
Pic ne wave scattering b /c n object in
unbounded, hornogeneo Js,

isotropic, lossless embeddin 

in this chapter, the simplest scattering configuration is investigated in more detail. It consists
of an unbounded, homogeneous, isotropic, lossless embedding in which a plane wave is incident
upon a scattering object of bounded extent. First, the reciprocity properties of the amplitudes
of the scattered waves in the far-field region are investigated. Next, an energy theorem
("extinction cross-section theorem") is derived that relates the sum of the energies carried by
the scattered waves and the energy absorbed by the scattering object to the amplitude of the
scattered waves in the far-field region when observed in the forward scattering direction.
Finally, the first term in the Neumann solution to the relevant system of integral equations (the
so-called "Rayleigh-Gans-Bom approximation") is determined for penetrable, homogeneous
scatterers of different shapes. The analysis is carried out in the time domain as well as in the
complex frequency domain.

16. I The scaltering configuration, the incident plane waves and the far-field
scattering amplitudes

The scattering configuration consists of a homogeneous, isotropic, lossless embedding that
occupies the whole of R3. The elastodynamic properties of the embedding are characterised by
either its volume density of mass p and its Lam6 coefficients 2 and k/, or its volume density of
mass p, its compressional wave speed Cl~=[(~+2kt)/p]V2 and its shear wave speed
cs = (gdp)1A. Here, p,/u, cp and cs are positive constants and 2 is a constant satisfying the
condition 2 > -(2k//3). The related stiffness is

G,q,i,j "" ~p,q(~i,j +/iZ(~p,i~q,j + ~p,j~q,i)

and the compliance is

= C.--.~Si,j,p,q t,),p,q ¯

In the embedding, an elastic scatterer is present that occupies the bounded domain Ds. The
boundary surface of Ds is denoted by ~Ds and v is the unit vector along ~e normal to ~Os
oriented away from ~Ds. The complement of ~Dsu3~Ds in R3 is denoied by Ds (Figure 16.1-1).
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Figure 16. I - I Scattering object occupying the bounded domain ~9s in an unbounded elastodynami-
cally homogeneous, isotropic, lossless embedding with volume density of mass p and compressional
wavespeed Cp and shear wavespeed Cs: (a) incident plane P-wave; (b) incident plane S-wave.



Plane wave scattering in a homogeneous, isotropic, Iossless embedding

Time-domain analysis

507

In the time-domain analysis of the problem, the elastodynamic properties of the scatterer are,
if the scatterer is an elastodynamically penetrable object, characterised by the relaxation
functions

s s          s s
{flk, r,Zi, j,p,q} = {flk, r,Zi, j,p,q}(X,t),

which are causal functions of time. The equivalent contrast volume source densities of
deformation rate and force are then given by (see Equations (15.9-18) and (15.9-19))

f~ =-OtCt(~Sk, r- pOk, rO(t),Vr;X,t) for X~Ds, (16.1-1)

hiS, j
s    _

"" ~tCt(xi, j,p,q Si,j,p,q~(t),~p,q;X,t) for xsDs, (16.1-2)

. . { ~,q,Vr} andin which the total elastic wave field { Vp,q,Vr} is the sum of the incident wave fieId i i
the scattered wave field { Z~,q,V~r} (see Equation (15.9-5)). If the scatterer is eIastodynamically
impenetrable, either of the two boundary conditions

. +
hmh+OAk, m,p,qVm~;p,q(X + hl.’,t) = 0 for x~O~Ds (16.1-3)

or

limh+OVr(X + h~’,t) = 0 for x~O~Ds (16.1-4)

applies.
For the incident wave we now take a uniform plane wave. This can be either a uniform plane

P-wave or a uniform plane S-wave. For the incident plane P-wave propagating in the direction
of the unit vector a P (i.e. P P 1) we have, on account of Equations (14.4-7), (14.4-13) and~2s ~s =

(14.4-14),

{Vp,q,Vr} {TpP, q, VrP}aP(t P= - as Xs/Cp), (16.1-5)

with

cp = [(;t + 2/z)/p]1/2, (16.1-6)

VrP , P~P, P= (akvk )ar , (16.1-7)

and (see Equation (14.4-10))
,, . P.P. P P

Zdq =-c~1 [AOp,q(~V~)+ ZtA{,O~k Vk )O~p aq ], (16.1-8)

where aP(t) denotes the normalised pulse shape.
For the incident plane S-wave propagating in the direction of the unit vector aS (i.e.

s s 1) we have, account of Equations (14.4-7), (14.4-15) and (14.4-16),as as = on

{l;p,q,Vr}
{TpS, q, VrS}aS(t- S

= %Xs/CS), (16.1-9)

with

Cs= ~/p)½, (16.1-10)

aS~v~ = o, (16.1-11)

and (see Equation (14.4-10))
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s s s s
ZpS, q = -c~l /z(Ctp V~ ) + ~q V~ ), (16.1-12)

where aS(t) denotes the normalised pulse shape.
For an elastodynamically penetrable scatterer we use for the scattered wave the constrast

volume source integral representations (see Equations (15.9-20) and (15.9-21))

s    ,     ~ ~h     s , ~f    s ,
-Trp,q(X,t)= [Ct(G~,q,i,j,hi,j;x,x,t)+et(G~,q,k,f£;x,~c,t)]dV forx’~R3 (16.1-13)

and

S , ~x[     vh s , Ct(Grv, fk,f~;x:x,t)] dV for x,~R3
Vr(X , t) =     LCt( Gr, i,j,hi,j;x ,x,t) + (16.1-14)

in which (see Exercise 15.8-9, with x and x’ interchanged)

G;h,q,i,j(X~,x,t) =-Cp,q,i,jn(t)r~(x’- x) - p-1Cp,q,n,rCk, m,i,j~ ~ ~r~ ItGr, k(Xt, X,t) , (16.1-15)

a;f,q,k(X~, X,t) = p-I Cp,q,n,r~A ar, k(X~, x,t),                        (16.1-16)
vh    tGr,i,j(x ,x,t) = _p-1Ck,m,i,j~ Gr, t~(x:x,t)’ (16.1-17)

GVrf, k(X;X,t) = p-13tGr, k(X;X,t) , (16.1-18)

with

6(t- Ix’- xl/cs)
Gr’k(X;x’t) = 4zcc~ lx’- xl

~ (t - Ix’- xl/cp)H(t- Ix’- xl/cp)
+ L
_ (t-Ix’-xl/cs)H(t-!x’-xl/cs)]4~rlx’-xl ~

Here, ~m denotes differentiation with respect to xm.
In the far-field region, the expansion

for Ix’-xl ~0.

I-o s;P,~,, s;P,~,--,-
s s , =]tVp,q ,Vr t(a,t-lx’I/Ce)

{VP’q’Vr}(X’t) ~ 4~C~ Ix’l +

x [1 + O(Ix’l-1)] as Ix’l~,

s;S,,,* s;S,,,~----
~p,q ,Vr I~,t- IX’I/cs).

4~rc~ Ix’l

with x’= Ix’l~
holds, where (see Equations (13.8-7)-(13.8-9))

s;P,oo .... 1-, _fS;p,~....       -1             hs;p,~,
Vr [~,t) = p dtq~r ~,t) + (pep) Ck, m,i,j~mOtOSr, k,i,j (~,t),

s
-1 hs;S,~,VSr;S’°°(~’,t) = D-l~t~fr ;S’°°(~,t) + 09Cs) Ck,m,i,j~m~t~Sr,k,i,j (~,t) ,

in which (see Equations (13.8-2), (13.8-3) and (13.8-5), (13.8-6))

~gfr ;P’~(~,t) = ~r~k    f~c(X,t + ~sXs[Cp) dV ,

(16.1-19)

(16.1-20)

(16.1-21)

(16.1-22)

(16.1-23)
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~f ;s’°~(~,t) = (~r,k- ~r~k) Ix~# f~(x,t + ~sXs/CS) dV , (16.1-24)

and

qb h S;P, oot~. t) fx~ hi~j(x’t dV, (16.1-25)r,k,i,j k~, ) = ~r~k + ~s/CP)

~ h~;S’~’- " ~ hi~j(x,t + dV, (16.1-26)r,k,i,j [~,O = (dr, k- ~r~k)
X~s

w~le (see ~uations (13.8-13)~13.8-15))
s;P,~

~p~’~ = --C71 [~Op,q(~kV~;P’") + 2~kVk )~p~q] , (16.1-27)

=-Cs ptg~Vq + gqV~ ). (16.1-28)

For an el~tody~mically impe~trable scatterer ~e elastic wave field is not defined in the
interior Os of ~e scatterer and we have to reso~ to an equNalent surface source integr~
representation ~at expresses the scattered wave field in the exterior 9s’ of the scatterer in te~s
of the wave field on ~e ~und~ surface a~s of 9s. This representation is, on account of
~uafions (15.12-38) and (15.12-39),

s , , , [ ,h + s. ,
-~p,q(X ,t)z ~s (X )= [Ct( G~,q,i,j,~i,j,n,r~mVr,X ,X,O

~D~

and

s,
~x~ [      vh+

s.,
Vr(X, t)X DS’(X’) = Ct( Gr, i,j,Ai,j,n,r, gnVr, ,X ,X,t)

vf    + s
+ Ct(Gr, k,-Ak, ra,p,ql)m~p,q;X ,x,t)] dA for x’~R3. (16.1-30)

Note that these expressions have resulted from applying Equations (15.12-38) and (15.12-39)
to the domain Ds’ exterior to the scatterer and that the unit vector along the normal is oriented
towards Ds’.

In the far-field region, the expansion given in Equation (16.1-20) holds, where, based upon
Equations (16.1-29) and (16.1-30), we have

s;P 0%~ t) _-1~ qb.~fS;P,oo~r .~ -1 ~hs;p,°°
Vr ’ (~,) =t) °t r    k~,t) + (tgCP) Ck, m,i,j~m~t~Sr, k,i,j (~,t) , (16.1-31)

s;S, oo,~ t) -1 of S.s,.o , ,-1,-, ~" " ¯3hs;s’°°’~ t", (16.1-32)Vr !,G, ) = p OtCISr ’ (~’,t) + !#OCs) !.,k,m,i,jgmOt r,k,i,j ~,~, )

in which

CY ;P’°~(~,t) = ~r~k       (X,t + ~sXs/Cp) dA ,
d x~D

~r~f ;S’°°(~,t) = (Or, k- ~r~k)      (X,t + ~sXs/CS) dA ,
,t xc-9~

(16.1-33)

(16.1-34)
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with

Off, + s
= -Ak, m,p,qVm~:p,q,

and

~Igr, k,i,j’ (~,t) = ~r~k hSi,j(x,t + ~sXs/Cp) dA ,

qb~hs’S’~’’"
f

~
r,k,]ij [,~,t) = (~r,k- ~r~k) h],j(x,t + ~sXs/Cs) dA ,

d xc--~D

with

(16.1-35)

(16.1-36)

(16.1-37)

s + s
~hi,j = Ai,j,n,rl~nVr, (16.1-38)

while Equations (16.1-27) and (16.1-28) yield the far-field scattering amplitude for the dynamic
stress.

However, upon applying Equations (15.12-12) and (15.12-19) to the incident wave field
i i

{r~,q,Vr} and to the domain Ds, we have (note that the incident wave field is source-free in

¯
f zh     + i ,

-7:;,q(X’, t)Z DS(X’) = - [Ct( G~,q,i,j,Ai,j,n,rl~nVr;X ,X,t)Jx
~.--rf --+ , , j . ,

+!St((_ip,q,k,-Ak, m,p,q I~mrp,,q,,X,x,t)ldA for x’ER3 (16.1-39)

and

i           ,      ~[            vh +        i ,
Vr(X,t)Z #(X ) =-     [Ct( Gr, i,j,Ai,j,n,r, VnVr,;X ,X,t)3x

+ Ct(Gr~fk,-A~,m,p,qVmrip,q;X’,x,t)] for x’E R3. (16.1-40)

Subtraction of Equation (16.1-39) from Equation (16.1-29) and of Equation (16.1-40) from
Equation (16.1-30) leads to

s    ,                 i
-rp,q(X, t)X Ds’(X’) + r;p,q(X, t)Z Ds(X’)

~x rh     + ,
= [ct(a/,q,i,j,Ai, j,n,rVr;X,X,t)

~D~

rf ++C,(Gfi,q,k,-Ak, m,p,,q,l~mVp,,q,;X’,X,t)]dA for x’sR3 (16.1-41)

and
s , i , ,

Vr(X, ’ , _t)XDS(X ) Vr(X,I)XDS(X )

-" f xc__c39s [
Ct( Gr’vih’j’A i+’j’n’r’l~nvr’ ;X~’X’t)

vf + ,+ Ct(Gr, k,-Ak, m,p,ql~mT:p,q;X,X,t)] dA for x’~ R3. (16.1-42)

In the far-field region, again the expansion given in Equation (16.1-20) with Equations
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(16.1-27) and (16.1-28) holds (note that X c~s(x’) = 0 for x’~ a9s" and hence in the far-field region),
in which, based upon Equations (16.1-41) and (16.1-42), we now have

-1 ~h;P,o,,
VSr;P’~’(~,t) = p-lot~Orf"P’~’(~,t) + (pCp) Ck,m,i,j~mOt~r,k,i,j (~,t) , (16.1-43)

-1 3h. S,~,
vSr;S’~’(~,t) = p-l~to@f"S’~’(~,t) + (PCs) Ck, rn,i,j~m~tqbr,~c’,i,j (~,t) , (16.1-44)

in which

(16.1-45)

qbrOf;S’~’(~,t) = ((}r,k - ~r~k) f xc-O~D ~fk(x’t + ~sXs/CS) dA ,

with

Ofk += -Ak, m,p,qVmrp,q,

and

(16.1-46)

(16.1-47)

r,£i,j (~,t) = ~r~k      hi,j(x,t + ~sXs/Cp) dA ,
d x~

(16.1-48)

r,~’,i,j (g,t) = (r}r,k - ~r~k) ~hi,j(x,t + ~sXs/CS) dA ,

with

(16.1-49)

÷
Ohi,j = Ai, j,n,rgnVr , (16.1-50)

Of course, the equivalent surface source represe,ntations also apply to the case of an
elastodynamically penetrable scatterer. For x’~)s (i.e. outside the scatterer), Equations
(16.1-13), (16.1-14) and (16.1-29), (16.1-30) and (16.1-41), (16.1-42) must then all yield the
same result. Similarly, in the far-field region, Equations (16.1-21)-(16.1-26), (16.1-31)-
(16.1-38) and (16.1-43)-(16.1-50) must all yield the same result. Note, however, that for
x’~Ds (i.e. in the interior of the scatterer) the results of the different representations differ.

Equations (16.1-13) and (16.1-14), when taken for x’~Ds, provide the basis for the
time-domain domain integral equation method to solve problems of the scattering by penetrable
objects. For solving problems of the scattering by impenetrable objects, Equations (16.1-41)
and (16.1-42) provide, when taken for x’~Ds, the basis for the time-domain boundary integral
equation method and, when taken for x’~Ds, the basis for the time-domain null-field method.
For general scatterers, all three methods need numerical implementation.

Complex frequency-domain analysis

In the complex frequency-domain analysis of the problem, the elastodynamic properties of the
scatterer are, if the scatterer is an elastodynamically penetrable object, characterised by the
functions
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^S ^S ^S ^S
{ ~k,r,tli,j,p,q} : { ~k,r,tli,j,p,q}(X,s).

The equivalent contrast volume source densities of deformation rate and force are then given
by (see Equations (15.9-41) and (15.9-42))

= -(~l~,r - SPdl~,r)Vr for x~Ds, (16.1-51)

]~S0̂ $
i,J : (~i,j,p,q -- sSi,j,p,q)~p,q f°r x~S, (16.1-52)

~ ~ {~i,q,Vr} andin which the total el~tic wave fieM { Zp,q,Vr} is ~e sum of the i~ident wave fieM ~ i ~ i
~ s - s (see ~uafion (15.9-28)). If the scatterer is el~tody~micallythe scattered wave field { z~,q,vr }

impe~tr~le, either of ~e two bound~y conNfions

hmh,OAk, m,p,q~m~p,q(X + hv, s) = 0 for x~0~s (16.1-53)

or

limhsoCr(X + by, s) = 0 for x~0~s (16.1-54)

apples.
For ~e incident wave we now rake a unifo~ plane wave. This can be either a unifo~ plane

P-wave or a unifo~ plane S-wave. For ~e incident plane P-wave propagating in ~e direction
of ~e unit vector aP (i.e. a~a~ = 1) we have, on account of ~uations (14.1-3), (14.2-19) and
(14.2-20)

~ ~ = exp(-sasxs/cP), (16.1-55)

wi~

[(x + 2,)/plh, (16.1-56)
V~ " P~P" P= ta~v~ )ar , (16.1-57)

and (see ~uation (14.2-10))
~.P.P. P PT2q :-C~1 [Xdp,q(gV2) + zNa~ v~ )ap aq ], (16.1-58)

where ~ V(s) denotes the normalised pulse sha~.
For ~e incident plane S-wave propagating in ~e Nrection of ~e unit vector as (i.e.

s s 1) we have, on account of~uations (14.1-3), (14.2-22), and (14.2-23)

= exp(-sasxs/cs), (16.1-59)

wim
cs = (~/p)l/~, ( ~ 6.1-~)

a~V~ = O, (16.1-61)

and (see ~uation (14.2-10))
-1, S. S    S S

where ~ S(s) denotes the normalised pulse sha~.
For an elastody~micalIy penetrable scatterer we use for ~e scattered wave ~e contrast

volume source representations (see ~uations (15.9-43) and (15.9-~))
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for x’~3 (16.1-63)

and

~/(X~’$) = Ixe~Ds [drV’~’J(X"X’S)~i~J(X’S) + dr~f~(~’$)/~ (~’$)] dV

for X’~3, (16.1-~)

in which (see Exercise 15.8-10 with x and x’ interchanged)

Gr, k(X= (sp) Cp,q,n,rCk, m,i,j~n 0m
(16.1-65)G~,q,i,j(x ,x,s) -s

-1Cp,q,i,j~(x’- x) -

G~,q,k(X ,x,s) = p-1Cp,q,n,r~A ~r,k(X;x,s), (16.1-66)

~vh, , , ~r,k(X;X,S), (16.1-67)r,i,j~X ,X,S) = -p-l Ck, m,i,j~~

~(x;x,s) -1~ ’ (16.1-68)= sp Gr,k(X,X,s) ,

wi~

Gr, g(x*’,x,s) = c~20~X]X,S)6r,k + s-2b; ~ [O~(X~X,S) - Gs(x,x,s)]
(16.1-69)

and

Op,s(X,,X,S) = exp(-slx’ - xl/cp,s) for Ix’- xl ~ O. (16.1-70)
4~lx’ - xl

Here, ~m denotes differentiation wi~ respect to xm.
In ~efar-field region, the expansion

^ s ^ s , ^ s;e,~ ^ s;P,~,,,. , exp[-slx’l/cp] t~_ s;S,~ ~ s;S,~
~p,q,Vr } = [~p,q ,Vr J(q,S) 4nc~ Ix’l + (tP’q ’vr ](~,s)

x [1 + O(Ix’l-1)] as Ix’l~~ with x’= Ix’[~

holds, where (see ~uafions (13.7-18) and (13.7-19))
-lCf ;P,~ , ,-1~ ~ ~h ;P,~

~;e’~ = sp @r + S~Ce) Ck,m,i, jgm~r,k,i,j ,

a s;S,~    -l~f ;S,~ -1 * h ;S,~
vr = Sp ~r    + S~Cs) Ck,m,i,j~mCr, k,i,j ’

in which (see ~uations (13.7-12), (13.7-13) and (13.7-15), (13.7-16))
S

~X

~S
~ ;P’~(~,s) = ~r~k     exp(s~sXs/Cp)f k (x,s) dV ,

S

~X

~S

= exp(s ,x/cs)f i (x,s) dU,

exp[-slx’l/cs]

4~rc2s Ix’l

(16.1-71)

(16.1-72)

(16.1-73)

(16.1-74)

(16.1-75)

and
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~ h ;p,oo~ S"~ n(,~.l,.,~.’~h_{ ~^ sr,k,i,j

.~ h ;S,~.~ . ~ s
~r,k,i,j t~,S) = (~r,k - ~r~k) exp(s~sXs/cs)hi, j(x,s) dV ,

X~s

while ~see ~uations

~,q

Elastic waves in solids

(16.1-76)

(16.1-77)

For an elastodynamically impenetrable scatterer the elastic wave field is not defined in the
interior Ds of the scatterer and we have to resort to an equivalent surface source integral
representation that expresses the scattered wave field in the exterior Ds’ of the scatterer in terms
of the wave field on the boundary surface ODs of Ds. This representation is, on account of
Equations (15.12-40) and (15.12-41),

.,s    ¯ ~ ^rh p + .,s
--~p,q(X ,S)~( DS’(X’) = [ G~,q,i,j(x ,X,s)Ai,j,n,rl~nVr (x,s)

~D~

"~f , + ,,s-GA,q,k(X,X,S)Ak, m,p;q, VmVp,,q,(X,s)]dA for x’~R3 (16.i-S0)

and

fx ^ vh t + ^s
~)~ (Xt, S)~( ~DS’(X’) = [Gr, i,j(X ,x,s)Ai, j,n,r, ~nVr, (X,s)

~D~

~rs;p’~= sp-l ~r~f "P"" + S~OCp) !_.k,m,i,j~mtPr, k,i,j , (16.1-82)
s

-1 ~h ;S,o~o~;s,- ~;-l ~r~ ;S,~ +
~ ~

-"
s(Pcs) Ck, m,i,j~mCJSr, k,i,j , (16.1-83)

in which

~ ~rf ;P’~’(~,s) = ~r~l~    exp(S~sXs/Cp)Of~(x,s) dA , (16.1-84)
d x~D~

4’ ~r’~;S’~’(~,~) = (’~r,~,- ~r~) I exp(s~Xs/CS)~f?~(x,s) dA , (16.1-85)
,J x~3D~

with

= -Ak, m,p,q~,mVp,q, (16.1-86)

(16.1-78)

(16.1-79)
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~h ;p,~o,,. ,
~t~’r,k,i,j (~,s) = ~r~k xp(S~sXs/Cp)~i (x,s) dA , (16.1-87)

~h~;S,~,~ ,
r,k,i,j t~,s) = (~r,k- ~r~k) exp(s~s[CS)~i~j(X,s) ~ , (16.1-88)

d x~~ ’

wi~

Ai,j,n,rVnvr , (16.1-89)

wNle ~uafions (16.1-78) and (16.1-79) yield the f~-field scattering ~plimde of ~e
s~ess.

However, upon applying ~uations (15.12-30) aM (15.12-37) to ~e incident wave field
{~,q,Vr} and to ~e domNn ~s, we have (note ~at the incident wave field is so~ce-free in

--~p,q(X , ~) ~ ~s(X’) = -- [ ~,q,i,j(X ,X,g)~i,],n,r~nVr (X,g)

- a~,q,k(X,X,s)~k,m,p,,q,~m~q,(X,s)] ~ for x’~ ~~ (16.1-90)

and

~i , , [ [ ~vh , +Vr(X,S)X~(x )=- ~G~,~,~(x,x,s)~d,~,~..~vr,(x,s)

~ vf ~ +-~r~k(X,X,S)~k,m,p,q~m~p,q(X,s)]~ for x’~3. (16.1-91)

Sub,action of ~uafion (16.1-90) from ~uation (16.1-80) and of ~uation (16.1-91) from
~uafion (16.1-81) leads to

~h     ,     +
[~,q,i,](X,X,g)~i,j,n,r~Vr(X,$)

-~,k(X~X,s)A~,m,p,,q, gm~p,,q,(X,s)]~ for x’~3 (16.1-92)

and

-dr:{(x:x,s)A~,m,p,qVm~p,q(X,S)]~ for x’~a3. (16.1-93)

In ~efar-field region again ~e expansion given in ~uation (16.1-71) with ~uations (16.1-78)
and (16.1-79) holds (note ~at Ze~(x’) = 0 for x’~s and hence in the f~-field region), in which,
based upon ~uations (16.1-92) and (16.1-93), we now have
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(16.1-94)

(16.1-95)

(16.1-96)

¢~r3~S’°o(~,s) = (6r,k - e~r~k) ~xc_o~,exp(s~sxs/cs)~ f ~(x,s) dA ,

with

=-Ak, m,p,qVm~p,q ,

and

~h;P,~,~ ,

f x
xp(S~s/Cp)~i’J(X’S) ~tG, s) = ,

=     -j

(16.1-97)

(16.1-98)

(16.1-99)

(16.1-100)

with

3fli,j = Ai, j,n,r~’nVr. (16.1-101)

Of course, the equivalentsurface source representations also apply to the case of an
elastodynamically penetrable scatterer. For x’~g)s’ (i.e. outside the scatterer), Equations
(16.1-63) and (16.1-64), (16.1-80) and (16.1-81), and (16.1-92) and (16.1-93) must then all
yield the same result. Similarly, in the far-field region, Equations (16.1-72)-(16.1-77),
(16.1-82)-(16.1-89) and (16.1-94)-(16.1-101) must all yield the same result. Note, however,
that for x’~Ds (i.e. in the interior of the scatterer) the results of the different representations
differ.

Equations (16.1-63) and (16.1-64), when taken for x’~ ~Ds, provide the basis for the complex
frequency-domain domain integral equation method to solve problems of the scattering by
penetrable objects. For solving problems of the scattering by impenetrable objects, Equations
(16.1-92) and (16.1-93) provide, when taken for x’~9s, the basis for the complex frequency-
domain boundary integral equation method and, when taken for x’~ g)s, the basis for the complex
frequency-domain null-field method. For general scatterers, all three methods need numerical
implementation.

The representations in this section will be needed in the remainder of this chapter.

Exercises

Exercise 16. 1-1

Show that from Equations (16.1-41) and (16.1-42) it follows that
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-~p,q(X , t)~( Ds (X ) = --~p,q(X , t) + [Ct( G~,q,i,j,Ai, j,n,rl~ nVr;X ,x,t)

~-’ ]~f     + ’ dA x’~                   ~p~3+ Ct(up,q,k,-Ak,m,p.,qWmZp.,q.;X,X,t)j for

and

i, fx~ [Ct(Gr’i’j’Ai’j’n’r’VnVr’;X’x’t)
Vr(X, t)j~DS’(X’) -" Vr(X,t) -I-

vh + ,

+ , x,~3’+ Ct( GrV, fk, -Ak,m,p,qVm~p,q;X ,x,t) ] for

(Hint: Consider the cases x’~Ds ’, x’ = 0~Ds and x’~DS.)
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(16.1-102)

(16.1-103)

Exercise 16. 1-2

Show that from Equations (16.1-92) and (16.1-93) it follows that

~’ ""’" "^ ,
, ,) = /~ " "^ i ’ + fx~ [G;’q’i’J(X’x’s)Ai’j’n’r~nVr(X’$)

- al,q,k(X,X,S)Ak,m,p,,q..m~p.,q.(X,S)] ~ for X’~ a3

and

^ . , , ^i . fL ’,IG;i,j(X’X’s)Ai, j,n,r’vnvr’(X’S)Vr(X,S)X~DS(x )=Vr(X,S)+
^vh ,    +     ^

-- ~rV, fk(X~,X,S)A~,m,p,ql~m~p,q(X,$)] dA for x’~ ~3.

(Hint: Consider the cases x’~Ds ’, x’ = 0~9s and x’~Ds.)

(16.1-104)

(16.1-105)

16.2 Far-field scattered wave amplitudes reciprocity of the time convolution
type

In this section we investigate the reciprocity relations of the time convolution type that apply
to the far-field scattered wave amplitudes at plane wave incidence upon an elastodynamically
penetrable or impenetrable object. The scattering configuration of Figure 16.1-1 applies. Two
states in this configuration are considered; they are denoted as state A and state B, respectively.
In state A, either a uniform plane P-wave that propagates in the direction of the unit vector
a P or a uniform plane S-wave that propagates in the direction of the unit vector a s is incident
upon the scattering object; in state B, either a uniform plane P-wave that propagates in the
direction of the unit vector tip or a uniform plane S-wave that propagates in the direction of the
unit vector fls is incident upon the scattering object. It will be shown that the far-field scattered
P- and S-wave amplitudes in state A when observed in the direction of observation ~ = _tiP,S
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are related, via reciprocity, to the far-field scattered P- and S-wave amplitudes in state B when
observed in the direction of observation ~ = --a P,S (Figure 16.2-1).

The corresponding relationships in the time domain and in the complex frequency domain
will be derived separately below.

Time-domain analysis

In the time-domain analysis, the incident wave in state A is taken either as the uniform plane
P-wave

i;A;P i;A;P. ,-..A;P. A;P, Po P
~p,q ,Vr I = {lp,q ,Vr

1a (t- asXs[Cp) , (16.2-1)

with
. - P A;P P PT2;P = -cp1 [2dp,q(af Vt;P) + 2~ak V£ )apaq ] , (16.2-2)

or as the uniform plane S-wave
i;A;S i;A;S, ~A;S, A;S, S- S~p,q ,Vr I = {Zp,q ,Vr la tt-asxs/cs) , (16.2-3)

with

T2~S -1 , S. A;S, S, A;S, (16.2-4)=-Cs ~tapVq )+aqVp ).

In the far-field region, the scattered wave in state A is represented as

I . s’A;S,oo s;A’S,~o,,~t~̄. s;A;P,oo s;A;P,o,,,,~_ t Ix’l/cp) I~;p,’~ ,Yr ’ J~,~, -
. s’A s;A.. ,..    t p,q ,Vr Jk6, -

+t~p,~ ,Vr t(X,t) -- 4Zc~p Ix’l 4~rc~Ix’l

x [1 + O(Ix’l-1)] as Ix’l~ with x’= Ix’l~,      (16.2-5)

in which, on account of Equations (16.1-27), (16.1-28) and (16.1-31)--(16.1-38) (note that the
surface source representation for the far-field scattered wave amplitudes is used),

s’A;P,=-.- - n-10 qbofS;A;P,~(l~ t~ , .-1.-, ~" 0 q~5ohs;A;P’~,~ t"(16.2-6)Vr’ (~,t) =t-" t r       ~, / + 1t9Cp) t~k,m,i,jGm t r,k,i,j ~.~, ) ,

= -Cp1
~:pS,;qA;P,~

-[ .... s’,A’,P,-, s;A;P,-
[,Wp,q(¢kvk ) + 2fl(~kVk )~p~q], (16.2-7)

with

qbr~f ;A;P"~(~’,t) = ~r~k ;A(x,t + ~sXs/Cp) dA, (16.2-8)

~h~;A;p,~....
[ i.s}A , (16.2-9)q)r,k,i,j (~,t) = ~r~k Oh (x,t + ~sXs[Cp) dA

d xc-O~Ds ’

and

s;A;S,~,_~ t) ,,-10 q)0.fS;A;S,~(~ t~ , ,-1,.,    ~" 0 ¢0hs;A;S’~%r t" ,
Vr (~S,)=~" t r t~, / + !dgCs) t~k,m,i,jgra t r,k,i,j k6,) (16.2-10)
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16.2-1(c)

/
! !

~P

I

I
I

I
/

Figure 16.9-1 Configuration for the far-field scattered wave amplitudes reciprocity of the time
convolution type: (a) two incident plane P-waves; (b) two incident plane S-waves; (c) an incident plane
P-wave and an incident plane S-wave.

s;A;S,~o    -1 .,. s.A;S,o* ,. s;A;S,o~,
~p,q =--CS [A!,~pV~q’    ÷ gqVp ),                          (16.2-11)

wi~

~fS;A;S’~(~,t) = (~r,k- ~r~k) [ ~f~;A(x,t + ~s/CS) ~, (16.2-12)

- [~r,g,i,j ~g,O = (~r,~- ~r~) hi (x,t + ~slcs) ~ . (16.2-13)
d x~

$i~1~1y, ~� incident wave in state B is ~cn cithcv as ~� ~nifo~ ~lanc P-~avc

{rCt~;’,v~B;’} = {T~’,V?;V}bP(t-~fXs/Cp), (16.2-14)

wi~

T~P = -c?1 [X6p,q~f Vff~) + 2~fVff;P)fl;flg], (16.2-15)

or as ~e u~fo~ plane S-wave

(rA)g;S,v~B;S} : (T2~S,v~;S}bS(t-~Xs/CS), (16.2-16)
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with
¯

= BSvB;S~.,. ,
In the far-field region, the scattered wave in state B is represented as

. s;B;P#,, s;B;P,~,~, s;B s;B,. ,    [rp,q
,Vr    i(~,t-lx’llcp)

t~p,q ,Vr ltX,t)=
4z~c~ Ix’l

x [1 + O(Ix’l-1)] as Ix’l-~

(16.2-17)

. s;B;S,~, s;B;S,,,*---
-I" ’t T~p’q ’Vr    J tg,t -

with x’= Ix’If, (16.2-18)

in which, on account of Equations (16.1-27), (16.1-28) and (16.1-31)-(16.1-38) (note that the
surface source representation for the far-field scattered wave amplitudes is used),

s;B;P,~-,~ - ~-1~ ~b~fS;B;P,~,t.~ t~ -1 ~hS;B;P,,,*
Vr    (~,t) =~ t r t~, J + (pCp) Ck, m,i,j~m~t~Sr, k,i,j (~,t), (16.2-19)

[ .... s;B;P,--, + 2fl(~kvS~B:P,--)~p~q]
r, vS,;qB ;t’,~ = _@1 [,tOp,qt~kVk ) , (16.2-20)

with

¢If ;B;P,~(~,/) = ~r~k       ;t(x,t + $=Xs/Cp) dA ,
d x~-c~D~

(16.2-21)

~15o3h S.B.P,<><>.....     [     ~.B
r,k,]ij’ (~’,/) = ~r~k Ohi (x,t + ~sXs/Cp) dA ,

J XC--c3Ds

and
$

s;B’S#,,-,- - _-1~ ..r.0f ;B;S,~..x -1 Oh ’B;S,~,
Vr ’ (g,t) = p otwr k~,t) + ~Cs) Ck,m,i,j~mOtCr, k,~,j (~,0 ,

Ts;B;S’~ -1 .~ s;B;S,~ ~ s;B;S,~.
p,q = -cs ~t¢pVq + %Vp ),

wi~

d x~9~

(16.2-22)

(16.2-23)

(16.2-24)

(16.2-25)

~Oh S;B;S,~.-- .
[q)r,k,i,j (g,t) = (Or,k - ~r~k) Ohi (x,t + ~sXs/CS) dA , (16.2-26)
d XC--t3D~

If the scatterer is penetrable, its elastodynamic properties in state B are assumed to be the adjoint
of the ones pertaining to state A. If the scatterer is impenetrable, either of the two boundary
conditions given in Equation (16.1-3) or Equation (16.1-4) applies. These boundary conditions
apply to both state A and state B, and are, therefore, self-adjoint.

To establish the desired reciprocity relation, we first apply the time-domain reciprocity
theorem of the time convolution type Equation (15.2-7) to the total wave fields in the states A
and B, and to the domain Ds occupied by the scatterer. For a penetrable scatterer this yields

Ix A B
Ct(-~p,q,Vr ;x,t)] dA = 0,A+m,r,p,q ~m [Ct(-Tgp,q,Vr ;x,t) -

B A (16.2-27)

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable



522 Elastic waves in solids

scatterer, Equation (16.2-27) holds in view of the boundary conditions upon approaching O~Ds
via Ds’. In Equation (16.2-27) we substitute

A A . i;A s;A i;A s;A.
{rp,q,Vr } = lrp,q + rp,q ,vr + vr i (16.2-28)

and
B B . i;B s;B i;B s;B

{rp,q,Vr } = irp,q + rp,q ,Vr + Vr } . (16.2-29)

Next, the time-domain reciprocity theorem of the time convolution type is applied to the
incident wave fields in the states A and B and to the domain Ds. Since the incident wave fields
are source-free in the interior of the scatterer and the embedding is self-adjoint in its
elastodynamic properties, this leads to

~x ~.-.. i;A i;B .... i;B i;A...3
A;,r,p,q I~m [ISt!.-’~p,q ,Vr ;X,t) - !St(-~2p,q ,Vr ,X,t)J dA = 0. (16.2-30)

~D~

Finally, the time-domain reciprocity theorem of the time convolution type is applied to the
scattered wave fields in the states A and B and to the domain Ds’. Since the embedding is
self-adjoint in its elastodynamic properties and the scattered wave fields are source-free in the
exterior of the scatterer and satisfy the condition of causality, this leads to

l [
s;A s;B .-,. s;B s;A ..]A+m,r,p,q ~’m Ct(-rp,q ,Vr ;x,t) - %(-rp,q ,vr ;x,t)] dA = 0. (16.2-31)

d x~D’

From Equations (16.2-27)--(16.2-31) we conclude that

+    Ix
~m[

i;A s;B .-~. s;A i;B .
Atn,r,p,q Ct(-~p,q ,vr ;x,t) + t2t(-~p,q ,vr ;x,t)

.~. i;B s;A .. s;B i;A
-- tSt!,--Zp,q ,Vr ;X,t) -- Ct(-rp,q ,vr ;x,t)] dA = 0. (16.2-32)

Equation (16.2-32) holds for both incident P- and incident S-waves. The ensuing reciprocity
properties have to be discussed for the two types of incident waves separately.

Two incident P-waves

, i;A i;A. - i’A’P i’A;P~In the case of two incident P-waves we take t rt;,q ,Vr I = ! r~;;q’ ,v;: I (Equations (16.2-1)
and (16.2-2))and" i.B i.B, , i’B.P i’B.P,’tz’[~;q ,V7 J = lZ~;q’ ,V; ’ J (~uations (16.2-14) and (16.2-15)). ~en, on
account of ~uafions (16.2-6)~16.2-13) we have

~x r~. s;A i;B;P .... i;B;P s;AA~,r,p,q ~m [~tt-rp,q ,vr ;x,o - ~tt-rp,q ,Vr ;x,t)]

t ~ x~

r + i~m [-~p,q[S;A’"-fl:Xs’Cp)V:;"= ,, bP(t- t") dt" Am,r,p,q
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.~,B’,P s;A, .,,_flsPxs/Cp)]dA
+ lp,q Vr

PVrB;P f ,, bP(t- t")ItvSr;A;P’oo(-flP, t")dr"
~t ~R

and on account of Equations (16.2-19)--(16.2-26)

fx L-.. s;B i;A;P . .-.. i;A;P s;B .1
A;,r,p,q I~m Lldt(-z’p,q ,Yr ;x,t) - tst(-~p,q ,vr ;x,t)J dA
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(16.2-33)

as Xs/Cp - t’) dA
d t’~R d xc-~Ds

f ,, aP(t- t") dt" +    fx     r s;B... %PXs/Cp)V?;P
= Am,r,p,q gm [-17p,q ~X,t --

~ t CR                        ~D~

~A;Ps;B..,, a2xs/cp)] ~+ ~ p,q vr ~x,t -

= OV~;P ~ aP(,- ,")ItvSr;B;P’~(~Qt"~) d,". (16.2-34)

~uafions (16.2-32), (16.2-33) and (16.2-34) lead to ~e desired recipr~ity relation for the
f~-field scattered wave amplitudes:

[.

= VrA;P -- |,, aP(t- t")Itv:"B;P’°~(--aP, t")dt". (16.2-35).~t ~

At this point it is elegant to express the linear relationship that exists between the far-field
scattered P-wave amplitude and the incident P-wave amplitude, both in state A and state B. To
this end, we write

s;A;P,oo.,.. VvA;P I P , A’P,P P
Vr (~,t) =.. J.      , a (t)Sr)c’(~,cl ,t- t’) dt’

t ~
(16.2-36)

and

vi’ ’ t,,0 =
t ~R

(16.2-37)

S B’P,Pwhere Sr~;P’P and /~,/ are the configurational time-domain particle velocity far-field P--+P
scattering tensors. Substitution of Equations (16.2-36) and (16.2-37) in Equation (16.2-35) and
rewriting the convolutions, we obtain

v?;Pvt;Plt f t ~bP(t,,) dta f , P , A;P,P P P t~,a (t)Sr,k (-fl ,a ,t- -t’)dt’

= , t ) ~,~ ~ p t- -t’)dt’,
~ t"~R t ~R

(16.2-38)
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where, in accordance with the rules applying to the time convolution, the operator It has been
brought in front of the integral signs. Taking into account that Equation (16.2-38) has to hold
for arbitrary values of V~A;P, VrB;P, aP(t) and bP(t), and using the causality of the scattered
waves, we end up with

sA;P,P. ~P aP ,.~B;P,P. P ~P .
r,k (--]:l , ,t) = ~k,r (--a ,IJ ,t) (16.2-39)

as the final expression of the time-domain reciprocity property under consideration.

Two incident S-waves

- i’A i;A, Ivi;A;Svi;A;SI (Equations(16.2-3)In the case of two incident S-waves we take ~ V~:q ,vr
and (16.2-4))and" i’B i.B, , i;B.S i.B.S,~z’~:q ,vj: I =/~:/~,q’ ,v?’ ’ ] (~uations (16.2-16) and (16.2-17)). ~en, on
account of ~uations (16.2-6)~16.2-13) we have

fx g~. s;A i;B;S . ~. i;B;S s;A ..1~,r,p,q
~m L~t~-~p,q ,Yr ;x,O - ~t~-~p,q ,Yr

-rp,q (X,t )V~ + bS(t- flflXs/CS t’) ~-
, dt’

’ s;A , B;S TB;~s;A¢x t’~]

t,,~bS(t~
- t") &" ~m,r,p,q ~m L-r~,q

~ x~~

+ ~ p,q vr tx, t -

= oV~;s - [,, bS(t- t")I,v~;A;S’~(-~t") dr" (16.2-40)
ot ~R

and on account of ~uations (16.2-19)-(16.2-26)

~ f~. s;B i’,A;S. .. ~. i;A;S s;B~,~,v,q ~ ~tt-r~,q ,vr ,x,t) - ~tt-r~,q ,v~ ;x, Oj
d x~Ds

-- ~:’r’p’q lt"~R&’ I~    D’mL[-vp’qs;B (X,t ’ )v~A"S + TA;Sys"B’x t"qp,q r

f’’ aS(t t’)&" + Ix

~ s"B" "-a:Xs/CS)V~;S
= -- ~m,r,p,q Pm L-Vp,q [x,t

t ~R ~D~

+ ~ p,q vr tx,~ -

pv?;S [ aS(t .1,.. s;B;S~. S t")at".= - t )ltVr ’ ~ , (16.2-41)
~ t"~

~uations (16.2-32), (16.2-40) and (16.2-41) lead to Se desired recipr~ity relation for the
f~-field scattered wave amplitudes:
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V?;S f ,, bS(t- t’tt"~)ltvrS;A;S’~"’{,-ff--S,t "’) dr"
dt ~R

= VrA;s [ aS(t- t")ItvSr;B;S’~’(--aS, t") clt".
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(16.2-42)

At this point it is elegant to express the linear relationship that exists between the far-field
scattered S-wave amplitude and the incident S-wave amplitude, both in state A and state B. To
this end, we write

aS.t,.S A’S S.,.vSr;A;S"(~,1) : Vt;S ~ , ( ) r,~:’ ’ {.g,a S,t- t’) dr’
¢ t~R

and

vS;B;S,~,~, t~ v?;S f bS,t,,S B’S,S,,. ,,S dt’ ,k ~,)= , t ) t¢,; t~,p,t-t’)
t ~R

(16.2-43)

(16.2-44)

sB’SSwhere SrA,~s’s and k,; ’ are the configurational time-domain particle velocity far-field S-->S
scattering tensors. Substituting Equations (16.2-43) and (16.2-44) in Equation (16.2-42) and
rewriting the convolutions, we obtain

t ~s" t" SA;S’S" "S, aS, tV?"Syt;SIt ft,,~:S(t")dt" f,’ !,)r,k I,-I~ yt"-t’)dt’

f t s(t") dt" [ s , s;s,s S s t"
=vt;Sv?;SIt ~"~ --,tt~R’ b (t)S£r, (-a ,fl ,t- - t’) dt’,

(16.2-45)

where, in accordance with the rules applying to the time convolution, the operator It has been
brought in front of the integral signs. Taking into account that Equation (16.2-45) has to hold
for arbitrary values of V~A;s, VrB;s, aS(t) and bS(t), and using the causality of the scattered waves,
we end up with

sA;S,S. ..S S .. sB;S,S~_aS, oS
r,k 1,-+O ,a ,t)= k,r t i~ ,t) (16.2-46)

as the final expression of the time-domain reciprocity property under consideration.

An incident P-wave and an incident S-wave

tV i;A I~.;AI =In the case of an incident P-wave and an incident S-wave we take t p,q, r ,
iz’fi,q" i;A;P,vri;A;P,l (Equations (16.2-1) and (16.2-2)) and                                ,/rt;,qi;B,vri;B,! = ,t rt~i’B;S,vri;B;s,l (Equations
(16.2-16) and (16.2-17)). Then, on account of Equations (16.2-6)--(16.2-13) we have

~ F.-,. s;A i;B;S " -- tSt!,-Vp,q ,Vr ;X,t)J dAA+m,r,p,q Jx~D~m L~A-Vp,q ,1)r ;X,t) "" i’,B;S s;A ..1

= ~+m,r,p,q f dtt I PmI--~;,"qA(X’’t)V?;S + TpB,~SvSr;A(x’t’)]bS(t- flsSXs’cS- tt) dA

a t’~R J xc--~Ds
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(16.2-47)

= pV?;P ~ aP(t- t")ItVSr;B;P’o°(-aP, t") dt". (16.2-48)
~ t"~R

Equations (16.2-32), (16.2-47) and (16.2-48) lead to the desired reciprocity relation for the
far-field scattered wave amplitudes:

v?;sr ,, bS(t- t")ItvSr;A;S’~(-flS’t") dt",it ~R

= V?;P [ aP(t- t")ItvSr;B;P#*(-aP, t") dt". (16.2-49)J t"~R

At this point it is elegant to express the linear relationship that exists between the far-field
scattered S-wave amplitude and the incident P-wave amplitude in state A and the far-field
scattered P-wave amplitude and the incident S-wave amplitude in state B. To this end, we write

vSr;A;S’~(~’t) = Vt;P I aP t’ SA;S’P aP
t’~R ( ) r,k (~’, ,t- t’) dt’

and

Vs;B;PP’tr t) ~, bS(t’) ,Ic ~, ~ = VrB;s s~fP’S(~flS, t- t’) dt’
t ~R

(16.2-50)

S B;P,Swhere SrA, k;s’P and k,r are the configurational time-domain particle velocity far-field P--+S
and S-+P scattering tensors, respectively. Substituting Equations (16.2-50) and (16.2-51) in
Equation (16.2-49) and rewriting the convolutions, we obtain

(16.2-51)
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=                   , ( ) g,r ( ,fl ,t- - t’)) dt’,    (16.2-52)
~t t" ~R ,t t ~R

where, in accordance with the rules applying to the time convolution, the operator It has been
brought in front of the integral signs. Taking into account that Equation (16.2-52) has to hold
for arbitrary values of VrA;P, Vr~;s, aP(t) and bS(t), and using the causality of the scattered waves,
we end up with

sA;S, Pr aS, at,t, sB;P,S.
r, tc ~-~" ~ = Ic, r (--a ,p ,t) (16.2-53)

as the final expression of the time-domain reciprocity property under consideration.

Complex frequency-domain analysis

In the complex frequency-domain analysis, the incident wave in state A is taken either as the
uniform plane P-wave

., i’A;P ~ i’A;P~ . ~A;P. A;P. ,, P, , P
~Plq ’ r’ ! = ilp,q ,Vr

la (s) exp(-sasXs/Cp), (16.2-54)

with
..-- P. A;P. P PT,t;P =-c~lpq [,~(}p,q(Ot~V:;P) + zfl!,o~k vk )ap aq ]                                            , (16.2-55)

or as the uniform plane S-wave
,, i;A;S., i;A;S. T,A;S,v~A;S/~         Srp,q ,vr 1 { p,q r , S(s) (16.2-56)=               exp(-sasXs/Cs),

with

TpA,~S:-cs-Xlz(Ctp" S.VqA.,S + aqSVpA;S)         . (16.2-57)

In the far-field region, the scattered wave in state A is represented as

., s’A., s’A.. , . .,, s;A;P.oo ^ s;A;P.~o .... exp[-slx’l/cp]
~p,~ Wr’ JtX,S) = i~p,q ,Vr Jk~,S) 4~c~ Ix’l

.~ s;A;S,~ ~ s;A;S,~ .... exp[-slx’l/cs]I+ Irp,q ,vr    J(~,s) 4~c~ [x’l J

x [1 + O(Ix’l-1)] as Ix’l~ wi~ x’= It’ll, (16.2-58)

in wNch, on account of ~uafions (16.1-76), (16.1-77) and (16.1-80)~16.1-87) (note ~at the
s~ace source represen~tion for ~e f~-field scattered wave is used),

= + S~Cp) ~k,m,i,jgm~r,k,i,j , (16.2-59)

,q =-cvl +
with
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q~r3fs;A;P’~ = ~r~k I exp(s~sXs/Cp)~f~;A(x,s) dA , (16.2-61)
d xc-3Ds

,~ Oh ;A;P.~
~r,k,i,j = ~r~k exp(s~s/Cp)O~i (x,s) ~ , (16.2-62)

d x~D~ ’

and

~ 8p-l~ff ,A,S,~ + ~~S]~- ~k,m,i,j~m~r,k,i,j~ , (16.2-63)~;A;S,~
~ ~’ ¯ ~-1~ ~Sh~;A;S,~

~ s;A;S,~ -1 .~ ~ s;A;S,~ ~ ~ s;A;S,~.
~p,q = -Cs ~vq + ~qv~ ), (16.2-~)

wi~

N 0f ;A;&~ ~ s;A
~r, ki,] = (dr,~ - ~r~) ~xp(s~slcs)O f£ (x,s) ~, (16.2-65)

~0h s;A;S’~
[~,k,i,~ = (6~,k- ~r~D exp(s~X/Cs)~?)g(x,s) ~ . d6.~-~)
d x~~                  ’

Sillily, ~e incident wave in state B is ~ken either as ~e unifo~ plane P-wave

{~i;B;P ~ i;B;P. ,~B’P ~B;P,~ P
~,~ ,vr ~ t ~,~, r I ~(s) (16.2-67)=                exp(-sfls xslcp),

wi~

T~P = -c~1 [Xd~,q~V~;P) + 2~v~;P)~ ], (16.2-68)

or as ~e unifo~ plane S-wave

{- i’B;S ~ i’,B’,S, {T~S,v~;S}~S(s)      Srp~ ,vr 1 = exp(-sflsxs/cg, (16.2-69)

wi~

T~S= -c~I~(~V~;s) + ~v~;S) . (16.2-70)

In ~e f~-field region, the scattered wave in state B is represented as

., s;B ^ s;B.. , 1. ^ s;B;P,o~ ^ s;B;P,,~ ....exp[-slx’l/cp]
rp,q ,Vr )[X,S) = ~ --t~p,q ,Vr Jt~,S) 4~c~ Ix’l

, ~ s;B;S,~ ~ s;B;S,~ ....exp[-slx’l/cs] [

x [1 + O(Ix’l-1)] as Ix’l~ wi~ x’= Ix’l~, (16.2-71)

in w~ch, on account of ~uations (16.1-76), (16.1-77) and (16.1-80)~16.1-87) (note ~at the
s~ace source represen~tion for ~e f~-field scattered wave is used),

~ s;B;P,~
~ff ,B,P,~ + . .-1.~

~ ~ OhS;B;P,~
Vr = sp_l ~ s, , S~Cp) Lk, m,i,jgm~r,k,i,j , (16.2-72)

~ s;B;P,~ [ ..... s;B;P,~.rp,q =-c~~ + 2~;~"P’=)~p~q] (16.2-73)[~Op,qt~v~ ) ,

with
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(16.2-74)

~Dh ;B;P,oo ., ;
~r,k,i,j = ~r~k xp(s~sXs/Cp)Dh ,s) dA ,

and
s s^ s;B;S, oo sp-l~rOf ;B;S,oo _ . .-1.-,    ,. &Dh ;B;S, oo

vr     =             -t- SttgCs) I..k,m,i,j~m~Pr, k,i,j ,

~.pS;B;S,o. -1 .~_ ^ s;B;S,.o ,. ^ s’B;S,,~.
,q -- --CS fltgpl)q 4r gqVp’ ) ,

with

(16.2-75)

(16.2-76)

(16.2-77)

~l~r,~f s ;B ;S’°°tc, i,j = (~r,~ - ~r~) exp(s~sXs/Cs)~ f ~;B (x,s) dA , (16.2-78)
J x~s

~hS;B;S,~             ~                ~ s;B
r,k,i,j = (br, k- ~r~k)d x     ~xp(s~sXs/CS)~hi,j (X,S) ~ .            (16.2-79)

If~e scatterer is peneVable, its elastodyna~c prope~ies in state B me assumed to be ~e adjoint
of the ones pe~ning to s~te A. If the scatterer is impene~able, eider of ~e two boun~y
con~tions given in ~uation (16.1-51) or ~uation (16.1-52) applies. ~ese bound~
con~tions apply to both s~te A and s~te B, and ~e, ~erefore, self-adjoint.

To establish ~e desired reciprocity relation, we first apply the complex frequency-dom~n
reciprocity ~eorem of the time convolution type ~uation (15.4-7) to the to~ wave fields in
the s~tes A and B, and to ~e dom~n 9s occupied by the scatterer. For a penetrable scat~rer
t~s yields

Ara’r’p’q+ f x~O~D~tn [--~pA’q(X’$)~rB(X’S) + ~pB’q(X’S)~rA(X’s)] dA = O                                            ’ (16.2-80)

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
scatterer, Equation (16.2-80) holds in view of the boundary conditions upon approaching 3~9s
via ~rs’. In Equation (16.2-80) we substitute

{~,A ~Al= ^i;A ^s;A,,i;Ap,q, r , {~p,q -i- ~p,q ,Vr + Prs;A} (16.2-81)

and

{~. B ~ B 1 = ~ ^ i;B ^ s;B .. i;B
p,q, r , ~p,q + ~p,q ,Vr + ~rS;B}¯ (16.2-82)

Next, the complex frequency-domain reciprocity theorem of the time convolution type is
applied to the incident wave fields in the states A and B and to the domain ~9s. Since the incident
wave fields are source-free in the interior of the scatterer and the embedding is self-adjoint in
its elastodynamic properties, this leads to

--Vp,q (X,S)Vr (X,S) + ~p:q (X,S)I)r [X,~)j dA = 0. (16.2-83)

Finally, the complex frequency-domain reciprocity theorem of the time convolution type is
applied to the scattered wave fields in the states A and B and to the domain a9s’. Since the



530 Elastic waves in solids

embedding is self-adjoint in its elastodynamic properties and the scattered wave fields are
source-free in the exterior of the scatterer and satisfy the condition of causality, this leads to

+
f

r ^s;A -^s;B. ~ ^s;B. .^s;A. .1
l~n,r, pcq. I~m [-~’;,q (X,$)Vr (X,$) + ~p,q tX, S)Vr (X,S)J dA = 0. (16.2-84)

d xc-~D~

From Equations (16.2-80)-(16.2-84) we conclude that

+    I .,_~m" ^i;A -^s;B,_.,Am,r,p,q       [_~p,q (X,S)Vr ~,’%~1_ Zp,q^ s;A(x,s)vr. ^ i;B.[x,.,oX

^ i;B . ^ s;Ar_ .x ^ s’B ^ i;A+ ~P,q(x’$)vr ~"%’~1+ ~P,~I (X’S)Vr (x,$)]dA =0, (16.2-85)

Equation (16.2-85) holds for both incident P-waves and incident S-waves. The ensuing
reciprocity properties have to be discussed for the two types of incident waves separately.

Two incident P-waves

In the case of two incident P-waves we take [~Aiqa,Ori;h / = [�’AIt;P,oj;A;Pl (Equations (16.2-54)
,, i;B ,, i’B    ^ i;B;P ^ i;B;P      .and (16.2-55)) and {rt;,q ,vr’ } = {r~,q ,vr } (Equations (16.2-67) and (16.2-68)). Then, on

account of Equations (16.2-59)-(16.2-66) we have

~ f ~rn ^ s;A ^ i;B;PA +m,r,p,q [--rp,q (X,S)Vr (X,S) " ..i’B;P. .^s;A. ,’1 ,,+ rp~ [x,s)vr tx, s)j,I xc-ODs

- Vr exp(-sffx/cp) da

= s-lp Vra ;P/~ P(S)OrS;A;P’**(-fl P, s) (16.2-86)

and on account of Equations (16.2-72)-(16.2-79)

+    I ._.~m~ ^s;B -^i;A;P. . ^i;A;e. .^s;B.
Am,r,p,q       [-~p,q (X,S)Vr (X,S) + ~p,q [X,s)vr [X,s)J dA

= Am,r,p,q ~’,m[-~.;,":(X,S)VrA;P + Tt~’P~’/;B(X,$)]~P($)    P, exp(-$as xs/ce) dA

-l ..A;P^P. .^ s;B;P,~,.       P .=$ pvr a ~$)vr     (--a ,$).                                     (16.2-87)

Equations (16.2-85)--(16.2-87) lead to the desired reciprocity relation for the far-field scattered
wave amplitudes:

v);P~ P..^ s;A;P,oo. ~,P . A,P P s,B P,,~ PtS)Vr    (-# ,$) = V~. " ~ ($)¢’r" ; (-a ,$). (16.2-88)

At this point it is, again, elegant to express the linear relationship that exists between the far-field
scattered wave amplitude and the incident P-wave amplitude, both in state A and in state B. To
this end, we write, in accordance with Equations (16.2-35) and (16.2-37)

vr " [¢,s) =
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and
^ s;B;P ..... B’P;" Pt ~P, B’P,Pt~..~P
Vk ’ t~S,S) = Vr ’ 0 kS)Ok,"; !,~,p ,s) (16.2-90)

,~ A;P,P g B’P,Pwhere r,g and g,; ~e ~e configurafionN complex ffequency-domNn p~cle velocity
far-field scattering tenors. Substitution of ~uafions (16.2-89) and (16.2-90) in ~uafion
06.2-88) yields

= Vt;P¢;~ P(s)~ P(s)~P’P(~~s). (16.2-91)

T~ng into account ~at ~uation ( 16.2-91) has to hold for ~bi~ v~ues of V~
and ~ P(s), we end up wi~

~A;P,P, ,~aPs) ~f’e(~fl~s) (16.2-92)r,~ k--~ , ,

as ~e fin~ expression of ~e complex frequency-domain recipr~ity propegy under considera-
tion.

Two incident S-waves

¯ ¯ ^ i’A ^ i;A ^ i;A;S ^ i’A;S Eo "In the case of two incident S-waves we take {~: ’ ,v } = {~:,,, ,v ’ } ( uatlons (16.2-56)
and (16.2-57))and {~’t~:q~,0]’~3} = {~A:~’S,~r~’B’sf ~Eqruations (i~.2-6~)and .2-70)). Then, on
account of Equations (16.2-59)-(16.2-66) we have

+ ~ I ^s;A. .^i;B;S. . ^i;B;S. .^s;A. .1 ,,
Am,r,p,q J yra [-~:p,q tx,s)Vr tx, s) + Vp,q tx, s)Vr tx,s)J ~

+ f r^ s;A...B;S T~SOrS;A(x,s)]/~ S(s) exp(_Sfls Xs/Cs) dA
= Am,r,p,q     Vm [--~P,q [X,S) Vr +                       S

dx

= s-lpVr~;Sf~ S(s)~;A;S’~’(-flS, s) (16.2-93)

and on account of Equations (16.2-72)-(16.2-79)

A;n,r,p,q | Vm [--rp,q tX,S)Vr tX, S)
d x~3Ds

fix r ^s;B. .. A;S _A;S^s;B. d Sexp(-sas Xs/CS)=  DV m[-rp,q tx, s)v, + lp,q v, tx, s)jaS(s)           aa

= s-lp Vr~;S8 S(s)~rS;~ ;S,*~(._a S, s).                          (16.2-94)

Equations (16.2-85), (16.2-93) and (16.2-94) lead to the desired reciprocity relation for the
far-field scattered wave amplitudes:

Vrm, Sf~ S (s)~.,A.,S,~.(_flS, s) = Vrh;S~ S(s)~,rS.,~;S, oo(._a S, s) .           (16.2-95)

At this point it is, again, elegant to express the linear relationship that exists between the far-field
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scattered wave amplitude and the incident S-wave amplitude, both in state A and in state B. To
this end, we write, in accordance with Equations (16.2-43) and (16.2-44)

,, s;A;S,**.., , vt;S~ S,.~ A;S,S.~. S ,
vr     ff;,s) =       tS)~rj~ (~,a ,s)                                (16.2-96)

and

) v ;S;,S ^B;s,s= (s)S/~,r (g~fi, s), (16.2-971

g A.s,s and g B;s,swhere r,k’       l~,r are the configurational complex frequency-domain particle velocity
far-fieM S--->S scattering tensors. Substitution of Equations (16.2-96) and (16.2-97) in Equation
(16.2-95) yields

os s .
tS)br,~c’ t-P ,C~ ,S)

= v~;SVr~;S~S(s)~ S(s)J~,)s’s(-as, flS, s).                  (16.2-98)

Taking into account that Equation (16.2-98) has to hold for arbitrary values of V~A;s, VrB;s, ~ S(s)
and ~ $(s), we end up with

~ A;S,S . ,.S    S . ~ B;S,S . S ,,S
rdc I,-IJ ,a ,$) = ~k,r (--~ ,p ,s) (16.2-99)

as the final expression of the complex frequency-domain reciprocity property under considera-
tion.

An incident P-wave and an incident S-wave

In the case of an incident P-wave and an incident S-wave we take ,^i;A ^i;A,
^ Ir~q’Vri’A;P ^ i;A;P{~ ,vr } (Equations (16.2.54) and (16.2_55)) and -_^ i’B/rt,~?t ’vr,.*.i’B~j = ,t~i;B;Svi;B;Sip,q, r , (J~quations

(16.2-69) and (16.2-70)). Then, on account of Equations (16.2-59)-(16.2-66) we have

[~ F ^s;A. .^i;B;S. . ^i;B;S. .^s;A.A +m,r,p,q J xc_o~m [-rt,,q tx, s)vr tx, s) + ~’p,q (X,S)Vr [X,S)J dA

= A+m,r,p,q I_ ~rn [-e;)qA(X,S)VrB;S +lp,q~B;S^s;A’Vr [X,$)j_ "qI~ S(S)     Sexp(-sfls xs/cS)

= s-lpVrB;Sg S(s)C)~;A;S’°°(-flS, s) (16.2-100)

and on account of Equations (16.2-72)-(16.2-79)

~xc-0~ ^ s;B - ^ i;A;P. . ^ i;A;P. .^ s;B.A+m,r,p,q    ~m [--~p,q (X,S)Vr (X,S) + ~p,q (X,$)Vr (X,$)J dA

+ ~x ~m[ ^s;B
A;P--A;P^s;B._ ,] P- exp(-sas xs/cp) dA- Am,r,;,q -r;,q (x,s)V; + ~~,q vr tx, s)18e(s)

= s-lpvrA;P~P(s)~rS;B"P’**(’-aP, s). (16.2-101)



Plane wave scattering in a homogeneous, isotropic, Iossless embedding 533

Equations ( 16.2- 85), (16.2-100) and (16.2-101 ) lead to the desired reciprocity relation for the
far-field scattered wave amplitudes:

(16.2-102)

At this point it is, again, elegant to express the linear relationship that exists between the far-field
scattered S-wave amplitude and the incident P-wave amplitude in state A and the far-field
scattered P-wave amplitude and the incident S-wave amplitude in state B. To this end, we write,
in accordance with Equations (16.2-50) and (16.2-51),

~rS;A;S,°°(~-,s) Vt;P ~ P . . ~ A;S,P . "" P .-" tS)~r,k !,g,a , s) (16.2-103)

and

0 s;B;P,~,,~ S, VrB;S~S "B;P,S Sk    tS, )= (s)Sk,r (~3 ,s), (16.2-104)

where ~rA, k;S’P and ~fP, S are the configurational complex frequency-domain particle velocity
far-field P---~S and S----~P scattering tensors, respectively. Substitution of Equations (16.2-103)
and (16.2-104) in Equation (16.2-102) yields

V,rB;S~ A;P;’ S, . ^P. .,~A;S,P. .,SPvk o ts)a tS)~r,k t-P,ct,s)

= VrA"PVrB"~ l~(s)~ S(s)~)P’S(-aP, flS, s). (16.2-105)

Taking into account that Equation (16.2-105) has to hold for arbitrary values of VkA;/’, VrB;s,
~ P(s) and/~ S(s), we end up with

~ g;s,P.r,k !.-~’S, oIP, S’) = ~ a’d"St--olP aSk, r k ,1~ , S)                             (16.2-106)

as the final expression of the complex frequency-domain reciprocity property under considera-
tion.

In a theoretical analysis, the reciprocity relations derived in this section serve as an important
check on the correctness of the analytic solutions as well as on the accuracy of numerical
solutions to scattering problems. Note, however, that the reciprocity relations are necessary
conditions to be satisfied by the scattered wave field (in the far-field region), but their
satisfaction does not guarantee the correctness of a total analytic solution nor the accuracy of
a total numerical solution. In a physical experiment, the redundancy induced by the reciprocity
relations can be exploited to reduce the influence of noise on the quality of the observed data.

References to the earlier literature on the reciprocity relations of the type discussed in this
section can be found in Tan (1977).

Exercises

Exercise 16.2-1

Show by taking the Laplace transform with respect to time that Equation (l 6.2-92) follows from
Equation (16.2-39).
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Exercise 16.2-2

Show by taking the Laplace transform with respect to time that Equation (16.2-99) follows from
Equation (16.2-46).

Exercise 16.2-3

Show by taking the Laplace transform with respect to time that Equation (16.2-106) follows
from Equation (16.2-53).

16.3 Far-field scattered wave amplitudes reciprocity of the lime correlation
type

In this section we investigate the reciprocity relations of the time correlation type that apply to
the far-field scattered wave amplitudes at plane wave incidence upon an elastodynamically
penetrable or impenetrable object. The scattering configuration of Figure 16.3-1 applies.

Two states in this configuration are considered; they are denoted as state A and state B,
respectively. In state A, either a uniform plane P-wave that propagates in the direction of the
unit vector ctP or a uniform plane S-wave that propagates in the direction of the unit vector
aS is incident upon the scattering object; in state B, either a uniform plane P-wave that
propagates in the direction of the unit vector fl P or a uniform plane S-wave that propagates in
the direction of the unit vector fls is incident upon the scattering object. It will be shown that
certain relations exist between the far-field scattered wave amplitudes in states A and B. The
corresponding relationships in the time domain and in the complex frequency domain will be
derived separately below.

Time-domain analysis

In the time-domain analysis, the incident wave in state A is either taken as the uniform plane
P-wave

i;A;P i;A;P, ...,A;P. A;P. P. P
rp,q ,vr 1 = tlp,q ,Vr la (t-asXs/Cp) , (16.3-1)

with

TpA,,~P=_c-pl[26p,q(4Vt;P) P A;P P P+ 2fl(ak V~c )ap~q ], (16.3-2)

or as the uniform plane S-wave
, i;A;S i;A;S, tTA.S,v,A;S~aS,t S= - asXs/CS), (16.3-3)l rp,q ,vr J ~ p,~ r , ~

with

TpA,~S= -1 , S. A;S S. A;S.-cs ~tapVq + aqVp ). (16.3-4)

In the far-field region, the scattered wave in state A is represented as
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6.3- I (a)

/

/ /
I    I \    \

16.3- ~ (b)
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6.3- I (~)

/ / \ \\
,I    I \    \

Figure |6.3-| Configuration for the far-field scattered wave amplitudes reciprocity of the time
correlation type: (a) two incident plane P-waves; (b) two incident plane S-waves; (c) an incident plane
P-wave and an incident plane S-wave.

s;A s;A,. ,
rp,q ,Vr J!,X, t) ---

s;A;P, oo s;A;P,oo...
l;p,q ,Vr    J(¢,t- Ix’l/o)

4z~c~ Ix’l

. s;A;S,~,, s;A;S,o,,...
+ l~p,q ,vr

J(~,t-

4Z~cs~ Ix’l

x [1 + O(Ix’l-1)] as Ix’l~oo with x’= Ix’l~’, (16.3-5)

in which, on account of Equations (16.1-27), (16.1-28) and (16.1-31)--(16.1-38) (note that the
surface source representation for the far-field scattered wave amplitudes is used),

c -1 Oh ;A.p,o~vSr;A;P,oo(~,t) = p-l~tq~rf ;A;P,o~(~,t) + (t9 p) Ck, m,i,j~m~tqbr,k,i,j, (~’,t) ,
(16.3-6)

r26 .~. s;a;P,o,,.
. .

rps,"qA;P#°=-c-~i[ p,qtgt~vk )+ 2/z(~/~v~;A’P’°°)~p~q], (16.3-7)

with s
~r~f ;A;P’~’(~,t) = ~r~k ;A(x,t + ~sXs/Cp) dA, (16.3-8)

~°~h s’A;P’~’ "- fr,k,],j ’ (~’,t) = ~r~k hi (x,t + ~sXs/Cp) dA ,
d xc-~D

(16.3-9)
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and

s;A.S, oo-~ - ,~-1~ ~fS;A;S,oo(~ d -1 ~hS;A;S,°°
vr ’ (~,t) =to t r ~, ~ + (PCs) Cl~,m,i,j~mOt~r,k,i,J (~,t) , (16.3-10)

= -cs ~[¢pVq + gqV~’ ), (16.3-11)

wi~

ofS’A;S,~ [ Of~;A(x,t + ~s/CS) ~ (16.3-12)
~r ’ (~,0 = (~r,k- ~r~k)

d x~D~

~hS;A;S’~t~ t)- [ ~hi~(x’t +( ~ ~) ~/cs) (16.3-13)~,~,~,~ ~, ~-.6r,~--r-..

Si~lmly, ~e incident wave in state B is ~en either as ~e unifo~ plane P-wave

i;B;P i;B;V, "-~;~, -~;P--~" _ ~XslC~) (16.3-14){5~,q ’vr I =/~,q W J0 ~t ,

wim
. P B.P P B;P P P

T~P= _c?1 [X~p,q~k Vi, ) + 2.~k Vi )~; ~q ],
(16.3-15)

or as ~e unifo~ plane S-wave

i;B;S i;B;S. ,TB;S, vB’S,bS,t s
{Vp,q ,Yr ) = i p,q r ’ ~ [ -~sxs/cs), (16.3-16)

wi~

T~¢S= -1 .~S -B;S ~S~ B;S.-cs ~ V~ + Oq vp ). (16.3-17)

In ~e f~-field region, the scattered wave in state B is represented as

[, s;B;P,~ s;B;P,~,,~.
,~s;~;s,~ s;n;s,~,,~t ix,i/cs)~

. s’B s;B.. , =/l~P’q ’Vr lkg,t-Ix’l/cp) t p,q ,Vr    1[g, --,Vr , x,o L +

x [1 + O(Ix’l-1)] as Ix’l~ with x’= Ix’l~, (16.3-18)

in w~ch, on account of ~uations (16.1-27), (16.1-28) and (16.1-31)~16.1-38) (note ~at the
s~ace source representation for ~e f~-field scattered wave ~plitudes is used),

s;B;P,~-- - _-1~ ~fS;B;P,~ t~ " ~hS;B;P,~---
Vr    (*,0 = P t r     k~, ) + ~Cp)-l~k,m,i,j~mOt*r,k,i,j .... (*,0",    (16.3-19)

[,~ ,~ s;B;P,~ ~__~s;B;P,~,~ v+ ,
wi~

[ ~f~;B(x,t +     ~.,                (16.3-21)
d x~D

~hS;B;P,~tx ~, [ ~
, (16.3-22)

r,k,i,j ~,t) = ~r~k ~hi (x,t + ~sXs]Cp) ~
d x~~

and
s.B;S,~-- - _-1~ ~bf~;B;S,~ t~ , ,-1 ~    ~ ~ ~bh~;B;s’~’~ t) (16.3-23)

Vr’ ~,0 = P t r k~, ) + ~Cs) ~k,m,i, jgm t r,k,i,j ~, ) ,
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rps,.,aq;S,~_    -1 .~. s;B.S,**. ,. s;B;S,~*,= --CS ]~,gpVq ’ t gqVp    ),

with

¢OIs;B;S’~(’~ t) [ Of~;B(x,t +r    ,--, ) = (ar, k- ~r~k) ~s/CS)

(16.3-24)

(16.3-25)

(16.3-26)

If the scatterer is penetrable, its elastodynamic properties in state B are assumed to be the
time-reverse adjoint of those pertaining to state A. If the scatterer is impenetrable, either of the
two boundary conditions given in Equation (16.1-3) or Equation (16.1-4) applies. These
boundary conditions apply to both state A and state B, and are, therefore, time-reverse
self-adjoint.

To establish the desired reciprocity relation, we first apply the time-domain reciprocity
theorem of the time correlation type, Equadon (15.3-7), to the total wave fields in the states A
and B, and to the domain Ds occupied by the scatterer. For a penetrable scatterer this yields

fx A B B A
A +m,r,p,q I:m [Ct(-Trp,q,Jt(vr );x,t) + Ct(-Jt(~p,q),Vr ;x,t)] dA : 0,

~D~
(16.3-27)

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
scatterer, Equation (16.3-27) holds in view of the boundary conditions upon approaching ODs
via Ds’. In Equation (16.3-27) we substitute

~p, s;A i;A s;A,
{ q,Vt}={~iplAq’t’~p,q,Vr +Vr, (16.3-28)

and

B B     i;B s;B i;B s;B ~
{~p,q,Vr } = {$’p,q + ~p,q ,Vr + Vr J.                            (16.3-29)

Next, the time-domain reciprocity theorem of the time correlation type is applied to the incident
wave fields in the states A and B and to the domain Ds. Since the incident wave fields are
source-free in the interior of the scatterer and the embedding is time-reverse self-adjoint in its
elastodynamic properties, this leads to

~x i;A i;B i;B, i;A
A:,r,p,q Vm [Ct(-~p,q ,Jt(vr );x,/) + Ct(-Jt(~ dA 07,q),Vr ;x,t)J = . (16.3-30)

~D~

Finally, the time-domain reciprocity theorem of the time correlation type is applied to the
scattered wave fields in the states A and B and to the domain D . Since the embedding is
time-reverse self-adjoint in its elastodynamic properties and the scattered wave fields are
source-free in the exterior of the scatterer and satisfy the condition of causality, this leads to

+    ~x
Ct( "¢p’q ’Jt(vr ),x,/) + Ct(-Jt(~p,q ),vr ;x,t)] dAAm,r,p,q

~D~m[

s;A s’,B s;B s;A

’ + / s;A    s;B s;B s;A
= hmA...)~Am,r,p,q [C,(-~p,q ,Jt(vr );x,t) + Ct(-Jt(~p,q ),Vr ;x,t)]dA,(16.3-31)

~(o,A)
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where S(O,A) is the sphere of radius A with centre at origin O of the chosen reference frame.
From Equations (16.3-27)-(16.3-31) we conclude that

A;n,r,p,q+ I I~m i;A s;B s;A i;B
[Ct(-~p,q ,Jt(vr );x,t) + Ct(-~p,q ,Jt(vr

d x~oD~

i;B s;A s;B i;A
-t- Ct(-Jt(~p,q ),vr ;.r,t) + Ct(-Jt(z’p,q ),vr ;x,t)] dA

. + f s;A    s;B
+ hmA_~ooAm,r,p,q [Ct(-~p,q ,Jt(vr

~s(o,a)
s;B s;A

+ Ct(-Jt(~p,q ),vr ;x,t)] dA = 0. (16.3-32)

Equation (16.3-32) holds for both incident P- and incident S-waves. The ensuing reciprocity
properties have to be discussed for the two types of incident waves separately.

Two Incident P-waves

In the case of two incident P-waves we take {r~"~A,v~A} = {~};~A;P,vi~A;P} (Equations (16.3-1)
i’B i;B       i;B;P i’B’P t,,,~    .and (16.3-2)) and {r/;~q ,vr } = {~,q ,v7 ’ } (~uat~ons (16.3-14) and (16.3-15)). ~en, on

account of ~uations (16.3-6)~16.3-9) we have

~x s;A i;B;P .... i;B;P, s;A ..1
A~,r,p,q Pm [Ct(-~p,q ,Jt(vr );x,t) + ~tt-Jt(~p,q ),vr ;x,t)J ~

= ~p,q v~ tx,~ )j a~(~’ #~x/c~ 0 ~

= oV?;P [ bP(t11- ,)Itv;"A;P’*~,11) dt" (16.3-33)

and on account of ~uations (16.3-19)~16.3-22)

+ ~ s;B i;A;P i;A;P s;BAm,r,p,q    Vm [Ct(-Jt(~p,q ),Vr ;x,O + Ct(-~p,q ,Jt(vr );x,0] ~

Jxe~D~

=A:,r,p,q f df [ Vm[ ~;:ff(x,t’)V~;P T2~PVSr;B(x,t’)]aP(t’ P- - - as xslcp - t) ~
d t’eR g x~D~

~ + ~ ~ ~..~, ,, ~ , ,.~.~=~ ....a~(t"        - ~) ~"     a~,~,~,q~~ ~-r~,q ~x,t+ ~s xstcP) vr ’

- ~p,~ vr tx,~ +

= pV2;P [ aP(t"- ,)Itv:;B;P’*(a~t") dt" . (16.3-34)
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Furthermore, we have

. + ] s;A s;B s;B s;A
hmA--~,,Am,r,p,q ~’m [Ct(-~p,q ,Jt(vr );x,t) + Ct(-Jt(~p,q ),vr ;x,t)] dA

(o,~)

= , + r?,q (~;,t -Ixl/cs)
,~dt Am,r,p,q ~l_2~m 4~rc2p 4~rc~

f s’B;P,o%,, t’ ~x~/c
X I"vr’    {.g,t’--I I p--t)

[ 4arc2p +

s;B;S,o%~ .~
_ r?,q t~,, -Ixl/cs- t)

4arcZs

{" s;A;P,~,,,~-.,          s;A;S,~,/~ ., Ixl/cs) ]]~,~,t -Ixl/cp) Vr    !,g,t -

X[ 4~rc~     +     4~c~ 1]      dA

1 ~" ,., ~ I -3 s’A;P,oo.~..,, s’B’P .....

-8~ J,’t~ ~ J,#~LpCp Vr’ !,~,1 )Vr’’’ !,~S,’ --t)

-3 s;A;S,oo.,. ,. s;B;S,,,*:~., ]+ PCs Vr (~,t)Vr ~,t - t)] dA, (16.3-35)

where t2 is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-32)-(16.3-35) lead to the desired reciprocity relation for
the far-field scattered wave amplitudes

o t ~R                                  dt"~R

1 I dt’ ~* [ -3 s;A;P,~-.. ,- s;B;P,~,,~_.,
---8~2 d t’+R          J,l~~Y2LpcP "~r    tg, t )Vr    tg,r - t)

-3 s;A;S,~,~..~, s;B’S,,~-,., ~ 1
+ PCS Vr    tg, t )Vr (g,t - t)] dA. (16.3-36)

Two incident S-waves

IA ~A 1,AS ~ASIn the case of two incident S-waves we take {zio"o,v~ } = {roi’o; ,v~; ; } (Equations (16.3-3)
i;B i;B i’B’S i’B’S "-’* i ~’-~ Then onand (16.3-4)) and {~’/~,q ,Vr } = {z’fi~q’ ,V~.’ ’ } (Equat ons (16.3-16) and (16.3-17)).,

account of Equations (16.3-10)-(16.3-13) we have
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+ f s;A    i’B;S i’,B’,S s’A
A~n,r,p,q Vm [Ct(-~p,q ,Jt(v’r’ );x,t) + Ct(-Jt(~p,q ),vr’ ;x,t)] dA

~OD~

+    f ,;    r s;A. ,-- B;S .~B;S s;A.
= Am’r’p’qW, dtJx     ~m [-rp,q tx, t ) v; - ~p,q Vr tX, t )J bS(t’- flfxs/cs - 0 ~

~ t ~R ~D~

f ,, bS(tt’ +[ [ s;A" " + flfXs/CS)V~;S= - 0 dt" ~m,r,p,q ~m L-Tp,q ~X,t
a t ~R d ~Ds

~B;Ss’,A..,, fl?Xs[CS)] ~-~.,q Vr [x,t +

= pV~;S f bS(t° - OltvSr;A;S’~¢~t")dt"

~ t"~R

and on account of ~uafions (16.3-23)~16.3-26)

+ s;B i;A;S i;A;S s;B
am,r,p,q [ "m [C,(-Jt@p,q ),Pr ;x,t) + Ct(-~p,q ,Jt@r );x,t)] ~

d x~O D~

+ [ r
s’,B , A;S= Am,r,~,q , dt’ Vm[-r~,q (x,t)V;~,q~A;SvrS;~’tx, t ’’~)j aS.t,( _      s      _- ~sXs/Cs t) ~

d t ~R d

=[,, aS(t’- O dtt" ~:,r,p,q l :mF[-~p,q ~x,ts;B" " ~:xs,cs)V:;S+
~ t ~R x~D

-~,o vr tx,~ +

= pV~;S [ aS(t.                    _ O~tvr"" s;B;&~.{~ s, t’)at"         .

Fughe~ore, we have

+     ~               s;A    s;B               s;B s;A
hm~m,r,p,q      Vm [Ct(-~p,q ,J,(vr );x,O + C,(-J,(~p,q ),vr ;x,O] ~

~(o,~

+ ~p,q ~,~ -Ixl/c~) ~p,q tg,~ -lxl/cs)
=

~ ~m,r,p,q
--

t’~ ~ 4~C~ 4~C~

( s;A;P,oot~, tt
X ["vr    t~, --Ixl/cp)

s;B;S, ooz ~. t’
vr t~, -Ixllcs- t)

4:rc~

s;A’S, oo... ,vr ’ ~�;,t -Ixl/cs)
4~c~s

(16.3-37)

(16.3-38)
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-3 s;A;S,*%~..,, s;B;S,o%~._~ ]
+ PCS Vr t~,t )Vr t~,t - t)J dA, (16.3-39)

where g2 is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-32) and (16.3-37)-(16.3-39) lead to the desired
reciprocity relation for the far-field scattered wave amplitudes:

PVrB;S ~ ,, bS(t,,-- t)ltVr"T s;A;S,~,,---SI~j ,t"’) dt"
¯ tt ~R

+ pv?;S f,, aS(t._ t)ltVr,.- s.B;S,o,,.ta S,t.,,,) dt"
~t ~R

1 ~ dt’ ~ [ -3 s’A’P,~,.~._,, s’B’P,~.~..1
-- -87r2Jt’~R          J~12[/gcP vr’ ’ !.g,t )vr, , tg, t - t)

-3. s;A;S,~,_~ .,, s’B’S~.-- , t)]j+ ~S Vr ~,t )vr’ ’ ’ (~,t - (16.3-40)

An incident P-wave and an incident S-wave

,- i’A i;A.In the case of an incident P-wave and an incident S-wave we take lV~q,V7 1 =
, i’A’P i’A;P,                               - i;B i’B ," i;B’S i’B;S,
lz’/~:a’ ,vF I (Equations (16.3-1) and (16.3-2)) and/~’/~,q,V~’ } = l~’/~,q’ ,vF / (Equations
(16.3-16) and (16.3-17)). Then, on account of Equations 06.3-10)-(15.3-13) we have

+ /
s;A    i;B;S .... i;B;S, s;A

Am’r’p’q~J x~ 1~m [Ct(-~p,q ,Jt(vr );x,t) + tdt~-Jt~p,q ),vr ;x,t)J dA

-- l p,q Vr tx, t

pV?;S ~,, bS(t ..... s;A;S,~,oS t") dt"= -- t)ltYr ~P ,
ot ~R

and on account of Equations (16.3-19)-(16.3-22)

(16.3-41)
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+ [ s’,B i;A;P i;A;P s;B
Z~m,r,p,q    !¥n [Ct(-Jt(’t:;,q ),vr ;x,t) + Ct(-’rp,q ,Jt(vr );x,t)] dA

+ I
~x

s;B , A’P
Z~m,r,p,q dt’ ~’m [--rp,q (X,t ) V~, ’l p,q" A;PVrS;B.(x,t.,.)jl aP (t,      P

t)= - -asxs/cP- dA

+ [ aP(t"-t) dt"Am,r, mJx~e>L-rmtx,’ +
~ t" eR

,,
-lp,q vr tx,t +

= OVrA;P ~,, aP(t"- t)ItvSr;B;P’**(aP, t") dt". (16.3-42)
¯ ~t ~R

Furthermore, we have

¯
+ l s;A    s;B s;B s;A

llmA_+~,Am,r,p,q l~rn [Ct(-~gp,q ,Jt(vr );x,t) + C,(-Jt(~p,q ),vr ;x,t)] dA
~ ( o,,~)

= ~p,q ~,~ -Ixl/cs)
" e: Am’r’p’q e~2~m 4zrC2p 4~rc~

s;B;P,~,, ~ s;B;S,~t t- .p

X (v-r (~,t~- !Xl/Cp - t)Vr      ~,~," --            Ixl/cs-- t)

~
4~C2p

+
4~c~

.’t:p,q tcS,t -Ixl/cp- t)_ .’rp,q t~,t -             Ixl/cs- t)+
4~C2p 4:rt@

X i(VSr;A"P’~’(~’t’-~ Ixllcp)     + vSr;a"s’~’(~’t’-4zgc} Ixl/cs) 1]       dA

8zt21 ,~[t’e:t’     ~’~eor -3 s;A;p,oo. ,. .,. s;B;P, oo.,...,--
J, [pep Vr

!,g,t )1)r I,g,t -- t)

-3 s;A;S,oo. ,.. _,. s;B;S, oo.~..,,+ pcS vr    (g,t)vr    tg, t - t)] dA, (16.3-43)

where t2 is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-32) and (16.3-41)-(16.3-43) lead to the desired
reciprocity relation for the far-field scattered wave amplitudes
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t)ltVr    ~ ,t )                       ... s;B;P,~- P .. ~.
at ’~R                                   ~ t"~R

=_~[, dr, r ~ -3 s;A;P,~...,, s;B;P,~.. ~,

+ ~S Vr ~,t )Vr ~g,t -- (16.3-~)

Complex frequency-domain analysis

In the complex frequency-domain analysis, the incident wave in state A is taken either as the
uniform plane P-wave

.., i;A;P .. i;A;P. TA’P, vA;P" ~t P’s"       P= exp(-sasxs/cP), (16.3-45)I ~p,q ,Vr 1 { p,~ r ] ( )

with
’ - ,, . P .A;P. P P

Tpt~tP:-cp1 [26p,q(~Vt;P) + z/~otk Vk )ap aq ], (16,3-46)

or as the uniform plane S-wave
., i’A’S ^ i;A;S. . mA;S. A;S. ^ S..       S
~2plq’ ,Vr ] = ~t lp,q , Vr la (s) exp(-sasXs/CS) ,                    (16.3-47)

with
¯ . S .A;S ST A;S.

T2~tS = -c~l l.t(Otp Vq + aq Vp ). (16.3-48)

In the far-field region, the scattered wave in state A is represented as

I-

., s;A ^ s;A.. , , l" " s;A;P,~, ^ s;A;P,~, ....exp(-slx’l/Cp)
~p,q ,Vr J(X,S) = l~p,q ,Vr    J(~,S) 4~rC----~__IX’~

L

. ~ s.A.s ~ ~ s.A.s .....exp(-slx’l/Cs)~
+ lrp,~’’ ,Vr’ ’’ ](~,S) 4~c~ Ix’l ]

x [1 + O(Ix’l-1)] as Ix’[~ with x’= Ix’l~, (16.3-49)

in which, on account of ~uafions (16.1-76) and (16.1-77) and (16.1-80)-(16.1-87) (note ~at
the surface source representation for the f~-field scattered wave is used),

s
. .-1 ~ ~ ~ ~hS;A;P,~

~;A;P,~ = sp-l~f ;A;P,~ + S~Cp) ~k,m,i,j~m~r,k,i,j , (16.3-50)

rP,q~ s;A;P,~ = _c~l[AOp,q[~kvk[ ..... s;A’,P,~.)             + 2~ ~ . s;A’,P,~)~]~kVk~p~qj               , (16.3-51)

wire

~2f ;A;~,~ = ~r~k exp(s~sXs/Cp)Of~;A(x,s) ~ , (16.3-52)
d x~s

~~h S;A;P,~
[ s}Ar,t,i,j    = ~r~ exp(s~sXs/Cp)O~i (x,s) ~ , (16.3-53)
d x~9~                   ’
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and
~;A;S,O~r_ =       ^r" s. .                                    s

sp-lqb~f,A,S,~+ ~ ,-1.-,    ~ ~h;A;S,~S~OCs) t~k,m,i,j~m ~Pr,k,i,j    ,

^ s;A;S, oo -1 .,. ^ s;A;S, oo. ,. ^ s;A.S,o,,.
7;pg1

= --CS [A(~pVq ) + ~qVp ’ ) ,

with

~ afi;g.,S,oo
[raid = (t~r,k - ~r~k) exp(s~sxs/cS)~ f ~;A(x,s) dA ,

d x~.~D~

r,k,i,j -- (~r,k- ~r~k)      xp(s~sXs/CS)~ (X,s) dA .
d xc-gD

Similarly, the incident in state B is taken either as the uniform plane P-wave
^ i;B;P ^ i;B;P, TB;P, vB;P" ~ P’s"      P
~p,q ,Vr ~ = { p,q r ) ~ ) exp(-sfls Xs/CP) ,

with

TpBftP=-c~ol [,~,~p,q(fl~ V[c )+

or as the uniform plane S-wave

^i;B;S ^i;B;S. .T,B;S v,B;S.g S
~p,q ,Vr J [ p,q , r j SkS)r x

= exp(-Sfls Xs/CS),

with

TpB,~S= -1 .r,S .B;S. RST B;S.-cs~tppVq )+.qVp ).
In the far-field region, the scattered wave in state B is represented as

(i6.3-54)

(16.3-55)

(16.3-56)

(16.3-57)

(16.3-58)

(16.3-59)

(16.3-60)

(16.3-61)

.~ 3h ;B;P,ooWr, k,i,j = ~r~k exp(s~sXs/Cp)~tis (x,s) dA ,
d XC-<3D~ ’

(16.3-66)

exp(-g[x’]/Cp)^ s;B;P
rp,q ,vr ) tx ,s) ~.~s,B;P,~

.~ s;B;S,~ ~ s;B’,S,~,    exp(-slx’l/Cs).]+ ~,q ,v~ l(~,s) 4~c~ Ixq J

x [1 + OOxq-~)] as Ix’l~ wi~ x’= Ixq~, (16.3-62)

in wNch, on account of ~uafions (16.1-76), (16.1-77) and (16.1-80)~16.1-87) (note ~at the
s~ace source represen~tion for ~e f~-field scattered wave is used),

~:;B;P,= = Sp-1 ~f ;B’,P,= + g~Cp)-’ Ck, m,i,j~m ~L~’P’=,          (16.3-63)

~ s’B;P,~
rp,q =--Cr1 LAOp,qt~kVk ) (16.3-~)

wi~

~f~;~;~’~ = ~r~ ~x ~xp(s~sXslC~)O f ~;~ (x’s) ~ ’ (16.3-65)
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and

^ s;B;S,",, = sp-l~r~fS;B;S,,,,, ^ s..
"Or + $(PCs)-l Ck, m,i,j~ra rD Or,~,~,~’S’*" ,

^ s;B;S,~,, -1 .~_ ^ s;B;S,~, ~. ^ s;B;S,~,.
~p,q =-CS kt~pVq + ~qVp ),

with

~r,
~fs;B;S’~

f
~e

k,i,j = (dr, k- ~r~k) xp(s~sXslCs)3f~c;B(x,s) dA ,
,txc-O9

(16.3-67)

(16.3-68)

(16.2-69)

,,~ bh ;B;S,,,~
"a’r,k,i,y = (dr, k- ~r~k) xp(s~sXs/Cs)bf~ (x,s) dA . (16.3-70)

d xc-c3D

If the scatterer is penetrable, its elastodynamic properties in state B are assumed to be the
time-reverse adjoint of the ones pertaining to state A. If the scatterer is impenetrable, either of
the two boundary conditions given in Equation (16.1 - 51) or Equation (16.1 - 52) applies. These
boundary conditions apply to both state A and state B, and are, therefore, time-reverse
self-adjoint.

To establish the desired reciprocity relation, we first apply the complex frequency-domain
reciprocity theorem of the time correlation type, Equation (15.5-7), to the total wave fields in
the states A and B, and to the domain Ds occupied by the scatterer. For a penetrable scatterer
this yields

Ix ^A ^B ^B ^A
t~ +m,r,p,q Vm [--~p,q(X,$)Vr (X,--S) - ~p,q(X,--$)Vr (X,S)] dA : 0, (16.3-71)

since in the interior of the scatterer the total wave fields are source-free. For an impenetrable
scatterer, Equation (16.3-71) holds in view of the boundary conditions upon approaching ODs
via Ds’. In Equation (16.3-71) we substitute

{~2q,0?} .^i;A ^s;A^i;A 0rS;A}= lrp,q + rp,q ,vr + (16.3-72)

and

{~.pB, q,0?} = ^i;B ^s;B ^i;B "{~p,q + ~p,q ,Vr "t" 0rS’B}. (16.3-73)

Next, the complex frequency-domain reciprocity theorem of the time correlation type is applied
to the incident wave fields in the states A and B and to the domain Ds. Since the incident wave
fields are source-free in the interior of the scatterer and the embedding is time-reverse
self-adjoint in its elastodynamic.properties, this leads to

A+,r,p,qm 3x ~ [      ^ i;A ,, i;B ^ i;a ^ i;A
~p,q (X,S)Vr (X, $) ~p,q (X,--S)Vr (X,S)] dA 0

c_OD~’mk-~
-- - = . (16.3-74)

Finally, the complex frequency-domain reciprocity theorem of the time correlation type is
applied to the scattered wave fields in the states A and B and to the domain Ds’. Since the
embedding is time-reverse self-adjoint in its elastodynamic properties and the scattered wave
fields are source-free in the exterior of the scatterer and satisfy the condition of causality, this
leads to
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--~’p,q (X,$)Vr (X,--$) -- ~p,q (X,--S)Vr (X,$JJ dA

li +
~

" ^ s;A - ^ s;B...(.~,_~./_~p,q~X ^ s;B (X,_$)Vr^ s;A= m~--~A~n,r,p,q__Jx~s(o,a)[-rp,q (x,s)Vr (x,s)]dA, (16.3-75)

where d(O,A) is the sphere of radius,d with centre at the origin Oof the chosen reference frame.
From Equations (16.3-71)-(16.3-75) we conclude that

+ f F ^ i;A. .,, s;B. . ^ s;A - ^ i;B...
Am,r,p,q     Vm [-~p,q (X,S)Vr (X,-S] - rp,q (X,S)vr

.. i;B    - ^ s;A. . ^ s;B    - ^ i;A.
- "¢p,q (X,-$)Vr tX, S) - Zp,q (X,-S)Pr tX,s)j dA

+ limA_~.,.A+m,r,p,q f ^ s;A ^ s;B
[--Zp,q (X,S)Vr (X,-$)

(o,a)
^ s;B.    .^ s;A.- rp,q tx,-s)vr tx, s)j dA = 0. (16.3-76)

Equation (16.3-76) holds for both incident P-waves and incident S-waves. The ensuing
reciprocity properties have to be discussed for the two types of incident waves separately,

Two incident P-waves

In the case of two incident P-waves we take { ~%i;~A,~,.i;A } = { ~%i;~A;P,¢.i;A;P/ (Eauations (16.3-45~
^i’B^’"        ^.. . ^.. . ,-,~ - .      v,~ ......and (16.3-46)) and {rt;~,~,vr~’a} = {~i~,P, vrLB,P} (Equations (16.3-58) and (16.3-59)). Then, on

account of Equations (16.3-50)-(16.3-53) we have

+ f     I)m L      ^ s;A(x,S)Vr^ i;B;PAm,r,p,q I-Z’p,q (X,-$) - ^ i;B;P. .^ s;A. .1p̄,q (x,-s)vr [x,s)j dA

= A~n’r’p’q+ fx~,fm t-[ ~s;A’x,s’v,B;Pp,q !, ) r - TpB,~P~);A(x,$)]i P(-$)exp(sflfXs/Cp)dA

= $-lp v?;P~ P(_S)¢); A;P,oo(fl P, S)
(16.3-77)

and on account of Equations (16.3-63)-(16.3-66)

+
I .._fro ^s;B

^i;A;P ^i;A;P. .^ s;B.
Am,r,p,q [-rp,q (x,-s)vr (x,s) - rp,q ~x,s)vr tx,-s)J dA

: Am,r,p,q
_~;,~I(Xi_$)VbIP ,~A;P^s;B, .1 ^P..

P
- Sp,q Vr tX,-$)J a ts) exp(-$~s gslcf) dA

1 A,P P ^s,B,P,** P-- $- pV; " ~ ($)vr" ’ (~ ,-$), (16,3-78)

Furthermore, we have
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f [., s;A. .,. s;B.    . .. s;B.    .,. s;A. .1¯
+ Pm [--rp,q (X,$)Vr !.X,--$) -- ~Sp,q (X,--S)Vr [.X,$)J dAllmA-*~Am’r’p’q ,t x~_S( O,A)

^ s;A;S,o~.~..exp(-slxllcp) - vp’q t6,s)

4zc~ exp(-slxl/cs)I

I~
^ s;B;P,o,,... .
r ~ tg,-s)

4zc2~    exp(slxllcp) +

^ s’B;S,**.,. . )
Vr ’ (flS,-$)

4:rC2s
exp(slxllcs

I_
^ s;B’P,~o. ,~
rp,q ’ (~,-s)

4zc2~

^ s’B;S,o,,. ~. .,,i,,, ~-- (g,-s)exp(slxl/cp) - *P’q
4~c2s exp(slxl/cs)I

IGrS;A;P’°°(~,~)
xi ~c2P exp(-slxl/cp)+

^ s’A’S,~*.,. .
Vr’ ’ {,g,S)

4z~c~

+ pC~3~rS;A;S’°°(¢,S)~rS;B;S’°°(~,-s)] dA,

exp(-slxl/cs)l]

(16.3-79)

where t’2 is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-76)-(16.3-79) lead to the desired reciprocity relation for
the far-field scattered wave amplitudes

1 AP P ^s,BP, oo p
$-IRv?"P ~ P(-S)~rS"A;P’°°(flP~$) + ~- pV; ; ~t (S)Vr" ; (a ,-~)

~ [ -3^ s;A’P,o~.~..^ s’B’P~.,. .__ l_k_ j. [PCe Vr ’ tN, S)Vr’ ’’ tN,-s)
8~2 ~+~

3^ s,A S,~, ^ s B S o~
+/::)C’~ Vr’ ; (~,S)Vr; ;’ (~’,-s)]dA. (16.3-80)

Two incident S-waves

IA 1A ~AS ~ASIn the case of two incident S-waves we take {r~;:q ,vr’ } = {r.~,:a’ ,vr’ ’ } (Equatmns (16.3-47)
x,B ~,B xBS ~BSand (16.3-48)) and {+¢iq,Vr" } - {~’~iq ; ’Vr; ; } (Equations (16.3-60) and (16.3-61)). Then, on

account of Equations (16.3-54)-(16.3-57) we have
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(16.3-81)

and on account of Equations (16.3-67)-(16.3-70)

A+_,r,p,q,,, ~
~., s;B. .., i;A;S. . ,, i;A;S. .^ s;B. .q

| Urn [-rp,q tX,-S)Vr !,X,S) -- rp,q tX, S)Vr tX,--S)J dA
d x~.~Ds

fx ~ ^ s;B ....A;S ~.A;S^ s;B. ,1 S= exp(-sas Xs/Cs) dAA+m,r,p,q ymL-~p,q tX,--S)Vr -- lp,q Vr tX,-$)j~tS(s)

= s-lpv?;S~ S(8)~rS;B;S,~(~l S,-s). (16.3-82)

Furthermore, we have

¯ +    f ^ s’A ^ s;B
-- T,p,q (X,--$)Vr (X,S)] dAllmA_~ Am,r,p,q Vm [-Vp,’~ (X,S)vr (X,-s) ,, s;B

^ s;A

dx~ ( o,A)

^ s;A;S,,~,.~..
exp(-slxl/ct,) - rp’q

4~c~s exp(-slxl/cs)1

s)/i ~c2p exp(slxl/ct,) + 4~rc~ , exp(slxl/c

_^ s;B;P,o~ .... s;B;S,oo.. .rp,q (~S,--$)            rp,q
4zrc2p exp(slxl/cp) - 4~rc~ exp(slxl/cs

-3^ s;A;S, oo ....s;B;S, oo.~
+ pCS Vr !,dS,S)Vr I,~,-S)J dA,

exp(-slxl / c s)ll

(16.3-83)

where £2 is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-76) and (16.3-81)-(16.3-83) lead to the desired
reciprocity relation for the far-field scattered wave amplitudes:
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(16.3-84)

An incident P-wave and an incident S-wave

In the case of an incident P-wave and an incident S-wave we take {~;,A,~;A)=
"i;A;P ^ i;A;P ~. ^ i;B ^ i;B. _. ,, i;B;S ^ i;B;S, r’,4~ .,{r,d,q ,Vr } (Equations (16.3-45) and (16.3-46)) ana irt;,q ,vr I - i~;~,q ,Vr ! tr_.quauons

(16.3-60) and (16.3-61)). Then, on account of Equations (16.3-56) and (16.3-57) we have

~ F ^s;A. .^i;B;S. . ^i;B;S. .^s;A. .1
l~+m,r,p,q 3 xc_c):m [-~p,q (X,s)vr (X,-$) - ~p,q tX,-$)vr tX, s)J dA

d xc-.3D~

(16.3-85)

and on account of Equations (16.3-63)-(16.3-66)

~ r., s;B. .^ i;A;P. ., ., i;A;P. .^ s;B. ..1A+m,r,p,q J x~.3:m L-~p,q tx,-s)vr kx, s) - ~p,q [x,$)vr tx,-$)j dA

.[~o r ^s;B. .. A;P ~,A;~;B~x_sq~’(s) ~’
= A+m,r,p,q ~m[-rp,q tX,-$)Vr p,q r ’, , ,j exp(-sas x/cp) dA

= :lpv~’a~’(~);:;B;~,,~(a~_~). (16.3-86)
Furthermore, we have

. + | r ^ s;A. .^ s;B.    . ^ s;B .,s;A
hmA...~Am,r,p,q I’m L-Vp,q (X,S)Vr (X,-$) -- Zp,q (X,--S)Vr (X,$)] dA

~S ( O,A)

f~
., s’A;P .... ~ s;A’S,oo.~..+ rp,’~ ’t~,s) ~,q’ t~,s)

= Am,r,p,q
~o~m 4:rc~

exp(-slxl/cp) -
4~rc~ exp(-slxllc

x( ~ exp(slxl/ct,) +

^ s;B;S,**... .         "~
Vr tg,--$)

4~rc~
exp(slxl/c

exp(slxl/c~
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X ~rS;A;S’°°(~"S)

~

(’~rS;A;e~’~2(~"s) exp(-slxl/ct,) + exp(-slxl/c dA
~ 4ZrCp 4zrc]

1 ~, [/x:~rS;A;P,oo(~.,s)~rs;B;P,oo(~.,_s)
- 8=2

-3.. s;A;S,** ....s;B;S,.,,. ~. .1 ,.+ pcs vr (g,s)vr ~g,-s)j (16.3-87)

where 12 is the sphere of unit radius and centre at O and the properties have been used that in
the far-field region the radial tractions and the particle velocities of the scattered P- and S-waves
are proportional, with the P- and S-wave impedances as their respective proportionality factors,
while the particle velocity of the scattered P-wave is perpendicular to the particle velocity of
the scattered S-wave. Equations (16.3-76) and (16.3-85)-(16.3-87) lead to the desired
reciprocity relation for the far-field scattered wave amplitudes:

1 t" r -3., s;A;P,,,* ....s;B;P,**.~. .

= - --8~r~d~/~oLPCP vr ~’S)Vr     l~,-s)

-3., s;A;S,** ....s;B;S,o*... ,,1
pCS Vr tg,S)Vr (~,--S)] dA . (16.3-88)

In a theoretical analysis, the reciprocity relations derived in this section serve as an important
check on the correctness of the analytic solutions as well as on the accuracy of numerical
solutions to scattering problems. Note, however, that the reciprocity relations are necessary
conditions to be satisfied by the scattered wave field (in the far-field region), but their
satisfaction does not guarantee the correctness of a total analytic solution or the accuracy of a
total numerical solution. In a physical experiment, the redundancy induced by the reciprocity
relations can be exploited to reduce the influence of noise on the quality of the observed data.

16.4 An energy theorem about the for-field forward seaffered wave
amplitudes

A special case arises when in the reciprocity relations of the time correlation type derived in
Section 16.3, state A and state B are taken to be identical states. Since the superscripts A and B
are then superfluous, they will be omitted in the present section.

Time-domain version of the energy theorem

In the time-domain version of the theorem we start from Equation (16.3-27), take state A
identical to state B, and consider the result at zero correlation time shift. Furthermore, for the
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case of an elastodynamically penetrable scatterer, the solid occupying the scattering domain
~9s is no longer assumed to be time-reverse self-adjoint, i.e. it may have non-zero elastodynamic
losses. Thus, we are led to consider the expression

= Ara,r,p,q Ct(Jt(-rp,q),Vr’,x,O) dA

= Am,r,p,q , dt     I~m [-~p,q(X,t’)Vr(X,t’)] dA = -Wa,

t ~ dx~D’

where

wa = ~, p a(t,) ~,

~t~

(16.4-1)

(16.4-2)

is the total elastodynamic energy absorbed by the scatterer and

P a(t’)= -Am,r,p,q+ f       I)m I-~p,q(X,t’)Vr(X,t’)] dA (16.4,3)

is the instantaneous elastodynamic power absorbed by the scatterer. (Note that the minus sign
in front of the integral sign on the fight-hand side of Equation (16.4-3) is due to the fact that
power absorption by the scatterer is affected by an inward power flow, while Vm points away
from the scatterer.)

Next, we substitute in the right-hand side of Equation (16.4-3) the relation

s i s
{~p,q,Vr} = {~ip,q -I" Zp,q,Vr "b Vr}, (16.4-4)

and observe that the incident wave dissipates no net energy upon traversing the domain
occupied by the scatterer when this domain has the elastodynamic properties of the lossless
embedding. Hence, with

P i(t’)    + fxc-~     i , i , (16.4-5)

as the instantaneous elastodynamic power that the incident wave carries across 0~Ds towards
the domain ~Ds, we have

wi = ~t,~p i(t’) dt’= 0. (16.4-6)

Furthermore, the total elastodynamic energy carried by the scattered wave across ODs towards
the embedding is introduced as

WS=| pS(t’)dt’, (16.4-7)
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where

+ f S     ~ S    ~P i(t’) = Z~m,r,p,q    t~rn [--~p,q(X,t )Vr(X,t )] dA (16.4-8)

is the instantaneous elastodynamic power that the scattered wave carries across ba9s towards
the embedding. Using Equations (16.4-4)--(16.4-8) in Equations (16.4-1)-(16.4-3), it follows
that

~t
+    ~x

i , s , rp,q(X,t )Vr(X,t )] dA-- dtt Am,r,p,q c_O~)fm [-rp,q(X,t )Vr(X,t )- s , i ,

(16.4-9)

Equation (16.4-9) holds for an arbitrary incident wave field, in particular for both an incident
plane P-wave and an incident plane S-wave. The ensuing energy theorem differs for the two
kinds of incident waves and the two cases will, therefore, be discussed separately below.

Incident P-wave

First, the incident wave is taken to be the uniform plane P-wave
i i {TpP, q, VrP}aP(t Pas xs/cp) (16.4 - 1 O){~:p,q,Vr} : -- ,

with

PP PPPP
TpP, q =-C-p1 [2~p,q(ak V~c ) + 2P(a/c V~c )apaq ]. (16.4-11)

Using Equations (16.4-10) and (16.4-11) in Equations (16.1-31), (16.1-33) and (16.1-36) it
follows that

f fx  ymI )v x,t) s , i ,+ -rp,q(X, ti , s , rp,q(x,t )Vr(X,t )] dA- ! dt’ Am,r,p,q                              -
O t’ ~

= -pVrP [ aP(t’)ItvSr;P’°°(aP, t’) dt’. (16.4-12)
d t’~R

Substitution of Equation (16.4-12) in Equation (16.4-9) leads to

_pv~P f P , s.P,oo Pa (t)Itvr’ (a ,t’) dt’=      Wa + Ws. (16.4-13)
J t’ ~

Equation (16.4-13) is the desired P-wave time-domain energy relation. It relates the sum of the
elastodynamic energies absorbed and scattered by the object to the scattered P-wave amplitude
in the far-field region, for observation of this wave in the direction aP of propagation of the
incident plane P-wave, i.e. in the "forward" direction, or "behind" the scatterer (Figure 16.4-1).
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Figure | 6.4-1 Elastodynamic scattering configuration for the energy theorem about the far-field
forward scattered P-wave amplitude.

Incident S-wave

Secondly, the incident wave is taken to be the uniform plane S-wave
i i {TpS, q,Vf}aS(t s

asXs/C s) (16.4-14){~p,q,Vr} = -- ,

with

TpS, q     -1 . S. S    S S=-cS pLapVq + aqV; ) . (16.4-15)

Using Equations (16.4-14) and (16.4-15) in Equations (16.1-32), (16.1-33) and (16.1-37) it
follows that

-,t t’eR [ dt’ A +m,r,p,q ~xc--O~)fm[-z’p,q(x,ti , S)vr(X,t )_, rp,q(x, ts , i)Vr(X,t ), IdA

..S [’    S- ,-~ s;S,~*- S=-pvr |, a ~t )ltvr [a ,t’) dt’. (16.4-16)
,~ t ~R

Substitution of Equation (16.4-16) in Equation (16.4-9) leads to

-pVf ~ S..,.T s;S,,~. S ,. Wa Ws.| a Lt)ltVr La ,t) dt’= + (16.4-17)
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Figure 16.4-2 Elastodynamic scattering configuration for the energy theorem about the far-field
forward scattered S-wave amplitude.

Equation (16.4-17) is the desired S-wave time-domain energy relation. It relates the sum of the
elastodynamic energies absorbed and scattered by the object to the scattered S-wave amplitude
in the far-field region, for observation of this wave in the direction as of propagation of the
incident plane S-wave, i.e. in the "forward" direction, or "behind" the scatterer (Figure 16.4-2).

It is noted that for a lossless elastodynamically penetrable scatterer we have Wa = 0. Also,
Wa = 0 for an impenetrable scatterer, since the right-hand side of Equation (16.4-3) then
vanishes in view of the pertaining boundary conditions (Equation (16.1-3) or Equation
(16.1-4)). Note also that in the derivation of the result we have nowhere used the linearity in
the elastodynamic behaviour of the scatterer. Therefore, Equations (16.4-13) and ( 16.4-17) also
hold for non-linear elastodynamic scatterers, subject to the condition, of course, that the
embedding retains its linear elastodynamic properties.

Complex frequency-domain version of the energy theorem

In the complex frequency-domain version of the theorem we start from Equation (16.3-71) and
take state A identical to state B. Furthermore, for the case of an elastodynamically penetrable
scatterer the solid occupying the scattering domain ~Ds is no longer assumed to be time-reverse
self-adjoint, i.e. it may have non-zero elastodynamic losses. Thus, we are led to consider the
expression
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~ Z~m,r,p,q.    I)rn [--~p,q(X,S)Vr(X,--S) -- ~p,q(X,-$)Vr(X,S)] dA = -/3 a(s),
d x~¢~

(16.4-18)

where the symbol on the right-hand side has been chosen for reasons of equivalence with
i in the left-hand side has been included because of itsEquation (16.4-3) and the factor ~

occurrence in the time-averaged elastodynamic power flow of sinusoidally in time-varying
wave fields. It must be stressed, however, that/3 a(s) is not the time Laplace transform of P a(t).

In the left-hand side of Equation (16.4-18) we now substitute the relation

., ,, ^i    ^s ^i
{’~p,q,Vr} = {~p,q + "~p,q,Vr + ~rS} , (16.4-19)

and observe that

"~p,q(X,$)Vr (X,--S) dA 0"~1 Am,r,p,q ~O~D~m
_ ~p,q(X,_S)Vr(X,S) =                                                            ,(16.4-20)

since the solid in the embedding has been assumed to be time-reverse self-adjoint.
Furthermore, we introduce, by analogy with Equation (16.4-8), the quantity

P
._1 +

/
~,S AS ^S AS

/3 S(S) ~ Ara,r,p,q
~rn [-~p,q(X,S)Vr (X,-s) - 7;p,q(X,-s)Vr (X,s)] da (16.4-21)

that is associated with the elastodynamic power carried by the scattered wave. Using Equations
(16.4-19)-(16.4-21) in Equation (16.4-18), it follows that

-- ~ Arn,r,p,q        -~2p,q(X,s)Vr (X,-s) - ~p,q(X,S)Vr(X,-S)

^i ^s ^s ,,i
-- ~2p,q(X,--S)Vr (X,S) -- ~p,q(X,--S)Vr(X,S)] dA :/3 a(s) +/3 s(s). (16.4-22)

Equation (16.4-22) holds for an arbitrary incident wave field, in particular for both an incident
P-wave and an incident S-wave. The ensuing energy theorem differs for the two kinds of
incident plane waves, and the two cases will, therefore, be discussed separately below.

Incident P-wave

First, the incident wave is taken to be the uniform plane P-wave

^i ^i, P
Vp,q,Vr ] {T2q,VrP}aP(s) (16.4-23)= exp(-SasXs/Cp),

with
PPPPT2q =-c;1 ~dp,q(at~V~) + 2/tt(otk Vi )OtpOtq ]. (16.4-24)

Using Equations (16.4-23) and (16.4-24) in Equations (16.1-82), (16.1-84) and (16.1-87) it
follows that
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Figure | 6.4-3 Elastodynamic scattering configuration for the energy theorem about the far-field
forward scattered P-wave amplitude.

1 + i
^i ^s

- -~ Am,r,p,q 1)m [-~p,q(X,S)vr (x,-s) ^ s
^ i

-- rp,q(X,S)Vr(X,--S)

^i ^s ^s ,,i
-- 12p,q(X,--S)Vr (X,S) -- ~p,q(X,--S)Vr(X,S)] dA

= - ¼ s-Xp [Vrt’~ P(s)prS;P"(aP,-s) - VrPd P(-s)¢rS;P"(aP, s)]. (16.4-25)

Substitution of Equation (16.4-25) in Equation (16.4-22) leads to

--i- l s-lp[VrP~tP(s)~Sr;P"(olP’-s)- VrP~tP(-s)~Sr;P’~’(aP’s)]= ~a(s) + !3s(s)                                                                                          . (16.4-26)

Equation (16.4-26) is the de, sired comp~lex frequency-domain P-wave energy relation. It relates
the sum of the quantities P a(s) and P S(s) to the scattered P-wave amplitude in the far-field
region for observation of this wave in the direction of propagation of the incident plane P-wave,
i.e. in the "forward" direction, or "behind" the scatterer (Figure 16.4-3).

Incident S-wave

Secondly, the incident wave is taken to be the uniform plane S-wave
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hi ^i sexp(-sasxs/cs) (16.4-27){~p,q,Vr } = , ,

with
S s S

TpS, q : -c~lp [apV~ + aqVp5] . (16.4-28)

Using ~uations (16.4-27) and (16.4-28) in ~uations (16.1-83), (16.1-85) and (16.1-88) it
follows that

~ + [ ~i os-- ~ ~m,r,p,q Ym [--~p,q(X,S) r (X,--s) ~ s
~ i- rp,q(X,S)Vr(X,-S)

dx
~i .s ~s .i- rp,q(X,-S)V~ (x,s) - rp,q(X,-S)V~(X,S)] ~

Substitution of ~uation (16.4-29) in ~uation (16.4-22) leads to

~uafion (16.4-30) is the desired complex frequency-domain S-wave energy relation. It relates
the sum of the quantities ~ a(s) and P S(s) to ~e scattered S-wave amplitude in ~e f~-field
region for observation of this wave in ~e Nrection of propagation of the incident plane S-wave,
i.e. in the "fo~d" ~rection, or "behind" the scatterer (Figure 16.4-4).

/
/

/
/

//    /
/    /
/    /
/

\    \
\    \
\    \
\     \
\     \
\
\

\

~=as

!    !
/    !

/    /
/     /

/     /
/

Figure 16.4-4 Elastodynamic scattering configuration for the energy theorem about the far-field
forward scattered S-wave amplitude.
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It is noted that for a lossless elastodynamically penetrable scatterer we have/3 a = 0. Also,
/3 a = 0 for an impenetrable scatterer, since the left-hand side of Equation (16.4-18) vanishes in
view of the pertaining boundary conditions (Equation (16.1-53) or Equation (16.1-54)). For
imaginary values of s, i.e. s = jo) with foCaL, Equations (16.4-26) and (16.4-30) are known as
the "P- and S-wave extinction cross-section theorems", respectively (see Exercises 16.4-1 and
16.4-2). Note that in the complex frequency-domain result (contrary to the corresponding
time-domain result) the linearity in the elastodynamic behaviour of the scatterer has implicitly
been used since the space-time wave quantities have been represented, through the Bromwich
integral, as a (linear) superposition of exponential time functions.

References to the earlier literature on the subject can be found in De Hoop (1985), De Hoop
(1959), and Tan (1976).

Exercises

Exercise 16.4-1

Consider, in the complex frequency-domain P-wave energy relation Equation (16.4-26), the
case s = jo). Observe that, since all time-domain wave quantities are real-valued, the quantities
/3 S(s) as introduced in Equation (16.4-18) and/3 a(s) as introduced in Equation (16.4-21) have
the property/3 a(s) =/3 a(-s) and/3 S(s) =/3 S(-s). As a consequence, i3a(jw) and/3 S(jo)) are
real-valued. Next, introduce the quantity

1 pcpVrPVrP~P(s)~P(_s) (16.4-31)gi(s) =~

the.is associated with~ .the elastodynamic power flow density in the incident P-wave. Also g i(s)
= S l(-s) and hence, S l(jo)) is real-valued. Furthermore, let

~ a(s) =/3 a(s)/j i(s) (16.4-32)

denote the complex frequency-domain absorption cross-section of the scattering object and

~S(s) = i3S(s)/~i(s) (16.4-33)

its scattering cross-section. Note that 8 a(s) = t~ a(-s) and 8 S(s) = 8 S(-s), which entails that
8 a(jw) and ~ s(jw) are real-valued. Show that, for s = jo), Equation (16.4-26) leads to

~a(jw) + ~ s(jw) l lm[VrP~P(-jw)’~rs;P’°’(aP’jw)]- (16.4-34)
O)Cp P P^P . 2V; V; la

for the uniform plane P-wave incidence. Equation (16.4-34) is known as the extinction
cross-section theorem for the scattering of plane P-waves (see Tan, 1976). (Note: Extinction
cross-section = absorption cross-section + scattering cross-section.)
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Exercise 16.4-2

Elastic waves in solids

Consider, in the complex frequency-domain S-wave energy relation Equation (16.4-30), the
case s = jog. Observe that, since all time-domain wave quantities are real-valued, the quantities
/3 a(s) as introduced in Equation (16.4-18) and/3 S(s) as introduced in Equation (16.4-21) have
the property/3 a(s) =/3 a(-s) and/3 S(s) =/3 S(-s). As a consequence,/3 a(j~o) and/3 s(,jco) are
real-valued. Next, introduce the quantity

^i     1     S S,,S ^SS (s)=~PcsV; V;a (s)a (-s) (16.4-35)
^.

that is associated with the elastodynamic power flow density in the incident S-wave. Also S l(s)
= ~ i(-s) and hence, ~ i(jw) is real-valued. Furthermore, let

a ^6a(s) =/3 (s)/Si(s) (16.4-36)

denote the complex frequency-domain absorption cross-section of the scattering object and

6 S(s) =/3 S(s)/~ i(s)                        (16.4-37)

its scattering cross-section. Note that ~ a(s) = ~ a(-s) and ~ S(s) = ~ S(-s), which entails that
6 a(jw) and ~ s(jw) are real-valued. Show that, for s = j~o, Equation (16.4-30) leads to

6a(jw)+~.S(jo~) 1 Im[VrS~s(-jw)c’sr’s’**(aS’j~)] (16.4-38)~Ocs     VrSV~SlaS(j~o)lz

for the uniform plane S-wave incidence. Equation (16.4-38) is known as the extinction
cross-section theorem for the scattering of plane S-waves (see Tan, 1976). (Note: Extinction
cross-section = absorption cross-section + scattering cross-section.)

16.5 The Neumann expansion in the integral equation formulation of the
scattering by a penetrable object

In this section we discuss the Neumann expansion in the integral equation formulation of the
elastodynamic scattering problem. The expansion is an analytic procedure that applies to a
penetrable scatterer. The procedure is iterative in nature and is expected to converge for
sufficiently low contrast of the scatterer with respect to its embedding.

Time-domain analysis

In the time-domain presentation of the method we start from Equations (15.9-5) and
(15.9-20)-(15.9-23), which, through combination of the time convolutions, we write for the
present configuration as
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fx ~h     si ’
L

~’[~tCt(Gd,q,i’,J"Xi’,j’,P’,q’~p,q(X~, t) = ~p,q(X , t) -- -- Si,,j,,p,,q,6( t),~p,,q, ,X ,x,t)" ’

~3- ot~t[~p,q,k ,~k ,r, - ~(t)ok,,r, ,Vr,;ff , X,t)j dV for (16.5-1)

and

"
~ vh s

Vr(X; O = v~x; O -    [~tCt( Gr, i,,j, ,~i,,j,,p,,q, - Si,,j,,p,,q,~ O,~p,,q,;X;x,O

.... vf s, , ~O~k,,r,,Vr,;X;x,t)]dV for x’~3
(16.5-2)+ OtUt[~r,k’,~k ,r - ¯

For x’~9s, ~uations (16.5-1) and (16:5-2) constitute a system of iine~ inyegr~ equations of
the second ~nd to be solved for { Zp,q,Vr} for x~ 9s ~d t~, and wi~ i{ Tfi,q,Vr} as forcing te~s.
To solve these equations an~ytically, an iterative pr~edure ~own as the Neu~nn expansion
is set up. ~e successive steps in ~is procedure will be labelled by integer superscripts enclosed
by brackets ([...]). ~e procedure is initialised by putting

r~0] i,q =rp,q    forx’~3, (16.5-3)

v}0]= Vir for x’~3. (16.5-4)

Next, the procedure is up,ted ~rough

In+l]. , ~ rh s
~,q [X , O

~_~tct(a~,q,i,,j,,Zi,,j,,p,,q,- [n] ,= - Si,,j,,p,,q,~(O,z~,,q,;X

.... ff , s , ,, ~n] , forx’~3 and =0,1,2, etc.,(16.5-5)-- Ot~t[Op,q,k ,~k’,r - ~(OOk ,r , Vr ;X,X,0] dV n

and

~ vh s= - Sr,~,,p,,~,d(O,ri ,q,,x,x,O

-~(Od~,,r,,v~n];x’,x,O]dV forx’~~ and n 0,1,2, etc (16.5-6)s~°tcttOr, k ,~k ,r’ = "

As c~ be infe~ed from these updating equations, the terms of order [n + 1] can be exp~ted
to be "smaller" than ~eir counte~a~s of order [n], provided ~at ~e contrast quantities ~e
"smN1 enough". On account of ~is, it can be conjectured ~at for sufficiently small con~ast of
the scatterer with res~ct to its embedding the procedure is convergent and we can put

~p,q = 2 ~] for x’s~3,                          (16.5-7)
n~

n~

Assu~ng ~at the series on the right-hand sides of ~uations (16.5-7) and (16.5-8) ~e
unifo~y convergent, it can easily be proved that {~p,q,Vr} aS defin~ by ~ese equations indeed
satisfy ~uations (16.5-1) and (16.5-2). To this end we obse~e that
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Ds IotCt(G:’q’i’’j’’Xi’’j’’p’’q" -- Si,,j,,p,,q,~(t),~p,,q,;Xt, X,t)

rf    s
-- Otct(a~,q,k,,flk,,r, - f~(t)C~k,,r,,Vr,;X;X,t)] dV

- _1~

vh s~D~ [
-~ tet( Gr’i’’j’’~d’’j’’p ’’q’ -- S i,,j,,p ,,q ,~( t),77p ,,q ,’,x~,x,t)

vf s+ OtCt(Gr, k,,ltk,,r, - p~(t)t~k,,r,,Vr,;X’,x,t)] dV

vh s
....-~tCt(Gr, i,,j,,~(i,,j,,p,,q, Si,,j,,p,,q,t~(t), ~.~ ~,,q,;x[n]’,x,t)’"

n=O

.~ ,.-.vf , s , ,
+"ott~ttCrr,k ,/:tk,,r - p~(t)6k,,r,, ~ Vr, ;X,X,t) dV

n=O

~ vh    s[_~tCt(Gr, i,,j,,Xi,,j,,p,,q,- , [n]. ,
= -- Si ,j’,p ’,q,~(t),lrl~,,q’,X ,x,t)

n=O EDS
vf, ~ ,,+ OtCt(Gr, k ,/Ak’,r" - P3(t)Ok ,r ,Vr ;X,X,t)] dV

= Vr(X,,t) i , x,~R3,-- Vr(X , 0    for

(16.5-9)

where Equations (16.5-3)-(16.5-8) have been used and the interchange of the summations with
respect to n and the integration with respect to x are justified by the assumed uniform
convergence of the series expansions. Equations (16.5-9) and (16.5-10) are evidently identical
to Equations (16.5-1) and (16.5-2), and, hence, the expansions given in Equations (16.5-7) and
(16.5-8) indeed solve the problem.

(16.5-10)
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Complex frequency-domain analysis

563

In the complex frequency-domain presentation of the method we start from Equations (15.9-28)
and (15.9-43)-(15.9-46), which are combined to

,,i    ,     f     ~rh , ..s .,
~p,q(Xt,$) = ~p,q(X,s) -~ {a/,q,i,,j,(x,x,s) [t)i,,j,,p,,q,(X,s) - $Si,,j,,p,,q,] ~p,,q,(X,s)

- (dp~,q,k,(Xt, X,s) [~,,r,(X,s)-st~k,,r,]~r,(X,s)} dV for x’E~P~.3 (16.5-11)

and

^ t hi t f ^vh t ^S ^
Vr(X , S) = Vr (X ,S) ÷ { ar, i,,j,(x ,x,$) [~i,,j,,p,,q,(X,,) - sSi,,j,,p,,q,]

- ((~r~,f~,(x:x,s) [~,,r,(X,s)- sP~k,,r,]Or,(x,s)} dV for x’E~3. (16.5-12)

For x’~Ds, Equations (16.5-11) and (16.5-12) constitute a system of linear integral equations
of the second kind to be solved for {~p,q,Vr} for x~Ds,.and with ^ i ^ i^ " {~[~,q,Vr } as forcing terms. The
Neumann procedure to solve these equations is initialised by putting

~p[~ = ~q for x’~3, (16.5-13)

Cr[0]_ vr^i for x,~!~3. (16.5-14)

Next, the procedure is updated through

^[n+l]. t . f ^~h t ^s
~l~,q IX’S)=-- {a/,q,it,Jt(X ’x’s) [~lit,j’,P’,q’(X’s) - sSit,j’,P’,q’] ~ [Ptn,~’(X’s)

~Ds

for x’E~3 and n = 0,1,2, etc., (16.5-15)

and

~x" vh t ^s
~r[n+l](xt, S) +    {Gr, i,,j,(x,x,$) [~Ti,,j,,p,,q,(X,$) ~    ]^ In]..=                            - s,~i,,j,,p,,q,j

E~Ds

- (~Vr,fk,(X:X,S) [~,,r,(X,S)- SP~k,,r,] ~r[,n](x,s)} dV

for x’~3 and n = 0,1,2, etc. (16.5-16)

Assuming that the procedure is convergent, we can put

~P,q=E ~[pn,]q for x,~K3, (16.5-17)
n=0

~r=E 0rIn] forx’~3. (16.5-18)
n--0
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Assuming that the series on the right-hand sides of Equations (16.5-17) and (16.5-18) are
uniformly convergent, it can easily be proved that {~p,q,~r} as defined by these equations indeed
satisfy Equations (16.5-11) and (16.5-12). To this end we observe that

" rh , ,,s .,
- f x~.D~ { G~,q,i’,j’(x ,x,s) [r]i’,j’,p ’,q’(X,s) - sSi’,j’,p’,q "] r,p,,q,(X,$)

~9s ~-rp,q,i ,j,[X,X,$, [i"]i,,j,,p,,q,(X,S) --$Si,,j,,p,,q,] Z ~ [p’n,]q’(X,$)
ax

n=O

~ f ^rh t ^s
= -- Z~x {G~,q,i’,j’(x,x,s) [~]i’,j’,p’,q’(X,s)- sSi,,j,,p,,q,] ~,[p~]q,(X,s)

n=O    ~D~

-- (aft,q,k (X,X,s)[~k,,r,(X,s)- S~k,,r,] OJfl](X,s)} dV

= 2 ~,~+I](x:S): 2 ~ [m]’"’ S)$p,q [~, --

m~

:~p,q(X;s)-~j,q(X;s) for x’~a3

and

~’ {Gr, i’,j’(x,x,s) [~i’,j’,p’,q’(X,s) - sSi’,j’,p,,q,] ~p,,q,(X,s)

- (Gr, k’(X,x,s)[~k’,r’(X,s)- S~k’,r"] ~r,(X,s)} dV

=~- ~vh . ~ .    ~s

~s
~r’i"J’~X ’X’s’ [~i"j"P"q’(X’s) - sSi’,j’,P’,q’] 2

n~

(16.5-19)

n=O

"~’ ~ f ~, vh . , . F ^ s
Z_aJx lt-rr, i",j’tX,X,S) [~Ti’,j’,p’,q’(X,S)                              - sSi ....,j ,p ,q[~=j~ [~],q/~.
n~    ~D~

-- (Gr, k’(X,X,s) [~k’,r’(X,s) - S~k’,r,] OJfl](X,s)} dY

m~
.

Vr(X,s) "~ ’    for x’~3,= - Vr(X,s) (16.5-20)
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where Equations (16.5-13)-(16.5-18) have been used and the interchange of the summations
with respect to n and the integrations with respect to x is justified by the assumed uniform
convergence of the series expansions. Equations ( 16.5 - 19) and (16.5-20) are evidently identical
to Equations (16.5-11) and (16.5-12) and hence the expansions given in Equations (16.5-17)
and (16.5-18) indeed solve the problem.

The construction of convergence criteria for the Neumann expansion is complicated by the
singularities of the Green’s functions. For the simpler case of the scattering problem associated
with the scalar wave equation, a convergence criterion has been derived (De Hoop, 1991).

The nth term in the Neumann expansion is also known as the nth Rayleigh-Gans-Born
approximation.

| 6.6 Far-field plane wave scatlering in the first-order Rayleigh-Gans-Born
approximation; time-domain analysis and complex frequency-domain
analysis for eanoniea~ geometries of the scaHering object

In this section the far-field plane wave scattering in the first-order Rayleigh-Gans-Born
approximation is further investigated. In particular, closed-form analytic expressions are
derived for the far-field scattered P- and S-wave amplitudes associated with the incident
uniform plane P-or S-wave scattering by a homogeneous object in the shape of an ellipsoid, a
rectangular block, an elliptical cylinder of finite height, an elliptical cone of finite height, or a
tetrahedron. A structure consisting of the union of the listed objects can, in the first-order
Rayleigh-Gans-Bom approximation, be dealt with by superposition. The cases of an incident
plane P-wave and an incident plane S-wave will be dealt with separately.

Time-domain analysis

In the time-domain analysis, the expressions for the scattered wave amplitude in the far-field
region in the first-order Rayleigh-Gans-Born approximation follow from Equations (16.1-1),
(16.1-2), (16.1-21)-(16.1-28), (16.5-3), (16.5-4), (16.5-5) and (16.5-6) for n - 0.

Incident P-wave

For the incident uniform plane P-wave given by Equations (16.1-5)-(16.1-8), the far-field
scattered P-wave amplitude is obtained as (Figure 16.6-1)

s;p, p oo ~1;’ _ aP /c p,t) VrP,
Vr ’ = -~r~kAk, r, (~[Cp

-1         x’P , ,          P. .-P, ,+ (pcp) ~m~r~:Ak,~n,p ,q (~/Cp-a /Cp,Olp ,q ,               (16.6-1)

with

Ak, r,(tt,t) = dV [[9-1#k,r,(X,t’) -(}k,r,,r}(t’)] O~taP(t- t’ + UsXs) dr’    (16.6-2)
,1 xe~ ,I t’=O
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[:ioure ] 6.6- | Far-field plane wave scattering in the first-order Rayleigh-Gans-Bom approximation
(incident P-wave, scattered P-wave).

and

4g;,P , ,. - , + ,,
Ilk,m,p ,q Lit,t) = V    [Ck, m,i,j~(i,j,p,,q,(X,t ) - Ak,m,p’,q,6(t )]

d x~D dt’=O

× ~2taP(t- t’ + UsXs) dt’,

while

~’;)qP’P"~ =-C~1 [,aX~p,q(~kVSk;P’P’~) + 2fl(~k’WSk;P’P")~p~q] ,

and the far-field scattered S-wave amplitudes are (Figure 16.6-2)

P4~ _ aP ic p,t) VrP,l~Sr;S’P’’°’- -((~r,k- ~r~k)Zk, r (~/Cs

_ ~.,~ , , aP/ct,,t)Tf,,,q,,+ ~Cs)-l~m(6r,k ~r~k)A~,m,p ,q (;lcs-

while

ZpS,7,P, oo -1 .~ s;S,P, oo ~. s;S,P,-.
=-cS/UtgpVq    + gqVp ).

For a homogeneous object, Equations (16.6-2) and (16.6-3) reduce to

P;PAk, r,(U,t) = [p-ltZk, r,(t’) - 6k, r,,6(t’)] ~" P(t- t’ + UsXs) dr’
"=0

(16.6-3)

(16.6-4)

(16.6-5)

(16.6-6)

(16.6-7)
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Figure | 6.6-2 Far-fieldplane wave scattering in the first-order Rayleigh-Gans-Bom approximation
(incident P-wave, scattered S-wave).

and

z;P ¯ + ¯
Ak, rn,p,,q,(U,t) = Ck,m,i,jZi,j,p,,q,(t ) - Ak, m,p,,q,r}(t ) ~P(t- t¯ + UsXs) dt’ , (16.6-8)

"=0

respectively, in which

~P(u,t) = S 02taP(t + usxs) dV (16.6-9)
x~

is the time-domain P-wave shape factor of the object.

Incident S-wave

For the incident uniform plane S-wave given by Equations (16.1-9)-(16.1-12) the far-field
scattered P-wave amplitude is obtained as (Figure 16.6-3)_  S/cs,O VrS"

-’-~r~kAk, r (~/Cp

-1 x’S , aS[cs,t)TpS, q, ,+ (t9Cp) ~m~r~kZk.~,p,,q (~/Cp- , (16.6-10)

with
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~:lgure ] 6.6-3 Far-field plane wave scattering in the first-order Rayleigh-Gans-Bom approximation
(incident S-wave, scattered P-wave).

~k,r(U,t)= dV [p #k,r(X,t )-6k, r,,O(t’)]~2taS(t-t’ +usxs) dt’
d x~ZY dt’---O

and

z;,S , + ,
Ak, m,p,,q,(U,t) = dV Ck, m,i,]Zi, Lp,,q,(X,t ) - Ak, m,p,,q,r}(t )

d x~ dt’=O

2 S    t’
× bt a (t- + UsXs) dt’,

while

[-)~ ,~. s;P,S,oo, s;P,S, oo.gpS,’,~,S,,~, = _c~l[ P,qkgkvk ) + 21a.(~kVk )~p~q] ,

and the far-field scattered S-wave amplitudes as (Figure 16.6-4)

_ aS/cs, O Vrs,
Vr ’ =--(Or,k-- ~r~k)Ak, r (~]Cs

x’S    , S S ,+ (,PCs)-l~m(t}r,k- ~r~k)Ak,~n,p’,q (~/Cs-a/cs,t)T~,,q ,

while

rpS,:.sq,s,- -1 .~. s;S,S,- ~. s;S,S,-,
= --CS /A!,gpVq + gqVp ).

(16.6-11)

(16.6-12)

(16.6-13)

(16.6-14)

(16.6-15)
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scattered P-wave

scattered S-wave x ncident plane
\ \ \ S-wave

\~\

I ~ I
/ I

scatterin~ object             /      l
/

Figure 16,6-4 Far-field plane wave scattering in the first-order Rayleigh-Gans-Bom approximation
(incident S-wave, scattered S-wave).

For a homogeneous object, Equations (16.6-11) and (16.6-12) reduce to

;s, ,
A~ir(U,t)= [p-lttlc, r,(t’)-r&r,,6(t )]f"S(t-t’ + UsXs) dt’ (16.6-16)

’=0

and

A~,S ," "" ’ + ’ t’ ,/l~;m,p,,q tU,t) =    Ck, m,i,j~(i,j,p,,q,(t ) - Ak, m,p,,q,6(t )]~’S(t- + UsXs) dt’ (16.6-17)

respectively, in which

f"S(u,0 = [ O2taS(t + UsXs) dV (16.6-18)

is the time-domain S-wave shape factor of the object.
From Equations (16.6-9) and (16.6-18) it immediately follows that for u = 0, we have

~P’S(o,t) = vSO2taP’S(t),                           (16.6-19)

where Vs is the volume of the scatterer. Note that u = 0 occurs for P-wave/P-wave scattering
when ~ = aP and for S-wave/S-wave scattering for ~" = as, i.e. in both cases, for observation
"behind" the scatterer or in "forward scattering". Note, also, that u = 0 can never occur for
P-wave/S-wave scattering or for S-wave/P-wave scattering.
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Below we shall derive, for a number of canonical geometries of the scatterer, closed-form
analytic expressions for the shape factor

~’(u,t) = f ~2ta(t + usxs) dV. (16.6-20)
d x~

Ellipsoid

Let the scattering ellipsoid be defined by (see Equation (A.9-21) and Figure 16.6-5)

~DS = {x~3 ;O <~ (xl/al)2 + (x2/a2)2 + (x3/a3)2 < 1}. (16.6-21)

Its volume is

vS = (4zr/3)ala2a3 .                                         (16.6-22)

In the integral on the right-hand side of Equation (16.6-20) we introduce the dimensionless
variables

Yl = xl/al, Y2 = x2/a2, Y3 = x3/a3 (16.6-23)
as the variables of integration. In y-space, the domain of integration is then the unit ball
{y~.3; 0~<y12 + Y~2 + Y~ < 1 }. The integration over this unit ball is carried out with the aid of
spherical polar coordinates {r,O,q)}, with 0~<r<l, 0~<0~<~r, 0~<O<2~r, about the vector
Ulali(1) + u2a2i(2) + u3a3i(3) as polar axis. Then

UsXs = UlXl + u2x2 + u3x3 = (Ulal)Yl + (u2a2)y2 + (u3a3)y3 = Ur cos(0), (16.6-24)
where

U=[(Ulal)2 + (u2a2)2 + (u3a3)2] ~’2~> 0, (16.6-25)

while

I

Figure 16.6-5 Scatterer in the shape of an ellipsoid.
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dV= ala2asr sin(0) dr dO de.

The integration then runs as follows:

r(.,t)-ala2a3 ~ dr sin(O) dO O~a[t+ Ur cos(O)] de

-- 2~ala2a3 r~ dr O~a [t + Ur cos(O)] sin(O) dO

= 27rala2a3U-1 [02ta (t + Ur) - Ota(t- Ur)] r dr

571

(16.6-26)

= 2,rrala2a3 {U-2a(t + U) - U-3 [Ita(t + U) - Ira(t)]

+ U-2a(t- U) + U-3 [Ita(t- U) - Ira(t)] }

= (3vS/2){U-2[a(t + LO+ a(t- U)]- U-3[Ita(t + U) - Ira(t- U)]}. (16.6-27)

By using the Taylor expansion of the right-hand side about U = 0 and taking the limit U*0, it
can be verified that the result is in accordance with Equation (16.6-19).

Rectangular block

Let the scattering domain be the rectangular block defined by (see Equation (A.9-14) and Figure
16.6-6)

{x~R3 ;-a1 <x1 <al, -a2 <x2 <a2, -a3 <x3 <a3 }. (16.6-28)

Figure 16.6-6 Scatterer in the shape of a rectangular block.
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Its volume is given by

V s = 8ala2a3 . (16.6-29)

In the integral on the right-hand side of Equations (16.6-20) we introduce the dimensionless
variables

Yl = xl/al, Y2 = x2/a2, Y3 = x3/a3 (16.6-30)

as the variables of integration. In y-space the domain of integration is then the cube
{y~.3 ; -1 <Yl < 1, -1 <y2< 1, -1 <y3< 1 } with edge lengths 2. With

U1 = ula1, U2 = uza2, U3 = u3a3, (16.6-31)

furthermore, we have

UsXs = UlX1 + u2x2 + U3X3

= (Ulal)Y1 + (u2a2)Y2 + (u3a3)Y3 = UlY1 + U2Y2 + U3Y3, (16.6-32)

while

dV = ala2a3 dy1 dy2 dy3. (16.6-33)

The integration then runs as follows:

~’(u,t) = ala2a3 dy3     dy2     ~2ta(t + UlYl + U2Y2 + U3Y3) dyl
3 = -1      2=-1      1=-1

= ala2a3g~1      dy3      [Ota(t + U1 +U2Y2 + U~y~)
3 = -1        2=-1

-Ota(t-U1 + U2Y2 + U3Y3)] dy2

=ala2a3(U1U2)-1      [a(t + g1 +U2 + U3Y3)-a(t + U1 - U2 + U3Y3)
3=-1

- a(t- U1 + U2 + U~y~) + a(t- U1 - U2 + U3y~)] dy~

=ala2a~(U1U2U~)-1 [Ita(t + U1 +U2 + U3)- Ita(t + U1 + U2- U~)

- Ita(t + U1 - U2 + U~) + Ita(t + U1 - U2 - U~) - Ita(t- U1 +U2 + U~)

+ Ira(t- U1 + U2- U3) + Ira(t- gl - U2 + U3) - Ira(t- gl - U2- U3)]. (16.6-34)

Special cases occur for either U1--,0, U2~0, and/or U3~0. The corresponding limits easily
follow from Equation (16.6-34) by using the pertaining Taylor expansions in the right-hand
side. In particular, it can be verified that for U1--~0 and U:~---~0 and U~--~0 the result is in
accordance with Equation (16.6-19).
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Elliptical cylinder of finite height
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Let the elliptical cylinder of finite height be defined by (Figure 16.6-7)
2 2 <x3 <h}’~Ds ={X~3 ; O <~x21/a~ + x2/a2 < l, -h

Its volume is

(16.6-35)

Vs = 2~ala:zh. (16.6-36)

In the integral on the right-hand side of Equation (16.6-20) we introduce the dimensionless
variables

Yl = xl/al, Y2 = x2/a2, Y3 = x3/h (16.6-37)

as the variables of integration. Iny-space, the domain of integration is then the Cartesian product
of the unit disk d2 = {(yl,Y2)~; 0~<y~ + y~< i } and the interval {y3~R ; -1 <Y3 < 1 } along
the axis of the cylinder. Then, with

U1 = Ulal, U2 = u2a2, U3 = u3h, (16.6-38)

we have

UsXs = UlX1 + U2X2 + u3x3

= (Ulal)Y1 + (u2a2)Y2 + (u3h)y3 = Uly1 + U2Y2 + U3y3,

while

(16.6-39)

dV = ala2h dy1 dy2 dy3.

The integration then runs as follows:

(16.6-40)

!
!

~ incident

..... ,,~ne wave

Scatterer in the shape of an elliptical cylinder of finite height.
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r(u,O = ala2h I dyl dy2 ~2ta(t + Ul Yl + U2Y2 + U3Y3) dy3
d (.yl,Y2)~=,d2 3=’-1

= ala2hU~11 [~ta(t + Ul Yl + U2Y2 + U3)

-Ota(t + UlY1 + U2Y2- U3)] dy1 dy2. (16.6-41)

Next, we observe that

Ota(t + UlYl + U2Y2 + U3)=02tIta(t + UlYl + U2Y2 + U3)

= (U? + U25-1(O~t+2 O~2)Ita(t + UlY1           + U2Y2 + U3) for U? + U2z ;~0. (16.6-42)

Now, applying Gauss’ divergence theorem to the integration over A 2, we obtain

~(y , ,2(~y21 + O2y2)Ita(t + UlYl + U2Y2 + U3) dyl dy2
1, Y 2 ) ~-ZI

~
2 (Yl~Yl + Y2~y2)Ita(t + U1Yl + U2Y2 + U3) d~r-" a (yl,Y2)~C

=__~(YpY2)~c2(UlY1 + U2Y2)a(t + UlY1 + U2Y2 -t- U3) dgr,               (16.6-43)

where do is the elementary arc length along the unit circle �2 that forms the closed boundary
of the unit disk A 2, and where we have used the property that the unit vector along the normal
to C2 pointing away from A 2 is given by v = yli(1) + y2i(2). In the integral on the right-hand
side of Equation (16.6-43) we introduce the polar coordinates {r,0}, with r = 1 and 0~<0 <2at,
about the vector Uli(1) + U2i(2) as polar axis, as the variables of integration. This yields

I(y (Ul Yl + U2Y2)a(t + Ul Yl + U2Y2 + U3) do
I,Y2)~C2

= Ucos(O)a[t + Ucos(O) + U3)] dO, (16.6-44)

where

U = ( U12 + V~)’/Z >~ O . (16.6-45)

Collecting the results, we end up with

~’(u,t) ala2hU-1Uf1 [~= cos(O) { a It + v cos(O) + v3]
dO=O

-a[t + Ucos(0)- U3]}do (16.6-46)

Special cases occur for Us0 and/or U3--,0. The corresponding limits easily follow from
Equation (16.6-46) by using the pertaining Taylor expansions in the right-hand side. In
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particular, it can be verified that for U~0 and U3--~0 the result is in accordance with Equation
(16.6-19).

Elliptical cone of finite height

Let the elliptical cone of finite height be defined by (Figure 16.6-8)

={
222222

)~Ds x~R3; O<~Xl/al+x2/a2<x3/h, 0<x3<h . (16.6-47)

Its volume is

V s = ga la2h/3. (16.6-48)

In the integral on the fight-hand side of Equation (16.6-20) we introduce the dimensionless
variables

Yl = xl/al, Y2 = x2/a2, Y3 = x3/h (16.6-49)

as the variables of integration. In y-space, the domain of integration is then {y~R3; 0~<y~ + y~
< y~, 0 < Y3 < 1 }. Then, with

U1 = ula1, U2 = u2a2, U3 = u3h, (16.6-50)

we have

UsXs = UlX1 + u2x2 + u3x3

= (Ulal)y1 + (u2a2)Y2 + (u3h)y3 = Uly1 + U2y2 + U3Y3, (16.6-51)

while

dV= ala2h dy1 dy2 dy3. (16.6-52)

s

s

i(1) i(2)

incident

.... ,,~fe wave

~:igL~re 16.6-8 Scatterer in the shape of an elliptical cone of finite height.
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The integration then runs as follows:

l~(u,t) = ala2h dy3 O2ta(t + Ul y1 + U2y2 + U3Y3) dy1 dy2 , (16.6-53)
3=0 J (yl,YE)~A2(y3)

where d 2(y3) = { (y1,Y2)~2; 0 ~<yl2 + y22 < y~} is the circular disc of radius Y3. With a reasoning
similar to that used in Equations (16.6-42)-(16.6-44), we obtain

f (y ~2ta(t + UlY1 + U2Y2 + U3y3) dyl dY2
1,yz)~=ZI2(y3)

= U-ly3    cos(dP)Ota[t + Uy3 cos(C) + U3y3]d¢, (16.6-54)

in which

U=(U? + U25~/2/> 0. (16.6-55)

Furthermore,

f ~ Y3Ota [t + + U3Y3] dy3Uy3 cos(q~)
3=0

= [U cos(q~) + U3]-la It + U cos(q~) + U3]

t:3]-2 {Ita[t + Ucos(q~) + U3]- Ita(t) }. (16.6-56)cos(~)+

Collecting the results, we end up with

~’(u,t) = ala2hU-1    cos(c~) { [U cos(dp) + U3]-la [t + U cos(dp) + U3]

U3]-2 { Ita[t + U cos(~b)+ U3]- Ira(t)}} d~ . (16.6-57)+

Special cases occur for U+0 and/or U3--~0. The corresponding limits easily follow from
Equation (16.6-57) by using the pertaining Taylor expansions in the right-hand side. In
particular, it can be verified that for U+0 and U3--~0 the result is in accordance with Equation
(16.6-19).

Tetrahedron

Let the tetrahedron be defined by (see Equation (A.9-17) and Figure 16.6-9)

j 3 3
~Ds x~3 ; x = ~ A(/)x(/), 0 < 2(/) < 1, ~ 2(/) - 1--.

1=0 I=0

(16.6-58)
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x(O)

x(1)

Figure 16.6-9 Scatterer in the shape of a tetrahedron (3-simplex).

577

in which {x(O),x(1),x(2),x3(3)} are the position vectors of the vertices and {2(0), 2(1),
2(2),2(3)} are the barycentric coordinates. Its volume is (see Equations (A.10-29) and
(A.10-33))

Vs = det [x(1) - x(0),x(2) - x(1),x(3) - x(2)]/6. (16.6-59)

In the integral on the right-hand side of Equation (16.6-20) we replace 2(0) by 1 -2(1) -
2(2)- 2(3) and introduce {2(1),2(2),2(3)} as the (dimensionless) variables of integration. In
{2(1),2(2),2(3) }-space the domain of integration is then {0 <2(1) < 1, 0 <2(2) < 1 - 2(1),
0 <2(3) < 1 - 2(1) - 2(2)}. Then, with

U(1) = UsXs(1) for I = 0, 1, 2, 3, (16.6-60)

we have

UsXs= 2(0) U(0) + 2(1) U(1) + 2(2) U(2) + 2(3)U(3)

= [1 - 2(1) - 2(2) - 2(3)] U(0) + 2(1)U(1) + 2(2)U(2) ÷ 2(3)U(3)

= U(0) + [U(1) - U(0)] 2(1) + [U(2) - U(0)] 2(2) + [U(3) - U(0)] 2(3),

while, with the Jacobian (see Equation (A.10-31))

(16.6-61)

~(Xl’X2’X3) = 6Vs,

~[2(1),2(2),2(3)]
(16.6-62)

the elementary volume is expressed as

dV=6Vs c12(1) d2(2) d2(3).

After some lengthy but elementary calculations it is found that

(16.6-63)
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1 1 1
f"(u’t)=6vS U(0)-U(I) U(0)-U(2) U(0I-U(3)

1       1       1+
U(1) - U(O) U(I) - U(21 U(1) - U(3)

Ita [t + U(0)]

Ita [t + U(1)]

1       1       1
+

U(2) - U(O) U(2) - U(1) U(2) - U(3)

1       1       1+
U(3) - U(O) U(3) - U(1) U(3) - U(2)

Ita [t + U(2)]

I,a It + U(3)]l. (16.6-64)

In a symmetrical fashion, this result can be written as

3

T(u,t) = 6Vs E 1 _1 1
U(1)-U(J) U(1) U(K) U(I) U(L)

I=0

Ira [t + U(/)], (16.6-65)

where {I,J,K,L} is a permutation of {0,1,2,3}.
Special cases occur for U(/) = U(f) and/or U(/) = U(K) and/or U(/) = U(L). The easiest way

to arrive at the expressions for the relevant cases is to redo the integrations that need
modifications.

Complex frequency-domain analysis

In the complex frequency-domain analysis, the expressions for the scattered wave amplitude
in the far-field region in the first-order Rayleigh--Gans-Born approximation follow, with the
use of Equations (16.1-51), (16.1-52), (16.1-72)-(16.1-79) and (16.5-13)-(16.5-16) for n = 0.

Incident P-wave

For the incident plane P-wave given by Equations (16.1-55)-(16.1-58) the far-field scattered
P-wave amplitude is obtained as (Figure 16.6-10)

^ s;P,P, -- " p.;P _ tl p ] c p,S) VrP,
vr =-~r~kZi~,r, (~/Cp

-1 " x,;P P P
+ (,pCp) ~tn~r~kAk, rn,p,,q,(~/Cp-a /Cp,s)T;v,,q,, (16.6-66)

with
~/~P

f x
A~,,r,(U,s) = s2~P(s) [p-l,, , _tSk, r,]exp(sUsXs)Pk, r (X,S) dV (16.6-67)

~Ds

and
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~ incident plane
i scattered P-wave ~ ~" ~

~ P-wave

scattered S-wave
~P

scattering object /
/     /

/      /

1:igur~ 16.6-10 Far-field plane wave scattering in the first-order Rayleigh-Gans-Bom approxima-
tion (incident P-wave, scattered P-wave).

A~k~,’,Pm,p,,q,(U,S) = ~ ~(~) ~[Ck, m,i,jf(i,j,p,,q,(X,s)- Ak+,m,p,,q,] exp(SUsXs) dV, (16.6-68)

w~le

VpS,~,S,~ = _c~l [~p,q(~kv~;P~,~) + 2~kv~;P~,~)~p~q],
(16.6-69)

~d the f~-field scattered S-wave amplitudes ~e (Figure 16.6-11)
~ . _    ~ P     P
v~’S~’~=-(~r,k ~r~k)Zk, r (~lcs-a Icp,s)V;,

+ ~cs)-l(dr,k- ~r~k)~p’,q’(~[Cs-P P
~ Ic~,s)T~,,q,, (16.6-70)

wNle

Fora ~moge~ous object, ~uations (16.6-67) and (16.6-68) reduce to

- Np

and
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/
/
I
I
I
t
\
\

.~ .-- _ _ _ -.. -~ ~ incident plane

~" scattered P-wave "" ~ \P-wave

scattered S-wave \ \

~lcs - aPIcp

/    /
scattering object            /      /

/     /

/

l:igUi’e | 6.6- | | Far-field plane wave scattering in the first-order Rayleigh-Gans-Born approxima-
tion (incident P-wave, scattered S-wave).

/~I~X;,P, . . $2~ P(s) [Ck, m,i,jf(i,j,p,,q,(S) A~+,m,p’,q’] ~"(ll,s) ,,m,p ,q,!,lZ,S) = --

respectively, in which

f"(u,s) : ~x~Xp(SUsXs) dV

is the complex frequency-domain shape factor of ~e scattering object.

(16.6-73)

(16.6-74)

Incident S-wave

For the incident uniform plane S-wave given by Equations (16.1-59)-(16.1-62) the far-field
scattered P-wave amplitude is obtained as (Figure 16.6-12)

o~;~,,s,~ ^~,s s, ,, s,
=-~r~kAk, r (~/Cp- Ol ICs,S) Vr

-1     ^ ;(;S         S, ,,.,S, ,
+ (pCp) ~m~r~kAk, m,p,,q,(~/Cp - Ct ICs, S)Ip ,q ,               (16.6-75)

with
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scattered P-wave

scattered S-wave ~ incident plane
\ S-wave

~lcp - aS/cs aS\
\
\
\

I
I/    i

scattering object            / //
/     /

/

~:i0u~"$ 16.6-12 Far-field plane wave scattering in the first-order Rayleigh-Gans-Bom approxima-
tion (incident S-wave, scattered P-wave).

Al~r’ (.,$) $2~ S($)

[ -1^
1= p ~tk, r,(X,$) -- 6k, r,J exp(susXs)dV (16.6-76)

and

~z;s ,, , s~SS(s) ~ [C~,i,jii,j,p,,q,(X,S) _ A~m.p,,q,]exp(su~s) dV , (16.6-77)
,m,p’,q LU,S) =

wNle

r~,~,S,~= _@1 [~p,q(~v~;P,S,-) + 2~v~;P,S,~)~q], (16.6-78)

and the f~-field scattered S-wave amplitudes ~e (Ngure 16.6-13)

~;s,s,~ =-(dr,~- ~r~9~b (~/Cs-a ~Cs,S)V~
+ ~Cs)-1 ~m(~r,k -- ~r~k)~,p,,q,(~[Cs - ~S[cs,s)T~,q,, (16.6-79)

wNle
.

= -Cs ~tepVq    + eqvp ). (16.6-80)

For a ~moge~ous object, ~uations (16.6-76) and (16.6-77) reduce to

~ NS -1 ~
Z~,r’ (u,~l = ~aS(~l [~ ~,~,(~ -d~,r,]P(u,~ , (16.6-81~
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/
I
I
I

\
\

scattered P-wave

~ ---- -- -- .--- ....       ~i\
scattered S-wave x ncident plane

\ \ \ S-wave

~i~s ~

scattering oNect            /

/ /

i
i

Fi~MI~ 16.6-13 Far-field plane wave scattering in the first-order Rayleigh-Gans-Born approxima-
tion (incident S-wave, scattered S-wave).

and

(16.6-82)

respectively, in which

:P(u,s) = f e~ xp(sUsXs) dV
~ x~D

(16.6-83)

is the complex frequency-domain shape factor of the scattering object.
From Equations (16.6-74) and (16.6-83) it immediately follows that for u = 0, we have

~(O,s) = Vs, (16.6-84)

where V s is the volume of the scatterer. Note that u = 0 occurs for P-wave/P-wave scattering
when ~’ = aP and for S-wave/S-wave scattering for ~" = as, i.e. in both cases, for observation
"behind" the scatterer or in "forward scattering". Note, also, that u = 0 can never occur for
P-wave/S-wave scattering or for S-wave/P-wave scattering.

Below, we shall derive for a number of canonical geometries of the scatterer, closed-form
analytic expressions for the shape factor

~(u,s) = f exp(susXs) dV. (16.6-85)
J x~
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Ellipsoid

583

Let the scattering ellipsoid be defined by (see Equation (A.9-21) and Figure 16.6-14).

~Ds = {x~3 ; O ~ (xllal)2 + (x21a2)2 + (x3/a3)2 < 1}. (16.6-86)

Its volume is

Vs = (4z~/3)ala2a3. (16.6-87)

In the integral on the right-hand side of Equation (16.6-85) we introduce the dimensionless
variables

Yl = xl/al, Y2 = x2/a2, Y3 = x3/a3 (16.6-88)

as the variables of integration. In y-space, the domain of integration is then the unit ball
{y~3; 0,<y12 + y22 + y~ < 1 }. The integration over this unit ball is carded out with the aid of
spherical polar coordinates {r,O, qb}, with 0,<r<l, 0~0,<z~, 0<,~b<27r, about the vector
Ulali(1) + u2a2i(2) + u3a3i(3) as polar axis. Then

UsXs = UlX1 + u2x2 + u3x3 = (Ulal)y1 + (u2a2)y2 + (u3a3)Y3 = Ur cos(0), (16.6-89)

where

U=[(Ulal)2 + (u2a2)2 + (u3a3)2] 1/2~> 0, (16.6-90)

while
2dV = ala2a3r sin(0) dr dO dq~. (16.6-91)

The integration then runs as follows:

I
I

I

Figura 16.6-14 Scatterer in the shape of an ellipsoid.



584 Elastic waves in solids

~(u,s) = ala2a3 r2 dr sin(0) dO exp [sUr cos(0)] de

L L= 2.rrala2a3 r2 dr exp [sUr cos(0)] sin(0) dO

= 2~ala:za3(sU)-1 [exp(sUr) - exp(-sUr)l r dr

= 2~ala:~a3(sU)-:~ exp(~U) + exp(-sU) - [exp(sUr) + exp(-sUr)] d

= 2~ala2a3(sU)-2 {exp(sU) + exp(-sU)- (sU)-1 [exp(sU) - exp(-sU)]}

= 3Vs sU cosh(sU) - sinh(sU). (16.6-92)
(st.03

By using the Taylor expansion of the right-hand side about U = 0 and taking the limit UJ,0, it
can be verified that the result is in accordance with Equation (16.6-84).

Rectangular block

Let the scattering domain be the rectangular block defined by (see Equation (A.9-14) and Figure
16.6-15)

~DS = {x~R3 ; -al <xl <al, -a2 <x2 <a2, -a3 <x3 <a3 } . (16.6-93)

s
s

Figure 16.6-15 Scatterer in the shape of a rectangular block.
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Its volume is given by

V s = 8ala2a3. (16.6-94)

In the integral on the fight-hand side of Equation (16.6-85) we introduce the dimensionless
variables

Yl = xl[al, Y2 = x2/a2, Y3 = x3[a3 (16.6-95)

as the variables of integration. In y-space the domain of integration is then the cube
{y~K3 ; -1 <Yl < 1, -1 <Y2 < 1, -1 <Y3 < 1 } with edge lengths 2. With

U1 = ula1, U2 = uza2, U3 = u3a3, (16.6-96)

furthermore, we have

UsXs = UlX1 + U2X2 + u3x3

= (Ulal)Y1 + (u2a2)Y2 + (u3a3)Y3 = UlY1 + U2Y2 + U3Y3,

while

(16.6-97)

dV= ala2a3 dy1 dy2 dy3. (16.6-98)

The integration then runs as follows:

~"(~,s) = ala2a~      dy~      dy2     exp [s(g1Yl + U2Y2 + U3y~)] dyl
3 = --1       2=--1       1=--1

= ala2a3f~
3=-1

exp(sU3Y3) dy3     exp(sU2Y2) dy2 exp(sU1Yl) dyl

2=-1 1 =-1

exp(sU3) - exp(-sU3) exp(sU2) - exp(-sU2) exp(sU1) - exp(-sU1)
= ala2a3

sU3 sU2 sU1

=Vs sinh(sU3) sinh(sU2) sinh(sU1)
sU3      sU2      sU1

(16.6-99)

Special cases occur for either U1--~0, U2-+0, and/or U3-+0. The corresponding limits easily
follow from Equation (16.6-99) by using the relevant Taylor expansions in the fight-hand side.
In particular, it can be verified that for U1--+0, U2--~0 and U3-+0 the result is in accordance
with Equation (16.6-84).

Elliptical cylinder of finite height

Let the elliptical cylinder of finite height be defined by (Figure 16.6-16)

{/17
2222

}
~DS= ~; O<~Xl/a1 +xz/a2<1, -h<x3<h .

Its volume is

Vs = 2,Tralazh.

(16.6-100)

(16.6-101)
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Figure

.
\incident

¯

,,,,,~,l, ane wave

Scatterer in the shape of an elliptical cylinder of finite height.

In the integral on the right-hand side of Equation (16.6-85) we introduce the dimensionless
variables

Yl = xl/al, Y2 = x2/a2, Y3 = x3[h (16.6-102)

as the variables of integration. Iny space, the domain of integration is then the Cartesian product
of the unit disk A 2 = {(yl,Y2)~3; 0<Yl2 + y22< 1 } and the interval {y3~; -1 <Y3 < 1 } along
the axis of the cylinder. Then, with

U1 = Ulal, U2 = u2a2, U3 = u3h, (16.6-103)

we have

usxs = UlX1 + u2x2 + U3X3

= (Ulal)Y1 + (u2a2)Y2 + (u3h)y3 = Uly1 + U2y2 + U3y3,

while

dV = ala2h dy1 dy2 dy3.

The integration then runs as follows:

~"(u,s) =ala2h        dy1 dy2     exp [S(Uly1 + U2y2 + U3Y3)] dy3
1,Y2)~=Z2         3=--1

= ala2h I (sU3)-1 {exp [s(U1Yl + U2Y2 + U3)]
*/(yl,Y2)~A2

-exp [S(UlY1 + U2y2- U3)]} dy1 dy2.

Next, we observe that

(16.6-104)

(16.6-105)

(16.6-106)
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exp [s(U1Yl 
+ U2Y2 + U3)] (s2U? 2 2 -1 2 22= +s U~) (~yl+ yz)eXp[S(UlYl+U2Y2+_U3)]

for U12+ U22 40. (16.6-107)

Now, applying Gauss’ divergence theorem to the integration over A 2, we obtain

~(y (02Y +~;22)exp[s(UlYl + U2Y2 ± U3)] dyl dY2vyz)~.A~ ~

~
(Yl~Yl + Y2~yz) exp[s(UlYl + U2Y2 +- U3)]dcr

(yvy2)~c~

= f(ypy2)~C2 S(UlY1 + U2Y2) exp[s(UlYl + U2Y2 +. U3)] (16.6-108)

where da is the elementary arc length along the unit circle C2 that forms the boundary of the
unit disk A 2 and where we have used the property that the unit vector along the normal to C2
pointing away from A 2 is given by v = yli(1) + y2i(2). In the integral on the right-hand side of
Equation (16.6-108) we introduce the polar coordinates { r,q~ }, with r = 1 and 0 ~< q~ < 2z~, about
the vector Uli(1) + U2i(2) as polar axis, as the variables of integration. This yields

f(yvy2)~Cz (UlY1 + U2Y2) exp[s(UlY1 + U2Y2 + U3)] do"

= g cos(C) exp[sg cos(C) + sU~] de = 2~U exp(.~.sU~)Ii(sU), (16.6-109)

where I1 is the modified Bessel function of the first kind and order one (Abramowitz and Stegun,
1964) and

U=(U1~ + U22)~/2 >~ 0. (16.6-110)

Collecting the results, we end up with

~"(u,s) = 2~ala2hs-2V-1U~IlI(sU) [exp(sU3) - exp(-sU3)]

= 2VSs-2U-1U~IlI(sU) sinh(sU3). (16.6-111)

Special cases occur for U*0 and/or U3-~0. The corresponding limits easily follow from
Equation (16.6-111) by using the relevant Taylor expansions in the right-hand side. In particular,
it can be verified that for U,0 and U3---~0 the result is in accordance with Equation (16.6-84).

Elliptical cone of finite height

Let the elliptical cone of finite height be defined by (Figure 16.6-17)

={
222222

}
~Ds x~.3 ; 0 <Xxl/aI +x2/a2<x3/h, 0<x3<h .

Its volume is

V s = ~ala2h/3.

(16.6-112)

(16.6-113)
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¯
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Scatterer in the shape of an elliptical cone of finite height.

In the integral on the right-hand side of Equation (16.6-85) we introduce the dimensionless
variables

Yl = Xllal, Y2 = x21a2, Y3 = x3/h (16.6-114)

as the variables of integration. In y space, the domain of integration is then {y~3;
0 ~<yl2 + y22 <y], 0 < Y3 < 1 }. Then, with

U1 = Ulal, U2 = u2a2, U3 = u3h, (16.6-115)

we have

UsXs = UlX1 + U2X2 + U3X3

= (ulal)Yl+ (u2a2)Y2 + (u3h)y3 = Uly1 + U2y2 + U3Y3, (16.6-116)

while

dV= ala2h dy1 dy2 dy3. (16.6-117)

The integration then runs as follows:

l"(u,s) =ala2h    dy3          exp [S(Uly1 + U2Y2+ U3Y3)] dy1 dy2 ,(16.6-118)
d y3=O d (yl,y2)~.,d2(y3)

where ,~ 2(y3) = {(yl,y2)e~3; 0¢y~ + y~ < y]} is the circular disc of radius Y3. With a reasoning
similar to that as used in Equations (16.6-107)-(16.6-109), we obtain

exp[s(UlYl + U2Y2 + U3Y3)] dyl dy2
I,Y2)~A2(y3)

=(sU) Y3 cos(q~)exp[s(UY3cOS(d~)+ U3Y3)] de, (16.6-119)
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in which

U= (U? + Ux2)lA ~ o . (16.6-120)

Furthermore,

f~ exp[s(Uy3 cos(~6) + U3Y3)] dy3Y3
s=o

- [s(U cos(C) + U3)]-1 exp[s(U cos(C) + U~)] - exp[s(Uy3 cos(C) + U~y~)] dy~

= [s(U cos(~b) + U3)] -lexp[s(Ucos(~0 + U3)]

- [s(Ucos(q~) + U3)]-2 {exp[s(Uy3cos(q)) + U3)I- 1}. (16.6-121)

Collecting the results, we end up with

f"(u,s) = 6VS(sU)-1 cos(C)

1 I.exp_ [s(U cos(S_) + U3)]
X--

[ S(V COS(C) +
exp [s(U cos(q~) + U3)] - 1.~, d~b (16.6-122)

s2(Ucos(g)+u3)2J      "

Special cases occur for U*0 and/or U3--->0. The corresponding limits easily follow from
Equation (16.6-122) by using the relevant Taylor expansions in the right-hand side. In particular,
it can be verified that for U,0 and U3--40 the result is in accordance with Equation (16.6-84).

Tetrahedron

Let the tetrahedron be defined by (see Equation (A.9-17) and Figure 16.6-18)

a)s= x~3; x=,’,~2(/)~/), 0<2(/)<1, ~2(/)=1 ,
I=0 I=0

(16.6-123)

in which {x(0),x(1),x(2),x(3)} are the position vectors of the vertices and {2(0), 2(1),
2(2),2(3) } are the barycentric coordinates. Its volume is given by (see Equations (A. 10-29) and
(A.10-33))

Vs = det[x(1) - x(0),x(2) - x(1),x(3) - x(2)]/6. (16.6-124)

In the integral on the right-hand side of Equation (16.6-85) we replace 2(0) by 1 -2(1) -
2(2)- 2(3) and introduce {2(1),2(2),2(3)} as the (dimensionless) variables of integration. In
{2(1),2(2),2(3))-space the domain of integration is then {0<4(1)<1, 0<2(2)<1 -2(1),
0<4(3) < 1 - 4(1) - 4(2)}. Then, with

U(1) = usxs(l) for I = 0, 1, 2, 3, (16.6-125)
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Figure 16.6-18.
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Elastic waves in solids
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,,~ne wave

~~C

/\

Scatterer in the shape of a tetrahedron (3-simplex).

we have

usxs= 2(0) U(0) + 2(1)U(1) + 2(2) U(2) + 2(3)U(3)

= [1 - 2(1) - 2(2) - 2(3)] U(0) + A(1)U(1) + 2(2)U(2) + 2(3)U(3)

= U(O) + [U(1) - U(O)] 2(1) + [U(2)- U(O)] 2(2) + [U(3) - U(O)] 2(3), (16.6-126)

while, with theJ acobian (seeEqu ation (A. 10-31))

~(Xl,X2,X3) =6Vs,
~ [2(1),2(2),2(3)]

(16.6-127)

the elementary volume is expressed as

dV=6Vs d~(1) dX(2) d~(3). (16.6-128)

After some lengthy but elementary calculations it is found that

/~’(u,s) = 6VSs-3 f    1          1          1
U(0) - U(1) U(0) - U(2) U(0) - U(3)

exp[sU(0)]

1      1      1
+                               exp[sU(1)]

U(1) - U(0) U(1)- U(2) U(1) - U(3)

1      1      1+                               exp[sU(2)]
U(2)- U(0) U(2)- U(1) U(2)- U(3)

1      1      1
+                             ex

U(3)-U(O) U(3)-U(1) U(3)-U(2)
(16.6-129)

In a symmetrical fashion, this result can be written as
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3

~’(u,s) = 6VSs-3 ~    1
_1 1

u(/) - U( 3 u(/) U(K) U(t) - U(t )
I=0

exp[sU(/)], (16.6-130)

where {I,J,K,L} is a permutation of {0,1,2,3}.
Special cases occur for U(/) = U(J) and/or U(/) = U(K) and/or U(/) = U(L). The easiest way

to arrive at the expressions for the relevant cases is to redo the integrations that need
modifications.

Note: Since the first-order Rayleigh-Gans-Born approximation is additive in the domains
occupied by the scatterers, the scattering by an arbitrary union of canonical scatterers follows
by superposition. In particular, the result for the tetrahedron is the building block for scatterers
in the shape of an arbitrary polyhedron.

The first-order Rayleigh--Gans-Born scattering finds numerous applications both in the
forward (direct) and the inverse scattering theory. References to the earlier literature can be
found in Quak (1989).

Exercises

Exercise 16.6-1

Show that Equation (16.6-92) follows from the time Laplace transform of Equation (16.6-27).

Exercise 16.6-2

Show that Equation (16.6-99) follows from the time Laplace transform of Equation (16.6-34).

Exercise 16.6-3

Show that Equation (16.6-111) follows from the time Laplace transform of Equation (16.6-46).

Exercise 16.6-4

Show that Equation (16.6-122) follows from the time Laplace transform of Equation (16.6-57).

Exercise 16.6-5

Show that Equation (16.6-130) follows from the time Laplace transform of Equation (16.6-65).

Exercise 16.6-6

Show that for Uz0, Equation (16.6-27) becomes Equation (16.6-19). (In this case, u = 0.)
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Exercise 16.6-7

Show that for U3~0, Equation (16.6-34) becomes

F(u,t) = 2ala:~a3(U1U2)-1 [a(t + U1 +U:z) -a(t + U1 -

- a(t - U1 +U2) + a(t- U1 -U2)].

(In this case, u is parallel to the x1,x2 plane.)

Elastic waves in solids

(16.6-131)

Exercise 16.6-8

Show that for U:z-*0 and U3~0, Equation (16.6-34) becomes

~’(u,t) = 4ala2a3U~1 [~ta(t + U1)- ~ta(t- U1)].

(In this case, u is parallel to the x1 axis.)

(16.6-132)

Exercise 16.6-9

Show that for UI~0, U:z~0 and U3~0, Equation (16.6-34) becomes (16.6-19). (In this case,
u =0.)

Exercise 16.6-10

Show that for US0, Equation (16.6-46) becomes

~"(u,t) = z~ala2hU~1 [Ota(t + U3) - ~ta(t- U3)].

(In this case, u is parallel to the axis of the cylinder.)

(16.6-133)

Exercise 16.6-11

Show that for U3~0, Equation (16.6-46) becomes

~’(u,t) = 2ala:~hU-1 cos(¢)Ota [t + U cos(C)]

(In this case, u is perpendicular to the axis of the cylinder.)

(16.6-134)

Exercise 16.6-12

Show that for U~0 and U3--~0, Equation (16.6-46) becomes Equation (16.6-19). (In this case,
u=0.)

Exercise 16.6-13

Show that for U*0, Equation (16.6-57) becomes
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]:(u,t) = ztala2h {U~"1 [~ta(t + U3) - 2U~2a(t + V3)]

+ 2U3"3 [Ita(t + U3) - Ira(t)]}.

(In this case, u is parallel to the axis of the cone.)

593

(16.6-135)

Exercise 16.6-14

Show that for U3--~0, Equation (16.6-57) becomes

r(u,O = ala~zhU-1 {[g cos(O) ] a(t + U cos(O))

- [U cos(O)] -2[Ita(t + U cos(O)) - Ira(t)]} cos(O) dO.

(In this case, u is perpendicular to the axis of the cone.)

(16.6-136)

Exercise 16.6-15

Show that for U,0 and U3-->0, Equation (16.6-57) becomes Equation (16.6-19). (In this case,
u=O.)

Exercise 16.6-16

Show that for U(J)--+U(/), Equation (16.6-65) becomes

u(O- u(to u(t)- U(L)

_f     1         1    +    1
[u(t) - U(K)] 2 u(1) - U(L) U(I) - U(tO

f
1 1+ Ita[t + U(K)]

[U(hO - tJ(/)] 2 U(tO - U(L)

+                        Ita[t + U(L)] ,
[U(L) - ~(t)] 2 U(~) - U(ho

1 ~ Ita[t + U(/)]
[U(/) - U(L)] 2

(16.6-137)

where {I,J,K,L} is a permutation of {0,1,2,3}. (In this case, u is perpendicular to the edge
connecting the vertex x(/) with the vertex x(J).)

Exercise 16.6-17

Show that for U(J)~U(1) and U(L)-->U(IO, Equation (16.6-65) becomes
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]"(u’t) = 6vS ( [U(/) -1U(K)] 2     {a [t + U(1)] + a [t + U(K)]}

2
{Ira [t+ U(/)] -Ira [t+ U(K)]}/

(16.6-138)

where {LJ, K,L} is a permutation of {0,1,2,3}. (In this case, u is perpendicular to the edge
connecting the vertex x(/) with the vertex x(J), as well as perpendicular to the edge connecting
the vertex x(K) with the vertex x(L).)

Exercise 16.6.. 18

Show that for U(J)-->U(I) and U(K)-->U(I), Equation (16.6-65) becomes

T(u,t) = 6Vs (    1    ~ta [t + U(/)] -
1

u(t) - U(L) [U(t) - U(L)] 2
a [t + U(/)]

1
{I,a It + U(/)] Ira It + U(L)]}) (16.6-139)+ -

[U(I) - U(L)] 3                   ’

where {LJ, K,L} is a permutation of {0,1,2,3}. (In this case, u is perpendicular to the plane
containing the triangle of which x(/), x(J) and x(hO are the vertices.)

Exercise 16.5-19

Show that for u = 0, Equation (16.6-65) becomes Equation (16.6-19).

Exercise 16.6-20

Show that for Us0, Equation (16.6-92) becomes Equation (16.6-84).

Exercise 16.6-21

Show that for U3--->0, Equation (16.6-99) becomes

~"(u,s) = Vs sinh(sU2) sinh(sU1)                            (16.6-140)
sU2     sU1

and show that the result follows from the time Laplace transform of Equation (16.6-131). (In
this case, u is parallel to the Xl,X2 plane.)

Exercise 16.6-22

Show that for U2~0 and U3~0, Equation (16.6-99) becomes
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~(U,$) = Vs sinh(sU1)                                     (16.6-141)

and show that the result follows from the time Laplace transform of Equation (16.6-132). (In
this case, u is parallel to the xI axis.)

Exercise 16.6-23

Show that for U1--~0, U2--->0 and U3--~0, Equation (16.6-99) becomes Equation (16.6-84). (In
this case, u = 0.)

Exercise 16.6-24

Show that for U*0, Equation (16.6-111) becomes

~" (u,s) = 2~a 1 a2hs- 1U3-- 1 sinh(s U3 ) (16.6-142)

and show that the result follows the time Laplace transform of Equation (16.6-133). (In this
case, u is parallel to the axis of the cylinder.)

Exercise 16.6-25

Show that for U3--~0, Equation (16.6-111) becomes

!2"(u,s) = 4~alag~hs-1 g-lll(sU) (16.6-143)

and show that the result follows from the time Laplace transform of Equation (16.6-134). (In
this case, u is parallel to the axis of the cylinder.)

Exercise 16.6-26

Show that for U~0 and U3---~0, Equation (16.6-111) becomes Equation (16.6-84). (In this case,
u=0.)

Exercise 16.6-27

Show that for Us0, Equation (16.6-122) becomes

~"(U,S) = ~ala2hs-2 {[sU3-1- 2U3-2 + 2s-lu~3]exp(sU3)- 2s-1 U3-3} (16.6-144)

and show that this result follows from the time Laplace transform of Equation (16.6-135). (In
this case, u is parallel to the axis of the cone.)

Exercise 16.6-28

Show that for U3-~O, Equation (16.6-122) becomes
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~"(u,s) = ala2hs-2U-1     {[U cos(~b)]-lexp [sU cos@)]

- s [Ucos(q~)] [exp(sUcos(q0)- 1]} cos(q~) d~b (16.6-145)

and show that this result follows from the time ~place ~sfo~ of ~uafion (16.6-136). ~n
~s case, u is pe~en~cul~ to ~e ~is of ~e cone.)

Exercise 16.6-29

Show that for U~0 and U3-->0, Equation (16.6-122) becomes Equation 06.6-84). (In this case,

Exercise 16,6-30

Show that for U(J)--~U(/), Equation (16.6-130) becomes

[{ 1
1 exp [sU(/)]}~"(u,s) = 6VSs-2 U(1) - U(K) U(1) - U(L)

_{

1 1+1
1}s-~exp[sU(l)][U(/) - U(K)] 2 U(/) - U(L) U(1) - U(K) [U(/) - U(L)] 2

+{

1 1 -1

}
[U(K) -- U(L)] 2 U(hO - U(L) s exp [sU(hO]

[U(L) - U(/)] 2 U(L) - U(K) $ exp [sU(L)] ,
(16.6-146)

where {LJ, K,L} is a permutation of { 0,1,2,3 }, and show that this result follows from the time
Laplace transform of Equation (16.6-137). (In this case, u is perpendicular to the edge
connecting the vertex x(/) with the vertex x(J).)

Exercise 16.6-31

Show that for U(J)--~U(I) and U(L)--cU(K), Equation (16.6-130) becomes

~(tt,S) = 6vSs-2 ( 1 {exp [sU(/)] + exp [sU(hO] }
[w(0 - U(K)] 2

2s-1
[U(/)- U(K)] 3 {exp [sU(/)]-exp [sU(L)] ,

(16.6-147)

where {LJ, K,L) is a permutation of {0,1,2,3 }, and show that this result follows from the time
Laplace transform of Equation (16.6-138). (In this case, u is perpendicular to the edge
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connecting the vertex x(/) with the vertex x(J) as well as perpendicular to the edge connecting
the vertex x(K) with the vertex x(L).)

Exercise 16,6-32

Show that for U(J)~U(1) and U(IO~U(I), Equation (16.6-130) becomes

~"(u,s) =6VSs-2(
s

exp [sU(/)]
1

exp [sU(!)]
U(O-U(K) [U(O- U(~]2

s-1
+ {exp [sU(/)]- exp [sU(L)] (16.6-148)

[u(/)_ U(K)] 3 ’

where {LJ, K,L} is a permutation of {0,1,2,3}, and show that this result is the time Laplace
transform of Equation (16.6-139). (In this case, u is perpendicular to the plane containing the
triangle of which x(/), x(J) and x(K) are the vertices.)

Exercise 16.6-33

Show that for u = 0, Equation (16.6-130) becomes Equation (16.6-84).
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