complex frequency-domain absorption cross-section of the scattering object and
6%(s) = PS(s)18 (s) (16.4-37)

its scattering cross-section. Note that 6 %(s) = 6 %(—s) and 0 (s) = & (—s), which entails that
6 %(jw) and 6 5(jw) are real-valued. Show that, for s = jw, Equation (16.4-30) leads to

] Im[V a (—Jw)ﬁssw(as,jw)]
6% (jw) +6°(jw) =—— (16.4-38)
wcg Sy S a8, . 12
Ve Vela®(jo)l
for the uniform plane S-wave incidence. Equation (16.4-38) is known as the extinction
cross-section theorem for the scattering of plane S-waves (see Tan, 1976). (Note: Extinction
cross-section = absorption cross-section + scattering cross-section.)

16.5 The Neumann expansion in the integral equation formulation of the
scattering by a penetrable object

In this section we discuss the Neumann expansion in the integral equation formulation of the
elastodynamic scattering problem. The expansion is an analytic procedure that applies to a
penetrable scatterer. The procedure is iterative in nature and is expected to converge for
sufficiently low contrast of the scatterer with respect to its embedding.

Time-domain analysis

In the time-domain presentation of the method we start from Equations (15.9-5) and
(15.9-20)—(15.9-23), which, through combination of the time convolutions, we write for the
present configuration as
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Tpg(X30) = q(" H- [E),C,( a1~ S0, OO T g 5)
xen*
, , o3
-9,C(G, D, q,k’v ]Sc,'r, - pd(t)dkr,r',vrl;x,x,t)] dvV  for x’ex (16.5-1)
and
vr(x’, t) = V;(x,, t) - [ IC,(G,. l',j"Xl N S; VP qld(t),rpl’ql;x’,x,t)
xen*
+CAG Yt = POy X i)V for xer® . (16.5-2)

For x’e D%, Equations (16.5-1) and (16.5-2) constitute a system of linear integral equations of
the second kind to be solved for {7, ,vr} for xeD® and te R, and with {rp q,vr} as forcing terms.
To solve these equations analytically, an iterative procedure known as the Neumann expansion
is set up. The successive steps in this procedure will be labelled by integer superscripts enclosed
by brackets ([...]). The procedure is initialised by putting

[0]
Tp.g

vO =yl forxer’ (16.5-4)

= 'ri for x’eﬂf, (16.5-3)

Next, the procedure is updated through
+1 ’ h
. p[r; Ity =- J. [—9;Ct(G i’ X g’ = St p, q,(s(t) A q nx'x,t)
xeD*

-9,C(G q,k'ﬂ“k' + = po()dy, ,.f,v,/ ,x xt)] dv forxeﬂ( and n=0,1,2, etc. (16.5-5)

and

+1], .,
Vr[n ](x,t) =—J [_atCI(Gr i ,X‘ g Sl' D qlé(t) T, / r,x,x,t)
xeD’

+ 8,C,(G,:’£r,yz"rf - pé(t)ék',,/,v,['"];x’,x,t)l dv forx’e®’ and n=0,12,etc. (16.5-6)

As can be inferred from these updating equations, the terms of order [n + 1] can be expected
to be “smaller” than their counterparts of order [n], provided that the contrast quantities are
“small enough”. On account of this, it can be conjectured that for sufficiently small contrast of
the scatterer with respect to its embedding the procedure is convergent and we can put

Tpg = 2 rp[’",} for x'e®’, (16.5-7)

—2 v["] for x'e’. (16.5-8)

Assummg that the series on the right-hand sides of Equations (16.5-7) and (16.5-8) are
uniformly convergent, it can easily be proved that {7, ;,v,} as defined by these equations indeed
satisfy Equations (16.5-1) and (16.5-2). To this end we observe that
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_.[ [ CGpy i X0 g = St 1 O Ty g %,0)
xED

3 CUGT sy = POy v )| AV

J- xeD

~ 3,CAGT poiy  — POty 2 vl |d

s < .
tct( P, q' I,Xil,jl,p/,ql —_ Si',j',p',q'a(t)’ 2 ‘[p/’q/,x"x,t)

=-2 [a CGpg R AN a" Sv, a9 ’ /,x 1)
n=0 xeD*

= 3CU Gyl = PO v x| AV
_Z [n+1](x §) = Z [m](x 5 - [0](x 9

= Tp’q(x,t) - tp,q(x,t) for x'e®’ (16.5-9)

and
—I [”atCz(Gn’ o = S, 1 g OO Tt g/ 1)
xeD’

FCUG il v = POOO i, ,t)) AV

j xeD’

+ACAG by = PODO s Y, v i)

vh
=0 CGr, i g = SO0 Z p q”x x,f)

dv

= 2 [ tCt(Grl’ ]"Xl’ Jl P/,q/ — Sll 7 pl q’é(f) 7, / /,x,x’t)
n=0 xeD*
+ atct(Gr‘:j/:"ﬂlsc’,r' - m(t)(sk"r'avr[’”];x/ny)] av

=Y v =S vy - v
n=0 m=0

=v,(¢,) —Vi(x,)  forx'er’, (16.5-10)
where Equations (16.5-3)—(16.5-8) have been used and the interchange of the summations with
respect to n and the integration with respect to x are justified by the assumed uniform
convergence of the series expansions. Equations (16.5-9) and (16.5-10) are evidently identical
to Equations (16.5-1) and (16.5-2), and, hence, the expansions given in Equations (16.5-7) and
(16.5-8) indeed solve the problem.
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Complex frequency-domain analysis

In the complex frequency-domain presentation of the method we start from Equations (15.9-28)
and (15.9-43)—(15.9-46), which are combined to

p q(x$s) pq(x S) J‘ p,q ;’ ]'(x 9xgs) [771’ }’ p’ q’(xys) SS" ]’ p' q’}r ’ ’(x S)

— G @) [ /0) ~ spSy ]9 9 AV for xex®  (165-11)

and

A Ai
V(X' 5) =V.(x8) + J { i ],(x X,$) [17, g S) =SSy it b q,]r 7 g7 (%)
xeD*

~ G ) [E8 ps) - spdp /| P} AV for wer®.  (165-12)

For x’e7®, Equations (16.5-11) and (16. 5 12) constitute a system of linear integral equations

of the second kind to be solved for {%, ,,V,} for xeD*,-and with {7, T 1} as forcing terms. The
Neumann procedure to solve these equations is initialised by putting
o] [0] ’ 3
Tpg = p g forx'ex’, (16.5-13)
9=l forves’. (16.5-14)

Next, the procedure is updated through

P 1 N
[n+ I = J o { D7 (¥5%55) [’71 g p’,q’(x’s)‘Ssi’,j',p’,q'] ’1}5?31’("’")
Xe

~ (G e.5) 68 06.5) = spdyr ] 9 es)} v
for x’eﬂ( and n=0,1,2, etc., (16.5-15)

and

NS
B ](x,s)=+j { 20, R 7, 1,1 (55) = 557, 1t B )

xeD*
— G ) B8 pls) ~ spdyr ] 9 e} av
for x¥'e®° and n=0,12,etc. (16.5-16)

Assuming that the procedure is convergent, we can put

g Z g forwe®, (16.5-17)

5= 9" forxes’. (16.5-18)
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Assuming that the series on the right-hand sides of Equations (16.5-17) and (16.5-18) are
uniformly convergent, it can easily be proved that { fp‘ q,ﬁ,} as defined by these equations indeed
satisfy Equations (16.5-11) and (16.5-12). To this end we observe that

ATh , AS A
- j - {Gp,q,i',j’(x X:5) [ 70 S) = SSi’,j’,p’,q'] Tpg'(%9)
X€E!

= (Glarx ) (68 (55) - spy ] 9,00} av

o0
ATh AS Aln
o J. Gp’q’i"j’(x:x’s) [ i’ljl»p,!q’(x’s) - SSi”jlvp,’ql] Z Tp["i'(x,s)
S
xeD n=0

- (é;,f‘;’kr(x’,x’s) [éks',r'(xJ) - Spék',r'] 2 {)\rl;n](x)s) dav
n=0

) Ath , R .
S0 IR PRI PR SR Y

=0 xeD*

~GF xx.s)[ES - b x5} dv
( p,q,k’(x,x:s) Ck’,r’(x,s) spak’,r' Vo (x,s)

< [+l - by A001,.,
=2 By @) =3, i) -0
n=0 m=0

= Ap,q(x,; §) — fpi,q(x', s) for x'eﬂ(s (16.5-19)

and
A vh ~S R
J‘ " {Gr,i’,j’(x:x’s) [ni’,jlypl,qt(x,s) - SSl",j',p',q'] ‘(,'p,,q;(x,s)
Xe

= (Glte) (68 A5) - spdy ]9 s)} av
J- xeD’

- Cxx9) [E8,009) — 590, ] S 5P ws)| av
n=0

Avh AS o 4 n
G, j/ (% %.5) [ﬂi',j’.p',q’(x's) - SSi’,j’,p’,q’] 2 rp[',tlz'(x’s)
. n=0

— Avh ’ A A
=2 {Gr‘:i',j’(x X,5) [”if,j’-p’,q’(x’s) = SSi’J’,p’,q’] "p[”ﬂl’(x’s)
n=p © ¥€D’
= (é:{;(x’,x,s) [éks',r’(x’s) - slxsk’,r'} {}r['n](x’s)} dv
= Z 13,["+1](x’, s)= 2 Gr[m](x’, 8) — ﬁr[ol(x', 5)
n=0

‘ m=0
=D,(x,5) = P(x}s) forx'ex’, (16.5-20)



Plane wave scattering in @ homogeneous, isotropic, lossless embedding 565

where Equations (16.5-13)—(16.5-18) have been used and the interchange of the summations
with respect to n and the integrations with respect to x is justified by the assumed uniform
convergence of the series expansions. Equations (16.5-19) and (16.5-20) are evidently identical
to Equations (16.5-11) and (16.5-12) and hence the expansions given in Equations (16.5-17)
and (16.5-18) indeed solve the problem.

The construction of convergence criteria for the Neumann expansion is complicated by the
singularities of the Green’s functions. For the simpler case of the scattering problem associated
with the scalar wave equation, a convergence criterion has been derived (De Hoop, 1991).

The nth term in the Neumann expansion is also known as the nth Rayleigh—-Gans—Born
approximation.

16.6 Far-field plane wave scattering in the first-order Rayleigh-Gans-Born
approximation; time-domain analysis and complex frequency-domain
analysis for canonical geometries of the scattering object

In this section the far-field plane wave scattering in the first-order Rayleigh—Gans-Born
approximation is further investigated. In particular, closed-form analytic expressions are
derived for the far-field scattered P- and S-wave amplitudes associated with the incident
uniform plane P-or S-wave scattering by a homogeneous object in the shape of an ellipsoid, a
rectangular block, an elliptical cylinder of finite height, an elliptical cone of finite height, or a
tetrahedron. A structure consisting of the union of the listed objects can, in the first-order
Rayleigh-Gans-Born approximation, be dealt with by superposition. The cases of an incident
plane P-wave and an incident plane S-wave will be dealt with separately.

Time-domain analysis

In the time-domain analysis, the expressions for the scattered wave amplitude in the far-field
region in the first-order Rayleigh-Gans—-Born approximation follow from Equations (16.1-1),
(16.1-2), (16.1-21)—(16.1-28), (16.5-3), (16.5-4), (16.5-5) and (16.5-6) for n = 0.

Incident P-wave

For the incident uniform plane P-wave given by Equations (16.1-5)—(16.1-8), the far-field
scattered P-wave amplitude is obtained as (Figure 16.6-1)

sP,P,oo P P P
vi :—-Srgk/l]él;.r (é‘/cp—a /Cp,t)vr'
-1 1P P P
+ (PCP) EmErEkAk,m,p',q’(g/cP -a /Cp,t)Tpl, 2N (16.6-1)
with
2

Awn=| av J (07 b ') = 880|070 = £ + ugxy) dr (16.6-2)
xeD* t'=0
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Figure 16.6-1 Far-field plane wave scattering in the first-order Rayleigh-Gans—Born approximation
(incident P-wave, scattered P-wave).

and
P . , ,
A g W) = dVJ {Ck,m,i,jxt',j,p',q’(x" )= Azm,p’,q’é(t )}
xe?’ =0
2 P ’ ’
xora (t—1 +ugxydt, (16.6-3)
while
iP,Poo -1 iP,P,oo 3 P,P oo
Ton P = 3t (18, @0 + 2080V TIE S (16.6-4)

and the far-field scattered S-wave amplitudes are (Figure 16.6-2)

1S, P00 P P P
v = =8y — £k ALy Eles —a lep )V

- ) P
+ (ocg) 1E,,,(ér,k - E,Sk)/l;if,,’: g &les— a’ lep) Ty g (16.6-5)
while
P = e U+ g (16.6-6)

For a homogeneous object, Equations (16.6-2) and (16.6-3) reduce to

A= J [0 () = 8 8 | PPt = 0+ ugr) df (16.6-7)
=0
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Figure 16.6-2 Far-field plane wave scattering in the first-order Rayleigh-Gans-Born approximation
(incident P-wave, scattered S-wave).

and
Afr ) = J :) [Clom 20,070 = Bt OO TP = 1 +ux) A, (16.6-8)
t
respectively, in which
7P =J 32a (¢ + ugxg) AV (16.6-9)
xe?’

is the time-domain P-wave shape factor of the object.

Incident Swave

For the incident uniform plane S-wave given by Equations (16.1-9)-(16.1-12) the far-field
scattered P-wave amplitude is obtained as (Figure 16.6-3)
3P, S,00 S S s
Vi T = —E B AL (Elep - aCleg HVy
-1 1S S S
+(0cp)” EnErEx Al pr g/ Elcp — e DTy 1 (16.6-10)

with
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Figure 16.6-3 Far-field plane wave scattering in the first-order Rayleigh—Gans—Born approximation
(incident S-wave, scattered P-wave).

A= va. [0 ) = 8,000 0Pt~ ) (16.6-11)
xe?’ t'=0
and
S = , ,
A’,gm'p/’qf(u,t) = dVJ. [Ck,m,,-'jx,-,j'pgq'(x,t ) - A;'m‘p"qfé(t )J
xe?® =0
x2aS(t— 1t +ugx)dt, (16.6-12)
while
:P,S 0 - P,S,00 P,S,00
3PS = g[8, (G5 + e IMNEE (16.6-13)

and the far-field scattered S-wave amplitudes as (Figure 16.6-4)

35,5,00 1S S S
VP = (8, — EEN AL (Eles — &g )V

- S s
+(pcg) lfm(dr,k - ErEk)A;ﬁf mpgEles— /cs,t)TpS,’ . (16.6-14)
while
o5 = S E S + BT (16.6-15)
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Figure 16.6-4 Far-field plane wave scattering in the first-order Rayleigh—-Gans—Born approximation
(incident S-wave, scattered S-wave).

For a homogeneous object, Equations (16.6-11) and (16.6-12) reduce to

At = J (67 b ) = 88 | 750 = £+ wgny) e (16.6-16)
=0

and

S = ’ INE) ’ ’
ALy, ) = J‘% [Clomi iy g0 = B pr O TS = ¥ 4 ugx) ar”, (16.6-17)
=

respectively, in which

PSwpn=| %t+ux)dv (16.6-18)

xeD*

is the time-domain S-wave shape factor of the object.
From Equations (16.6-9) and (16.6-18) it immediately follows that for u = 0, we have

750, = vt (16.6-19)

where V* is the volume of the scatterer. Note that u = 0 occurs for P-wave/P-wave scattering
when & = a” and for S-wave/S-wave scattering for £ = a5, i.e. in both cases, for observation
“behind” the scatterer or in “forward scattering”. Note, also, that u = 0 can never occur for
P-wave/S-wave scattering or for S-wave/P-wave scattering.
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Below we shall derive, for a number of canonical geometries of the scatterer, closed-form
analytic expressions for the shape factor

T =J Oalt+ugx) dv. (16.6-20)
xe?’
Ellipsoid
Let the scattering ellipsoid be defined by (see Equation (A.9-21) and Figure 16.6-5)
D = fre’® 0 < (vy/a))? + (vplag)? + (s < 1. (16.6-21)

Its volume is
VE=(4n/3)ajaza;. (16.6-22)

In the integral on the right-hand side of Equation (16.6-20) we introduce the dimensionless
variables

n=xj/ay, yr=xla;, y3=x3/a3 (16.6-23)

as the variables of integration. In y-space, the domain of integration is then the unit ball
{yer3: 0<y% + y% + y%< 1}. The integration over this unit ball is carried out with the aid of
spherical polar coordinates {r,6,¢}, with 0<r<1, 0<6<mx, 0<¢ <2n, about the vector
ura1i(1) + upayi(2) + uzasi(3) as polar axis. Then

UgXy = urxy +uxxy +uzxy = (yay)y; + (upaz)y, + (uzaz)y3 = Ur cos(6) (16.6-24)
where
Y
U=[@a)” +(na)* + (w3a3)] * >0, (16.6-25)
while
incident

plane wave

Figure 16.6-5 Scatterer in the shape of an ellipsoid.
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dV = a,a,a5rsin(6) dr d6 dg . (16.6-26)

The integration then runs as follows:

1 2 w 2 2
T'(u,t) = aja,a; J r er sin(6) d6 J. o;a [t + Ur cos(6)] d¢
r=0 6=0 ¢=0

1 n
=2na aya; j P er‘ 8,2a [t + Ur cos(8))] sin(6) d6
r=0 6=0

1
= Znala2a3U_1 J [a,za (t+Ur)-0d,a(t- Ur)] rdr
=0

= 2niaya,3 {U 2a(t + U) - U [La(t + U) - L,a(9)]
+ U a(t- Uy + U™ [La(t - U) - La()]}
=BV U [at+ D)+ at- V) - U [La + U) - Lae- U)]}.  (16.6-27)
By using the Taylor expansion of the right-hand side about U = 0 and taking the limit UL0, it
can be verified that the result is in accordance with Equation (16.6-19).

Rectangular block

Let the scattering domain be the rectangular block defined by (see Equation (A.9-14) and Figure
16.6-6)

Ds = {xEK? y—a1<x1<4ay, —ay <x2<a2, —aj <x3<a3} . (16.6-28)

incident
plane wave

Figure 16.6-6 Scatterer in the shape of a rectangular block.
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Its volume is given by
V*® =8ajaya; . (16.6-29)

In the integral on the right-hand side of Equations (16.6-20) we introduce the dimensionless
variables

N1 =x1/a1, Yo = x2/a2, y3 =x3/a3 (16.6-30)

as the variables of integration. In y-space the domain of integration is then the cube
{yeﬂ{3;—1<y1<1, -1<y,<1, —1<y3<1} with edge lengths 2. With

Uy =way, Uy=wa,, Us=uas, (16.6-31)
furthermore, we have
UgXg = U1X] + UpXy + UsXs
= (wmapyr + (ua)yz + (uzaz)y3 = Uy yy + Uz yr + Uz ys, (16.6-32)
while
dV = ayayay dy, dy, dys . (16.6-33)

The integration then runs as follows:

1 1 1

2

T'(u,t) = ajazas J dy; j dy, J dra(t+Uyy; + Uy yp + Usys) dy
)'3 =-1 y2=~1 y1=—1

1 1
-1
= aayayU; j dy; I [0,a(t + Uy +Up y, + Uz y3)
y3=-1 y3=1
—dsa(t = Uy + Upyy + Usys)] dy,
-1 1
=ajaya3(U Uy) la(t + Uy +Uy + Usy3) —a(t + Uy - Up + Uz y3)
y3=-1
—a(t— Uy + Uy + Usy3) +a(t — Uy — Uy + Uz y3)] dys
= ayayay(UUUs) " [Lalt + Uy +Uy + Uz) = La(t + Uy + Uy — Us)
—La@t+ U - Uy + Uz) +La(t+ U — Uy - U3) —La(t - U, +U, + Us)
+La(t—Uy+ Uy—Uz)+La(t - Uy — Uy + U3) —La(t-U; - U, - U3)] . (16.6-34)

Special cases occur for either U1—0, U,—0, and/or U3—0. The corresponding limits easily
follow from Equation (16.6-34) by using the pertaining Taylor expansions in the right-hand
side. In particular, it can be verified that for U;—0 and U,—0 and U3—0 the result is in
accordance with Equation (16.6-19).
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Elliptical cylinder of finite height

Let the elliptical cylinder of finite height be defined by (Figure 16.6-7)

D*={xer’; 0<x}ia} + B/ab<1, —h<xs<h). (16.6-35)
Its volume is

VS=2naah . (16.6-36)

In the integral on the right-hand side of Equation (16.6-20) we introduce the dimensionless
variables

Nn= x1/a1, Y2 = x2/a2, y3= X3/h (166~37)

as the variables of integration. Iny-space, the domain of integration is then the Cartesian product
of the unit disk 42 = {(yl,y2)eﬂ(2; OSy% +y3<1} and the interval {y3eR; ~1<y3<1} along
the axis of the cylinder. Then, with

Uy=uay, Uy=uya,, Us=ush, (16.6-38)
we have
UgXe = U1Xy + UpXy + UzXs
= (wyay)y; + @)y, + (ush)y3 = Uy + Upya + Uz ys , (16.6-39)
while
dV = ajayh dy, dy, dys . (16.6-40)

The integration then runs as follows:

incident
plane wave

Ele .-

Figure 16.6-7 Scatterer in the shape of an elliptical cylinder of finite height.
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1

2

dy; dyzj dia(t+ Uyyy + Upyy + Usy3) dys
y3=-—1

I(ut) =ajazh J

0’10’2)542

-1

=aja;hUs J- 2[31510 + Uy + Uzyy + Us)
(_)Vl,)‘2>€A

—dua(t+ Uy y; + Upyy — Us)]dy; dy, . (16.6-41)

Next, we observe that
2
0ia(t + Uryr + Upyp £ Uz) = 0;Lia(t + Uy yy + Upy, £ Us)
= (UL +UD '@, +)Lalt+ Uyy + Upy, £Us)  for UL+ U7 20, (16.6-42)

Now, applying Gauss’ divergence theorem to the integration over 42, we obtain

2 2
j @+l + Uy, + Upyy £ Uy) dy dyy
(ylvyZ)EA
= J 20’1ay, +y20y )a(t + Uyyy + Uy y, £ U3) do
Opy)eC

=J. 2(Ul y1+ Upypdalt + Uy, + Uyy, £ Uz) do, (16.6-43)
()ﬁv}'b,)ec

where do is the elementary arc length along the unit circle ¢? that forms the closed boundary
of the unit disk 42, and where we have used the property that the unit vector along the normal
to ¢2 pointing away from 42 is given by v = y;i(1) + y,i(2). In the integral on the right-hand
side of Equation (16.6-43) we introduce the polar coordinates {r,¢}, with =1 and 0<¢ <2z,
about the vector U;i(1) + U,i(2) as polar axis, as the variables of integration. This yields

| e vmaer v+ v vy a0
(Yp)’z)ec

2
= f U cos(¢)a [t + U cos(p)  Us)|dg, (16.6-44)
¢=0
where
U=UZ+U2H%30. (16.6-45)

Collecting the results, we end up with

2
Y'(ut) = ayahU " U5 J cos(9) { a[t+ U cos(@) + Us)]
¢=0

—a[t+ U cos(@) - Us] | dg (16.6-46)

Special cases occur for U0 and/or U3;—0. The corresponding limits easily follow from
Equation (16.6-46) by using the pertaining Taylor expansions in the right-hand side. In
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particular, it can be verified that for U0 and U3—0 the result is in accordance with Equation
(16.6-19).

Elliptical cone of finite height
Let the elliptical cone of finite height be defined by (Figure 16.6-8)

D' = {xeaf s 0<x3/ad +x5la5<x3Ih?, O<xy <h} . (16.6-47)
Its volume is

V®=najayh/3 . (16.6-48)

In the integral on the right-hand side of Equation (16.6-20) we introduce the dimensionless
variables

y1=x1/ay, y2=xplay, y3=x3/h (16.6-49)

as the variables of integration. In y-space, the domain of integration is then { ye®3; 0< y% + y%
<y}, 0<y;<1}. Then, with

U] =ujay, U2 = Uray, U3 = u3h » (16.6-50)
we have

UgXs = U1X] + UpXo + U3X3

= (uapyr + (upa2)ys + (ush)ys = Uy yy + Uaya + Uz s, (16.6-51)
while
dav= ald2h dyl dy2 dy3 . (16.6-52)
incident
&le ’ - plane wave

Figure 16.6-8 Scatterer in the shape of an elliptical cone of finite height,
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The integration then runs as follows:

1
Yy = a1ah J.

dy3J‘ a?a(t+ Ul Y1 + U2y2 + U3y3) dyl dy2 ,(166-53)
}’3d) (6]

1pY2)ed’(y;)

where A4 2(yg,) = {( yl,yz)eﬂiz; 0< y% + y% < y%} is the circular disc of radius y3. With a reasoning
similar to that used in Equations (16.6-42)—(16.6-44), we obtain

2
J. dra(t+ Uyy; + Upy, + Uz y3) dy; dy,
()’1’}’2)64120’3)
-1 2
=U "y J- cos(¢)d,a [t + U y3cos(®) + Usys) dg , (16.6-54)
#=0
in which
U=UE+UD">0. (16.6-55)
Furthermore,

1
J. ¥30,a [t + U yzcos(p) + Us y3] dy,
)’3=0

=[U cos(¢p) + U3]_]a [t+ Ucos(¢) + Us)
~[Ucos() + Us] Lt + U cos@) + Us] - a9 ). (16.6-56)

Collecting the results, we end up with

27

Y.t =ajahU -1 J. cos(¢p) { [U cos(¢) + U3}_la [£+ U cos(®) + Us)

¢=0
—[U cos(¢) + U3]‘2 { La[t+ U cos(¢) + Us] - Ita(t)}} de . (16.6-57)

Special cases occur for Ul0 and/or U3—0. The corresponding limits easily follow from
Equation (16.6-57) by using the pertaining Taylor expansions in the right-hand side. In
particular, it can be verified that for U0 and U3—0 the result is in accordance with Equation
(16.6-19).

Tetrahedron
Let the tetrahedron be defined by (see Equation (A.9-17) and Figure 16.6-9)

3 3
0° =l xek’;x=Y MDD, 0<AD<1, Y iD=1}, (16.6-58)
=0 =0
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incident
plane wave

/! x(3)

x(2)

x(1)

Figure 16.6-9 Scatterer in the shape of a tetrahedron (3-simplex).

in which {x(0),x(1),%(2),x3(3)} are the position vectors of the vertices and {A(0), A(1),
A(2),A(3)} are the barycentric coordinates. Its volume is (see Equations (A.10-29) and
(A.10-33))

VS = det [x(1) —x(0),%(2) — x(1),x(3) — x(2)] /6 . (16.6-59)

In the integral on the right-hand side of Equation (16.6-20) we replace A0) by 1-A(1) -
A(2) - A(3) and introduce {A(1),A(2),A(3)} as the (dimensionless) variables of integration. In
{A(1),A(2),A(3)}-space the domain of integration is then {0<A(1)<1, 0<A(2)<1 - A1),
0<A(3)<1-A(1) — A(2)}. Then, with

UD=uxI)  forlI=0,1,2,3, (16.6-60)
we have
ugx, = A0)U(0) + A(1)U(1) + A2)U(2) +A(3)U3)
=[1 - A1) - A2) - A3)] U©O) +A(1)UQ) +A2)U(2) + A(3)U(3)
= U(0) + [UQ) - UO)] A1) + [U2) - UO)] A(2) + [UB) - UO)] A3) , (16.6-61)
while, with the Jacobian (see Equation (A.10-31))

o(x1,x7,%3) —6VS, (16.6-62)
d[A(1),A(2),A(3)]

the elementary volume is expressed as
dv=6V*dA(1) dA(2) dA(3) . (16.6-63)

After some lengthy but elementary calculations it is found that
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1 1 1
U@©)-UQ) U©)-U?2) U®©)-U@3)
L1 1 S
Uu@1)-u() U1)-U?2) UQ)-UQ3)
P 1 L lau+u)
U(2)-U(0) U®2)-U1) UR)-Ua3)
L1 1 1
UB)-U(0) UB)-U1) UB)-UQ)

) =6V* { La [t + U0)]

a[t+ U(1)]

Lalt+ U(3)]} . (16.6-64)

In a symmetrical fashion, this result can be written as

T, i) = 6V° 2 1 L Lar+UM], (16665
uw - U(J) U - U) ud)-uL)

where {I,J,K,L} is a permutation of {0,1,2,3).

Special cases occur for U(I) = U(J) and/or U(I) = U(K) and/or U(I) = U(L). The easiest way
to arrive at the expressions for the relevant cases is to redo the integrations that need
modifications.

Complex frequency-domain analysis

In the complex frequency-domain analysis, the expressions for the scattered wave amplitude
in the far-field region in the first-order Rayleigh~Gans—Born approximation follow, with the
use of Equations (16.1-51), (16.1-52), (16.1-72)—(16.1-79) and (16.5-13)—(16.5-16) for n = 0.

Incident P-wave

For the incident plane P-wave given by Equations (16.1-55)—(16.1-58) the far-field scattered
P-wave amplitude is obtained as (Figure 16.6-10)

A S.P,P,oo 2P P P
Vr = —-§,.§k/1]:f;.' (Elcp—a’/ cpS)Vy

+ (pep) e EnAlon p (Elcp — ol lep )T (16.6-66)
with
A =585 | [07 ) — 8 ] explougzy) dv (16.6-67)
xeD*

and
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incident plane
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-~ scattered P-wave <
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scattered S-wave

AN
A4

Figure 16.6-10 Far-field plane wave scattering in the first-order Rayleigh-Gans-Born approxima-
tion (incident P-wave, scattered P-wave).

AL g 8) = $2aF(s) j @S[C"'"”‘" i g ®8) = A;,m,p,,q,] exp(supxg) AV, (16.6-68)
while -

TS = 3[40, ™) + 20TV (16.6-69)
and the far-field scattered S-wave amplitudes are (Figure 16.6-11)

5P (8, = EEN AL Eles— o leps)Vy

+(pcg) Oy~ EEDALE o Eles— ol lep )Ty g (16.6-70)

while

TSP = S uE ST+ ESTT). (16.6-71)
For a homogeneous object, Equations (16.6-67) and (16.6-68) reduce to

A ws) =545 5) [P (s) - S| Ts) (16.6-72)

and
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e ———— incident plane
e <7 scattered P-wave ™ P-wave
// —_—
P =<
§/ 4 _ - scattered S-wave
/ /
’ N s - aPl
/ s Elcg— aflcp
/ /
Iy
/ I
! [
‘ |
‘ \
! \
\ \
\ \ LS
\ \ scattering object
\ \
\ AN N
N ~
\\ ~ -~ - g
N —_——
~
~
~ - _

Figure 16.6-11 Far-field plane wave scattering in the first-order Rayleigh-Gans—Born approxima-
tion (incident P-wave, scattered S-wave).

Ay P 2.P A s
A,fm,p/,q'(u,s) =54 (s) [Ck,m,i, i jpg®) = Azm, p',q'] r@,s), (16.6-73)
respectively, in which

Pas)=| exp(sumx,)dv (16.6-74)
xe?’

is the complex frequency-domain shape factor of the scattering object.

Incident Swave
For the incident uniform plane S-wave given by Equations (16.1-59)—(16.1-62) the far-field
scattered P-wave amplitude is obtained as (Figure 16.6-12)
§5057 = b B A Elcp - a¥leg )V
+ (0ep) ek B Al Elcp — g )Ty (16.6-75)
with
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581

Figure 16.6-12 Far-field plane wave scattering in the first-order Rayleigh-Gans-Born approxima-

tion (incident S-wave, scattered P-wave).

/i‘k/f?g (u,s) = 245 ) [ p—l By (%,8) = 6k,r’] exp(sugxs) dV (16.6-76)
xeD’
and

*0S 2.8 A
Ao g @:5) =5°d (S)J- [Ck,m,i,jxl'.j.p’,q'(x’s) _A;,m.p’,q’] exp(sisxs) AV, (16.6-77)
xe?’
while
;P,S,oo -1 ;P7S1°° ;P,S,'”
£ P8 oot (18, kTS + 2 eI TIEE, (16.6-78)
and the far-field scattered S-wave amplitudes are (Figure 16.6-13)

A ;S,S,w 7S S
0557 = Oy - E B Ele - aleg V)

- 208 S S
+(pcs) " EmBri— EEN A v/ Elcs—alesS) Ty 4 (16.6-79)
while
TS5 o S UES T 4 5, (16.6-80)

For a homogeneous object, Equations (16.6-76) and (16.6-77) reduce to

A w,s) = 58 5(5) [0 g 5) = S| T0ss), (16.6-81)
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Figure 16.6-13 Far-field plane wave scattering in the first-order Rayleigh-Gans-Born approxima-
tion (incident S-wave, scattered S-wave).

and

2 S 2.8 A 9
Al g .5) = S8 [Chom iy (S) = D] T @5) (16.6-82)

respectively, in which

T(w,s) =J exp(sugx;) AV (16.6-83)
xeD’

is the complex frequency-domain shape factor of the scattering object.
From Equations (16.6-74) and (16.6-83) it immediately follows that for # = 0, we have

0,5)=V5, (16.6-84)

where V* is the volume of the scatterer. Note that u = 0 occurs for P-wave/P-wave scattering
when & = af and for S-wave/S-wave scattering for £ = aS, i.e. in both cases, for observation
“behind” the scatterer or in “forward scattering”. Note, also, that # = 0 can never occur for
P-wave/S-wave scattering or for S-wave/P-wave scattering.

Below, we shall derive for a number of canonical geometries of the scatterer, closed-form
analytic expressions for the shape factor

T(w,5) =J- exp(sugx,) dV . (16.6-85)
xeD’
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Ellipsoid

Let the scattering ellipsoid be defined by (see Equation (A.9-21) and Figure 16.6-14).

D ={xe®®; 0<(xy/a))? + (oafa)’ + (xafay)* < 1} (16.6-86)
Its volume is

V= (4n/3)aiaza; - (16.6-87)

In the integral on the right-hand side of Equation (16.6-85) we introduce the dimensionless
variables

yi=xilay, yra=xlay, y3=x3la3 (16.6-88)

as the variables of integration. In y-space, the domain of integration is then the unit ball
{ye®3; 0<y? +y3 +y5<1). The integration over this unit ball is carried out with the aid of
spherical polar coordinates {r,0,¢}, with 0<r<1, 0<0<m, 0<¢<2m, about the vector
u1a4i(1) + upa,i(2) + uzasi(3) as polar axis. Then

UKy = U1X) + Upxy + uzxy = (uyay)yy + (upay)y + (u3a3)y3 = Ur cos(6) , (16.6-89)
where

U=[a) + (pap) + (u3a3)2]1/2>(), (16.6-90)
while

dV = aya,a5rsin(6) dr d6 dgp . (16.6-91)

The integration then runs as follows:

incident
plane wave

Figure 16.6-14 Scatterer in the shape of an ellipsoid.
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R 1 2 4 o
T (u,5) =ajaras J. rodr I sin(6) dé J exp [sUr cos(6)] d¢
=0 6=0 $=0

1 4
=2am1a2a3f P dr.[ exp [sUr cos(6)] sin(6) do
=0 6=0

1
= 27ta1a2a3(sU)_1 J [exp(sUr) — exp(—sUr)] r dr
=0

1
= 2na1a2a3(sU)_2 ‘exp(sU) +exp(—sU) - J [exp(sUr) + exp(-sUr)] dr
=0

= 2712,,83(5U) " {exp(sU) + exp(=sU)- (sU) " [exp(sU) - exp(~sU)]}

s sU cosh(sU) - sinh(sU)
€)%

By using the Taylor expansion of the right-hand side about U = 0 and taking the limit U10, it
can be verified that the result is in accordance with Equation (16.6-84).

=3V (16.6-92)

Rectangular block

Let the scattering domain be the rectangular block defined by (see Equation (A.9-14) and Figure
16.6-15)

D= {xeﬂ(,3 ;—a1<x1<ay, —ay<xy<ay —-az<xs <a3} . (16.6-93)

incident
&le .- plane wave

]
]
1
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1
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‘
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t

[

Figure 16.6-15 Scatterer in the shape of a rectangular block.
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Its volume is given by
V®=8a,a5a5. (16.6-94)

In the integral on the right-hand side of Equation (16.6-85) we introduce the dimensionless
variables

y1=x1/ay, yy=xylay, y3=1x3la, (16.6-95)

as the variables of integration. In y-space the domain of integration is then the cube
{ye®3; —1<y;<1, —1<y,<1, —1<y; <1} with edge lengths 2. With

Ui =way, Uy=uay, Us=uzaz, (16.6-96)
furthermore, we have
UgXg = UX] + UnXo + Uy
= (mapyr + (), + (u3a3)y3 = Uy y; + Upya + Usys (16.6-97)
while
dV=aqayas dy; dy, dys . (16.6-98)

The integration then runs as follows:

. 1 1 1
I'(u,s)=ajamas J. dys J- dy, J‘ exp [s(Uyy; + Upyp + Uz ys)l dy;

¥3 =-1 y2=—l yl=_1
1 1 1

= 10,03 J' exp(sUs y3) dys J. exp(sU, y;) dy, J. exp(sUyy1) dy;

y3=-1 =1 »n=-1 .

exp(sUs) —exp(-sUs) exp(sU,) — exp(—sUy) exp(sU;) — exp(—sUq)
=a1mas
sUs sUy sU,y
inh(sU3) sinh(sU,) sinh(sU.
_ys sinh(sU3) sinh(sU,) sinh(sU;) . (16.6-99)
SU3 SU2 SUI

Special cases occur for either U;—0, Up~0, and/or U3—0. The corresponding limits easily
follow from Equation (16.6-99) by using the relevant Taylor expansions in the right-hand side.
In particular, it can be verified that for U;—0, U,—0 and U3 —0 the result is in accordance
with Equation (16.6-84).

Elliptical cylinder of finite height
Let the elliptical cylinder of finite height be defined by (Figure 16.6-16)

D' ={re®’; 0<x}la} +33/ah<1, ~h<x3<h}. (16.6-100)

Its volume is
V®=2na,ah . (16.6-101)
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incident
&le . plane wave

Figure 16.6-16 Scatterer in the shape of an elliptical cylinder of finite height.

In the integral on the right-hand side of Equation (16.6-85) we introduce the dimensionless
variables

y1=x1/ay, yy=xylay, y3=x3/h (16.6-102)

as the variables of i 1ntegrat10n In y space the domam of integration is then the Cartesian product
of the unit disk 42 = {(yl,yz)ek 0<y1 + y2< 1} and the interval {y;e®; —1<y3<1} along
the axis of the cylinder. Then, with

Ur=wa), Uy=wuyay, U3=ush, (16.6-103)
we have
UgXs = Uy Xy + UpXy + UzX3
= (01a1)y1 + (233)y, + (u3h)y3 = Upyy + Upys + Uz ys, (16.6-104)
while
dV = ayazh dy; dy, dys . (16.6-105)

The integration then runs as follows:

1
dy; dy, J exp [s(Uyy; + Uy y, + Uz y3)] dys
y=1

r u,s) = ayazh J.
(ylvyZ)EAz

-1
= alazhj (SU3) {exp [S(Ul y+ U2y2 + U3)]
(V]-YZ)GAZ

= exp [s(Uyy; + Upy, - Uy))} dy; dy, . (16.6-106)

Next, we observe that
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2.2, 2p:2-1,22
exp [s(Uyy1 + Upyp £ Us)l = (s"Uy +57U3) (ayl+a§2)exp [s(Uyyy + Upyo = U3)]
for Uf+UZ#0. (16.6-107)

Now, applying Gauss’ divergence theorem to the integration over 42, we obtain

[ @+ esnwin+ vt uplana,

()’1»)’2)€A

=I , 019y, +20,) expls(Uyyy + Upy,  Us)] do
Opyr)eC

=j , s(Uryy + Upy,) expls(Uy y1 + Uy yp £ Us)l do, (16.6-108)
(}’p)’z)EC

where do is the elementary arc length along the unit circle ? that forms the boundary of the
unit disk A2 and where we have used the property that the unit vector along the normal to c?
pointing away from 42 is given by v = y{i(1) + y,i(2). In the integral on the right-hand side of
Equation (16.6-108) we introduce the polar coordinates {r,¢}, with r = 1 and 0< ¢ <2, about
the vector U1i(1) + U,i(2) as polar axis, as the variables of integration. This yields

J- , U1y1+ Uy ya) expls(Uyy1 + Uayy £ Us)l do
Onpy)ec

2
= J U cos(¢) exp[sU cos(¢) + sU3] dp =2nU exp(tsUs)(sU) , (16.6-109)
¢=0

where I; is the modified Bessel function of the first kind and order one (Abramowitz and Stegun,
1964) and

U=WZ+Ud)"%>0. (16.6-110)
Collecting the results, we end up with
F(us) = 2.7ra1a2hs—2U —'IU; Ui 1(sU) [exp(sU3) — exp(—sUz)]
=2V 52U U5 1 (sU) sinh(sUs) . (16.6-111)

Special cases occur for Ul0 and/or U3—0. The corresponding limits easily follow from
Equation (16.6-111) by using the relevant Taylor expansions in the right-hand side. In particular,
it can be verified that for U10 and U3—0 the result is in accordance with Equation (16.6-84).

Elliptical cone of finite height
Let the elliptical cone of finite height be defined by (Figure 16.6-17)

D ={xex’; 0<}ia} + Bl <Bn%, 0<xy<h). (16.6-112)
Its volume is

vV =ma,ayh/3 . (16.6-113)
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incident
plane wave

i(1) i(2) ‘

Figure 16.6-17  Scatterer in the shape of an elliptical cone of finite height.

In the integral on the right-hand side of Equation (16.6-85) we introduce the dimensionless
variables

n= xllal, Y2 = x2/a2, y3= X3/h (16.6-114)

as the variables of integration. In y space, the domain of integration is then {ye:}e;
2,.2_.2 .
0<yy +y5<y3, 0<yz<1}. Then, with

Ul =uyay, U2 = Usray, U3 = u3h , (16.6-115)
we have

UsXg = UXy + UpXy + UaXs

= (uay)yr + (uag)yy + (ush)ys = Uiy + Uy yr + Us ys s (16.6-116)
while
dV =a,a5h dy, dy, dy; . (16.6-117)
The integration then runs as follows:
T(us) =arazh 1 d)’3j exp [s(Uyy; + Uzyz + Usy3)l dy; dy; ,(16.6-118)
»0  JOuned(y)

where 4 2(y3) = {(yl,yz)eﬂ{3 ; 0<y% +y3<y3) is the circular disc of radius y3. With a reasoning
similar to that as used in Equations (16.6-107)—(16.6-109), we obtain

J‘ exp[s(Uyy; + Uz ya + U3 y3)l dy; dy,
Opy)ed’(yy)

x4
= (sU)_1y3 J cos(¢) exp[s(Uyscos(@) + Usyz)] do , (16.6-119)
¢=0
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in which
1
U=UE+UDH"20. (16.6-120)
Furthermore,

1
j y3 exp[s(Uy; cos(@) + Usy3)] dy;
y5=0

1
expls(U cos(¢) + U3)] - exp[s(Uy; cos(@) + Uzy3)] dys
=0

= [s(U cos(@) + Us)]

= [s(U cos(@) + U3)] "'expls(Ucos(d) + Us)]
— [s(U cos(¢) + U3)] =2 {exp[s(U y3zcos(@) + Us)l ~ 1} . (16.6-121)

Collecting the results, we end up with

. 2
Pus) =6V (sUy ™ cos(@)

¢=0
1 lexp [s(Ucos(@) + Us)]  exp [s(U cos(@) + U3)] — 1
X — { . =1 dg. (16.6-122)
2 s(U cos(¢) + U3) 57(U cos(¢) + Us)

Special cases occur for U0 and/or U3—0. The corresponding limits easily follow from
Equation (16.6-122) by using the relevant Taylor expansions in the right-hand side. In particular,
it can be verified that for U10 and U3—0 the result is in accordance with Equation (16.6-84).

Tefrahedron

Let the tetrahedron be defined by (see Equation (A.9-17) and Figure 16.6-18)

3 3
D°=|xe®’; x= Y MDD, 0<AD<1, ¥ MD =1}, (16.6-123)
=0 =0
in which {x(0),%(1),%(2),x(3)} are the position vectors of the vertices and {A(0), A(1),
A(2),A(3)} are the barycentric coordinates. Its volume is given by (see Equations (A.10-29) and
(A.10-33))
V* = det[x(1) — x(0),%(2) — x(1),x(3) —x(2)] /6 . (16.6-124)

In the integral on the right-hand side of Equation (16.6-85) we replace A(0) by 1 —A(1) -
A(2) — A(3) and introduce {A(1),4(2),A(3)} as the (dimensionless) variables of integration. In
{A(1),A(2),A(3)}-space the domain of integration is then {0<A(1)<1, 0<A(2)<1 —A(1),
0<A(3)<1 - A(1) - A(2)}. Then, with

U =ugx() for=0,1,2,3, (16.6-125)
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incident
plane wave

x(3)

x(0)

x(1)

Figure 16.6-18. Scatterer in the shape of a tetrahedron (3-simplex).

we have
ugxs = MO0)U(0) + A(1)U(1) + A2)U(2) + A(3)U(3)
=[1- A1) = A(2) - A3)] U0) + A(1)U(1) + A(2)UR) + A(3)U(3)
=U(0) + [UQ) - U] A1) + [U2) = UO)] A2) + (U3) — U0 A(3) , (16.6-126)
while, withtheJacobian (seeEquation (A.10-31))

_mxy) s (16.6-127)
d [A(1),A(2),A(3)]
the elementary volume is expressed as
dv=6V"* di(1) dA(2) dA(3) . (16.6-128)
After some lengthy but elementary calculations it is found that
Pus) = 6V 1 L explsU(0)]
U0)-U(1) U©)~-U2) U®©)-U®)
+ 1 L 1 exp[sU(1))
um-uo u)-u@) Ul)-Ua)
L L explsU(2)]

* U@2)-U) U@)-uQ)y UR)-Ua3)

F— L 1 exp[sU(3)]}. (16.6-129)
UG) - UO) UBG)-U(1) UG)-UQ)

In a symmetrical fashion, this result can be written as
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3

Plus) =6V 1 1 1 UDl.  (16.6-130
wy=6v'> 3, 00— U0 - v Tn-ug POl 1ee0

=0

where {I,J,K,L} is a permutation of {0,1,2,3}.

Special cases occur for U(I) = U(J) and/or U(I) = U(K) and/or U(I) = U(L). The easiest way
to arrive at the expressions for the relevant cases is to redo the integrations that need
modifications.

Note: Since the first-order Rayleigh—Gans-Born approximation is additive in the domains
occupied by the scatterers, the scattering by an arbitrary union of canonical scatterers follows
by superposition. In particular, the result for the tetrahedron is the building block for scatterers
in the shape of an arbitrary polyhedron.

The first-order Rayleigh~Gans—Born scattering finds numerous applications both in the
forward (direct) and the inverse scattering theory. References to the earlier literature can be
found in Quak (1989).

Exercises

Exercise 16.6-1

Show that Equation (16.6-92) follows from the time Laplace transform of Equation (16.6-27).

Exercise 16.6-2

Show that Equation (16.6-99) follows from the time Laplace transform of Equation (16.6-34).

Exercise 16.6-3
Show that Equation (16.6-111) follows from the time Laplace transform of Equation (16.6-46).

Exercise 16.6-4

Show that Equation (16.6-122) follows from the time Laplace transform of Equation (16.6-57).

Exercise 16.6-5

Show that Equation (16.6-130) follows from the time Laplace transform of Equation (16.6-65).

Exercise 16.6-6
Show that for U10, Equation (16.6-27) becomes Equation (16.6-19). (In this case, u = 0.)
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Exercise 16.6-7
Show that for U3—0, Equation (16.6-34) becomes
Y (u,f) = 2a18y05(UUy) ™ [alt + Uy +Uy) — a(t + Uy - Uy)
—a(t— Uy +Uy) +alt - U, -Uy)] . (16.6-131)

(In this case, u is parallel to the x;,x, plane.)

Exercilse 16.6-8

Show that for Up—0 and U3—0, Equation (16.6-34) becomes
Pt = 4aya,03U7 " [0,a(¢ + Uy) — dyalt — Uy)] . (16.6-132)

(In this case, u is parallel to the x; axis.)

Exercise 16.6-9

Show that for U;—0, U,—0 and U3—0, Equation (16.6-34) becomes (16.6-19). (In this case,
u=0)

Exercise 16.6-10
Show that for U0, Equation (16.6-46) becomes
F(ut) = mayahUs ™ [3,a(t + Us) - d,a(t = U3)] . (16.6-133)

(In this case, u is parallel to the axis of the cylinder.)

Exerclse 16.6-11

Show that for U3—0, Equation (16.6-46) becomes

2
Pt =2a1a,hU ! J cos(¢)d,a [t + U cos(¢)] dg . (16.6-134)
¢=0

(In this case, # is perpendicular to the axis of the cylinder.)

Exercise 16.6-12

Show that for U0 and U3—0, Equation (16.6-46) becomes Equation (16.6-19). (In this case,
u=0)

Exercise 16.6-13
Show that for U10, Equation (16.6-57) becomes
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Y () = mayayh (U3 [9,a(t + Us) - 2U5 %a(t + Us))
+2U5° La(t + Us) - Ta(t)]} . (16.6-135)

(In this case, u is parallel to the axis of the cone.)

Exercise 16.6-14

Show that for U3—0, Equation (16.6-57) becomes

2

Y(u,t) = ajahU -1 J {[U cos(®) ] -1 a(t + U cos(¢))

¢=0
—[U cos(¢)] _2[I,a(t + U cos(9)) — I,a(t)]} cos(¢) do . (16.6-136)

(In this case, u is perpendicular to the axis of the cone.)

Exercise 16.6-15

Show that for U0 and U3—0, Equation (16.6-57) becomes Equation (16.6-19). (In this case,
u=0)

Exercise 16.6-16
Show that for U(J)~U(I), Equation (16.6-65) becomes

Yl =6v* 1 L alt+ U]
U - UKK) U()-UL)

_ 1, 1 ~——— 1ale+ V)
(U -UKI* U)-ulL) UD-UK) [Ud)-Uud)]

+ 1 _pap+ U(K)]}
(UE)-UMD]~ UK) - UL)

+ L — 1 _pap+ U(L)]} : (16.6-137)
(U@ -uvm1” UL) - UK)

where {I,J,K,L} is a permutation of {0,1,2,3}. (In this case, u is perpendicular to the edge
connecting the vertex x(I) with the vertex x(J).)

Exercise 16.6-17
Show that for U(J)—U(f) and U(L)— U(K), Equation (16.6-65) becomes
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1 5 {alt+ U] +alt+ UK}

r@l)=6V| ————
( [Uw) - U(K)]

2 (Lalt+ UD) - Lalr+ UGN, (16.6-138)
(U - U(K)]

where {I,J,K,L} is a permutation of {0,1,2,3}. (In this case, # is perpendicular to the edge
connecting the vertex x(I) with the vertex x(J), as well as perpendicular to the edge connecting
the vertex x(K) with the vertex x(L).)

Exercise 16.6-18
Show that for U(J)—»U(D) and U(K)—U(I), Equation (16.6-65) becomes

T =6V° (————1——— oa[t+ U] - 1 aft+ UD)

U - U(L) wm - vy ?
+— g r+ U] - La [+ VO, (16.6-139)
@) - U]

where {I,J,K,L} is a permutation of {0,1,2,3}. (In this case, u is perpendicular to the plane
containing the triangle of which x(1), x(J) and x(K) are the vertices.)

Exercise 16.6-19
Show that for u = 0, Equation (16.6-65) becomes Equation (16.6-19).

Exercise 16.6-20
Show that for UL0, Equation (16.6-92) becomes Equation (16.6-84).

Exercise 16.6-21
Show that for U3—0, Equation (16.6-99) becomes
sinh(sU,) sinh(sU;)

sU, sUy

and show that the result follows from the time Laplace transform of Equation (16.6-131). (In
this case, u is parallel to the x;,x, plane.)

Fus)=Vv* (16.6-140)

Exercise 16.6-22
Show that for U,—0 and U3—0, Equation (16.6-99) becomes
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sinh(sUl)

(s =Vv* (16.6-141)

sUy
and show that the result follows from the time Laplace transform of Equation (16.6-132). (In
this case, u is parallel to the x; axis.)

Exercise 16.6-23

Show that for U;—0, U,—0 and U3—0, Equation (16.6-99) becomes Equation (16.6-84). (In
this case, u = 0.)

Exercise 16.6-24
Show that for U10, Equation (16.6-111) becomes

1(u,5) = 2mayahs U3 Ssinh(sU3) (16.6-142)

and show that the result follows the time Laplace transform of Equation (16.6-133). (In this
case, u is parallel to the axis of the cylinder.)

Exercise 16.6-25
Show that for U3—0, Equation (16.6-111) becomes
T'(u,5) = 4mayarhs U (sU) (16.6-143)

and show that the result follows from the time Laplace transform of Equation (16.6-134). (In
this case, u is parallel to the axis of the cylinder.)

Exercise 16.6-26

Show that for U10 and U3~0, Equation (16.6-111) becomes Equation (16.6-84). (In this case,
u=0)

Exercise 16.6-27
Show that for U0, Equation (16.6-122) becomes

P(,5) = nayanhs ™ {[sU;;‘ - 2057 +257'U5 | exp(sUs) - 257" U3'”3} (16.6-144)

and show that this result follows from the time Laplace transform of Equation (16.6-135). (In
this case, u is parallel to the axis of the cone.)

Exercise 16.6-28
Show that for U3—0, Equation (16.6-122) becomes
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- 2 1 [ -1
T'(u,s) =ajaxhs “U J. {[U cos(@)] exp [sU cos(®)]
¢=0

~s! [U cos(¢)] -2 [exp(sU cos(®)) — 1]} cos(¢) d¢ (16.6-145)

and show that this result follows from the time Laplace transform of Equation (16.6-136). (In
this case, # is perpendicular to the axis of the cone.)

Exercise 16.6-29

Show that for Ui0 and U3—0, Equation (16.6-122) becomes Equation (16.6-84). (In this case,
u=0)

Exercise 16.6-30
Show that for U(J)—U(I), Equation (16.6-130) becomes

F(us)=6VSs2 { ! L exp sUD)
u-UK) u@)-uw)

1 1 1 1 -1
- ) + 748 exp [sUWD)]
o) -uKl” v@)-uld) Ul)-UK) [UD)-UL)]

+ 1 3 1 st exp [sU(K)]
[UKK)- U]~ UK) - UL)

N L L epruant|, (16.6-146)
[Uw)-un]* UL)-UK)

where {I,J,K,L} is a permutation of {0,1,2,3}, and show that this result follows from the time
Laplace transform of Equation (16.6-137). (In this case, u is perpendicular to the edge
connecting the vertex x(I) with the vertex x(J).)

Exercise 16.6-31
Show that for U(J)—U(I) and U(L)—U(K), Equation (16.6-130) becomes

L {exp [sUD)] + exp UK}
[V - U]

-1

F(u,s) =6V 8572 (

W) - UE))

where {I,J,K,L} is a permutation of {0,1,2,3}, and show that this result follows from the time
Laplace transform of Equation (16.6-138). (In this case, u is perpendicular to the edge

2 {exp [sU()] - exp [sU(L)]}], (16.6-147)
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connecting the vertex x(f) with the vertex x(J) as well as perpendicular to the edge connecting

the vertex x(K) with the vertex x(L).)

Exercise 16.6-32
Show that for U(J)—~U(I) and U(K)— U(I), Equation (16.6-130) becomes

P(u,s) =6V's2| ———exp [sUD)] - % exp [sUWD)]
U - UK) [U) - U(K)]
-1
+ ————L———g {exp [sUD)] —exp [sUL)1}, (16.6-148)
(U - U(K)]

where {I,J,K,L} is a permutation of {0,1,2,3}, and show that this result is the time Laplace
transform of Equation (16.6-139). (In this case, u is perpendicular to the plane containing the
triangle of which x(7), x(/) and x(K) are the vertices.)

Exercise 16.6-33
Show that for # = 0, Equation (16.6-130) becomes Equation (16.6-84).
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