
The e ectrornagnetic
constitutive relations

The electromagnetic constitutive relations are representative for the macroscopic electromag-
netic properties of passive matter. In their general form, the relations constitute an equivalent
of three vectorial relations between the five vectorial quantities {Jk,Pk,l~,Er,Hp}. For reasons
that are connected with the transfer of energy by electromagnetic fields, they express, in their
standard form, {Jl~,Plo3~ } in terms of {Er,Hp}. Several terminological aspects of the relation-
ship are enumerated below. In view of the assumed passivity of the medium, it is required that
for any type of matter we have {Jk,P~,l~ }--)0 as {Er,Hp}---)O.

Linearity

In case the constitutive operators that express the values of {Jk,P/oMj } in terms of the values
of { Er,Hp } are linear, the medium is denoted as linear in its electromagnetic behaviour. If this
is not the case, the medium is denoted as non-linear in its electromagnetic behaviour. A wide
class of materials is found to behave linearly in the presence of not too strong electromagnetic
fields. An exception to this are the ferromagnetic materials that already show a non-linear
response to weak magnetic fields.

Time invariance

In case the constitutive operators that express the values of {Jk,Pk,lP~ } in terms of the values
of {Er,Hp} are time invariant, the medium is denoted as time invariant. Otherwise, the medium
is time variant or parametrically affected. Unless the medium parameters are affected by a time
variant external mechanism (for example, acoustically, or otherwise mechanically), most
materials are time invariant in their electromagnetic behaviour.

Relaxation

In case the constitutive operators express the values of {J/oPk,Mj } at some instant in terms of
the values of {Er,Hp} at that same instant only, the medium is denoted as instantaneously
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reacting in its electromagnetic behaviour. When, on the other hand, the values of {JI~,PI~j}
are expressed in terms of the values of {Er,Hp} at other (usually all previous) instants, the
medium is said to show electromagnetic relaxation. The property that only the past is involved
in relaxation phenomena, is known as the principle of causality.

Local reactivity

In case the constitutive operators express the values of {JI~,Pk,Mj } at some position in space in
terms of the values of {Er,Hp} at that same position only, the medium is denoted as locally
reacting in its electromagnetic behaviour. When, on the other hand, the values of {Er,Hp}
elsewhere are involved in the constitutive operator, the medium is non-locally reacting in its
electromagnetic behaviour. Almost all media are locally reacting in their electromagnetic
behaviour. An exception to this are the warm plasmas that, through acoustic wave interaction
associated with their compressibility, are often non-locally reacting.

Homogeneity

If in a certain domain in space the constitutive operators that express {J/~,P/o~} in terms of
{Er,Hp} are shift invariant, the medium is denoted as homogeneous; in that domain in space
where the shift invariance does not apply, the medium is denoted as inhomogeneous.

Isotropy

If at a point in space the constitutive operators that express { J/~,P/~,!I~ } in terms of {Er,Hp} are
orientation invariant, the medium is denoted as isotropic at that point. If this property does not
apply, the medium is denoted as anisotropic. Isotropic materials have no inner structure on a
macroscopic scale; anisotropy is a structural characteristic of, for example, all crystals.

Several cases of commonly encountered electromagnetic constitutive relations will be
discussed in subsequent sections.

19. I Conductivity, permittivity and permeability of an isotropic material

For a wide class of materials, the quantities Jk and P/~ only depend on Er (and not on Hp), while
the quantity/~ only depends on Hp (and not on Er). For a medium that is, in addition, linear,
time invariant, instantaneously reacting, locally reacting and isotropic in its electromagnetic
behaviour, we then have

J~(x,t) = cr(x)Ek(x,t) , (19.1-1)

Pk(x,t) = eO~(e(x)Ek(x,t) , (19.1-2)
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Mj(x,t) "- )(rn(x)Hj(x,t) , (19.1-3)

where

a = (electrical) conductivity (S/m),

Ze = electric susceptibility,

)Crn = magnetic susceptibility.

(The inclusion of the factor e0 on the right-hand side of Equation (19.1-2) is a matter of
convention to make the electric and magnetic susceptibilities dimensionless.) Next, Equation
(19.1-2) is substituted in Equation (18.3-9), Equation (19.1-3) is substituted in Equation
(18.3-10), and the resulting relations are written as

Dk(x,t) = e(X)Ek(X,t) = ~O~r(X)Ek(X,t) , (19.1-4)

Bj(x,t) = #(x)Hj(x,t) = tt0Pr (x)/-!j (x,t), (19.1-5)

where

e = (absolute) permittivity (F/m),

er = relative permittivity,

/z = (absolute) permeability (I-I/m),

Pr = relative permeability.

Comparison of the corresponding expressions shows that

e=e0(1 +Ze) or er= 1 +Ze, (19.1-6)

# =/.t0(1 + Xm) or Pr = 1 + Xm’ (19.1-7)

For an isotropic medium of the indicated kind, the conductivity, the electric susceptibility, the
magnetic susceptibility, the permittivity and the permeability are scalars (tensors of rank zero).

In a domain where the constitutive coefficients introduced here change with position, the
medium is inhomogeneous; in a domain where they are constant, the medium is homogeneous.

19.2 Conductivity, permittivity and permeability of an anisotropic material

We again consider the class of materials for which Jk and Pk only depend on Er (and not on
Hp), while the quantity Mj only depends on Hp (and not on Er). Let the medium, in addition,
be linear, time invariant, instantaneously reacting and locally reacting in its electromagnetic
behaviour, and let us concentrate on the effect of anisotropy. In that case, the relations given in
Equations (19.1-1)-(19.1-3) are replaced by

Jk(X,t) = tYk, r(x)Er(x,t) ,

P (x,t) =
Mj(x,t) = Xm;j,p(x)Hp(x,t) ,

(19.2-1)

(19.2-2)

(19.2-3)
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and Equations (19.1-4) and (19.1-5)by

Dk(x,t) = ek, r(X)Er(X,t) = eOer;k,r(x)Er(X,t) , (19.2-4)

Bj(~,t) : ~j,p(X.)np(X,t) = ktOflr;j,pQC)Hp(X,l) , (19.2-5)

where

t?k,r -" 130(¢}k,r q- Xe;k,r) or er;k,r = 6k,r + Ze;k,r , (19.2-6)

#j,p = ~O(¢}j,p + Xm;j,p) or ~r;j,p = ¢}j,p + Xm;j,p . (19.2-7)

For an anisotropic medium of the indicated kind, the conductivity, the electric susceptibility,
the magnetic susceptibility, the permittivity and the permeability are tensors of rank two.

In a domain where the constitutive coefficients introduced here change with position, the
medium is inhomogeneous; in a domain where they are constant, the medium is homogeneous.

19.3 Conductivity, permiffivity and permeability of a material with relaxation

We again consider the class of materials for which Jtc and P/~ only depend on Er (and not on
Hp), while the quantity Mj only depends on Hp (and not on Er). Let the medium, in addition,
be linear, time invariant, and locally reacting in its electromagnetic behaviour, and let us
concentrate on the effect of relaxation. For simplicity, we shall give the formulas for isotropic
media; the extension to anisotropic media is elementary, and will be covered in an exercise. For
a causal behaviour of the indicated kind, Equations (19.1-1)-(19.1-3) are replaced by

Jl~(x,O : , ~Cc(X,t )El~(x,t’ - t’) dt’ ,
,tt---o

~(x,O = ~o ~(x,t )E~(x,t’ - t’) de’,
,~t’--o

Mj(x,t) = gm(X,t’)I-Ij(x - t’) dr’
ot’----O

(19.3-1)

(19.3-2)

(19.3-3)

respectively, in which

~:c = conduction relaxation function (S/mos),

~ce = dielectric relaxation function (s-l),

Km = magnetic relaxation function (s-l).

Note that in Equations (19.3-1)-(19.3-3) the causality of the medium’s response has been
enforced by restricting the interval of integration of the elapse time t’ to the interval { t’~; t’ > 0},
which implies that only the values of {E/c,/-~ } prior to t contribute to the values of {Jk,Pk,Mj }
at the instant t. Mathematically, one can express the same property by defining the relaxation
functions on the entire interval { t’~} and requiring that the relaxation functions satisfy the
condition

{~Cc,~Ce,rm}(X,t’) = 0 for t’ < 0. (19.3-4)
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The time invariance of the medium is obvious from the property that in the right-hand sides of
Equations (19.3-1)-(19.3-3) only the elapse time t’ between "cause" (at the instant t- t’) and
"effect" (at the instant t) occurs in the relaxation functions.

It follows from the microscopic theory of the electromagnetic behaviour of matter that the
relaxation functions are bounded functions of their time arguments. For the limiting case of an
instantaneously reacting material, the relaxation functions approach an impulse (delta-distri-
bution) time behaviour. In this limiting case, Equations (19.3-1)-(19.3-3) reduce to Equations
(19.1-1)-(19.1-3), provided that we take

~Cc(X,t’) = cr(x)6(t’), (19.3-5)

~e(x,t’) = Xe(x)6(t’) , (19.3-6)

~Cm(X,t’) = Zm(X)f(t’), (19.3-7)

where cS(t’) is the Dirac impulse distribution operative at t’ = 0.
Some simple examples of relaxation functions, in particular those that follow from the

elementary microscopic considerations within the realm of Lorentz’s theory of electrons, will
be discussed in Sections 19.5-19.7.

Exercises

Exercise 19, 3-1

Give the constitutive relations for a time invariant, locally reacting, anisotropic medium with
relaxation that is linear and causal in its electromagnetic behaviour.

Answer:

It~___o~    ’ ,t- (19.3-8)Jk(X,t) =    c;k,r(X,t )Er(X t’) dt’

ft
~,~

’     ,tPtc(x,t) = e0    e;k,r(X,t )Er(X - t’) dt’        , (19.3-9)

~t~,___01c
’     ,tMj(x,t) = m;j,p(X,t )Hp(x - t’) dt’ . (19.3-10)

Exercise 19.3-2

In which special case do Equations (19.3-8)-(19.3-10) reduce to Equations (19.2-1)-(19.2-3),
respectively?

Answer: If

~Cc;k,r (x,t’) = cr ~,r(X)6( t’) , (19.3-11)

ge;k,r(X,t’) = Ze;k,r(X)O( t’) , (19.3-12)

~¢m;j,p(x,t’) = Xm;j,p(X)d(t’) . (19.3-13)
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| 9,4 Electric current as a flow of electrically charged particles. The
conservation of electric charge

The basic concept of Lorentz’s theory of electrons is that an electric current, whether it is present
in an electrically conducting solid (for example, a metal), or an ionised liquid or gas, can be
conceived as a flow of electrically charged particles. The concept of electric charge cannot
further be reduced and is physically defined through a set of standard experiments. The electric
charge q of a particle can be either positive (for example, q > 0 for a proton), or zero (for
example, q = 0 for a neutron), or negative (for example, q < 0 for an electron). It follows from
experiments that electric charge is quantised: only integer multiples of the elementary charge
e occur in nature. From the experiments, the value of e is found as

e = 1.60217733 × 10-19 C. (19.4-1)

Our analysis starts by considering a collection of identifiable particles whose geometrical
dimensions are negligibly small. The collection is present in some domain D in three-dimen-
sional space R3. Each particle carries a label by which is can be distinguished from all the other
particles, and the particle with the label p occupies, at the instant t, the position x(P)(t). Ifx(p)
changes with time, the (instantaneous) velocity w~p) of the particle is given by w~p) = dtx(rp),

where dt indicates the change of position with time that an observer registers when moving
along with the particle. We now select a standard, shift- and time-invariant subdomain De of D,
a so-called representative elelnentary domain, whose maximum diameter is small compared to
the geometrical dimensions of the macroscopic system we are analysing and small compared
to the scale on which the macroscopic quantities we are going to introduce show spatial changes,
but that nevertheless contains so large a number of particles that it can be considered as an
elementary part of a continuuum on the macroscopic scale (Figures 19.4-1 and 19.4-2).

The basic assumption (of statisical physics) is that appropriate spatial averages over De of
the microscopic quantities lead to the associated macroscopic quantities, the latter being
assumed to vary piecewise continuously with position. (This is the so-called continuum
hypothesis.)

Number density

Let x be the position of the (bary)centre of De(x), and let Ne = Ne(x, t) be the number of particles
present in De(x). Then, the macroscopic number density n = n(x,t) of the collection of particles
attributed to the position x and taken at time t is defined as

n = Ne(x,t)/Ve , (19.4-2)

where

x’~D, (x)      ~D, (0)
(19.4-3)

is the volume of De. (The shift invariance of De implies that ifx’~De(x), then ~’~De(0), where
x’=x+
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Figure | 9.4-1 Domain ~9 in which a collection of moving particles is present; ~D~ is a time- and
shift-invariant representative elementary domain with centre x.

Figure 19.4-2 Representative elementary domain ~ge with a collection of moving particles.

Note: The position of the barycentre of ~Oe(x) is defined as

3c-- VZ1 ~    x’ dV.
x’ ~D, (x)

(19.4-4)

The continuum hypothesis states that n = n(x,t) is a piecewise continuous function of x. The
total number of particles N = N(t) present in some bounded domain ~9 = ~D(t) then follows as
the sum of the numbers of particles present in the representative elementary subdomains that
belong to D(t), i.e.

N(t) = | n(x,t) dV.
x~D(t)

(19.4-5)
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Drift velocity

Electromagnetic waves

Next, the average velocity, transport velocity, or drift velocity, vr of the particles is introduced
as

N~(~,O
vr(x,t) : (Wr)(X,t) = [Ne(x,t)] -1 Z W~r )(t) ’ (19.4-6)

p=l

where (...) denotes the arithmetic mean of the quantity in angular brackets. It is noted that the
chaotic part of the motion of the particles, which determines the thermodynamic notion of their
temperature, averages out in Equation (19.4-6) and does not contribute to the right-hand side.

Conservation of particles

Upon following, for a short while At, the collection of particles present in ag(t) on its course, a
conservation law is arrived at. Let the number of particles present in ~)(t) at the instant t be

N(t) = | n(x,t) dV,
d X~ff) (t)

(19.4-7)

and let these particles occupy at the instant t + At the domain ~D(t + At). Then, the number of
particles N(t + At) present in D(t + At) is given by

N(t + At) = | n(x,t + At) dV ,
,t x~a9 (t+At)

(19.4-8)

where n(x,t + At) is the number density at the instant t + At. Assume that, in the meantime,
particles have somehow been created at the overall rate d/Ncr or annihilated at the overall rate
dtNann. The consideration that no other processes than the ones that are mentioned are involved
leads up to the first order in At balance equation

N(t + At) = N(t) + [dtNcr - dtNann] At + o(At) as At-~O. (19.4-9)

Note: For the definition of Landau’s order symbols o and O, see Equations (A.8-1)-(A.8-6).
Now, assuming that n = n(x,t) is, throughout ~V(t), continuously differentiable with respect to
t, we have the Taylor expansion

n(x,t + At) = n(x,t) + Otn(x,t) At + o(At) as At-->O. (19.4-10)

Furthermore, the geometry of the domain ~9(t) as it changes with t entails that (see Figure 19.4-3,
where ~D(t + At) is decomposed into the part that it has in common with ~D(t), the part that has
been left behind and the part that has been acquired)

Ix n(x,t) dV = f n(x,t) dV~9 ( t+At) .t x~D ( t)

+ |    n(x,t)Vr(X,t) At dAr + o(At) as Ate0,
.t xc--3 D (t)

(19.4-11)
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vdA

(w)=v

Figure 19.4-3 Conservation law for particles occupying the domain D with boundary surface ~D and
moving with a drift velocity v.

where OD(t) is the boundary surface of D(t) and vr is the local drift velocity with which the
particles on OD(t) move, while

fx~D(t+At)    ~tn(x’t)dV=fx             ~(t)~tn(x,t)dV+o(1) as At--->0.
(19.4-12)

Combining Equations (19.4-10), (19.4-11) and (19.4-12), the result

n(x,t+At)dV=f n(x,t) dV+~ ~tn(x,t)AtdV+o(At)
~D (t+At)               x~D(t+A0         d x~D(t+At)

= f n(x,t) dV + f n(x,t)Vr(X,t) At dAr
¯ ~ x~(O          J x~OD(t)

+ ~ Otn(x,t) At dV+ o(At) as At---~0 (19.4-13)
d_X~D(t)

is obtained. From Equations (19.4-13) and (19.4-7)-(19.4-9) it follows by dividing by At and
taking the limit At---~0, that

fx Otn(x,t) dV + f n(x,t)vr(x,t) dAr= dtNcr(t)- dtNann (t). (19.4-14)
~ (t) ,t x~ (t)

Equation (19.4-14) is known as the conservation law of particle flow.
Introducing the volume densities of the rates of particle creation hcr and particle annihilation

r~ann similar to Equation (19.4-2), we can write

dtNcr(t) = dt f ncr(X,t) dV=f hcr(X,t) dV ,             (19.4-15)
x~D (t)             x~D (t)

dtNann(t)=dtf nann(.r,t) dV =~ hann(.r,t) dV.            (19.4-16)
x~ (t) .~ x~o (t)

(The dot over a symbol is a standard notation in physics to indicate the time rate of change.)
Using these expressions in Equation (19.4-14) and applying Gauss’ integral theorem to the
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second integral on the left-hand side of Equation (19.4-14) under the assumption that nvr is
continuously differentiable throughout ~D(t), we obtain

Ix~D(t)[3tn + ~r(nVr)] dV = Ix~D(t)(ricr - riann ) dV.
(19.4-17)

Since Equation (19.4-17) has to hold for any domain, and the integrands are assumed to be
continuous functions of position, we arrive at (for the justification of this step, see Exercise
19.4-5)

~tn + ~r(nVr) = her - tiann. (19.4-18)

Equation (19.4-18) is known as the continuity equation of particle flow.

Volume density of electric charge, Volume density of electric (convection)
current

Next, we concentrate on the electrical properties of the particles. Consider again the
representative elementary domain ff)e(x) and let Ne(x,t) be the number of particles present in it.
In addition, let q(P) be the electric charge of the particle with the labelp, then the volume density
of electric charge p is defined as

Ne(x,t)

p(x,t) = V~1 Z q(P)’

p=l

(19.4-19)

and the volulne density of electric (convection) current Jk as

N~(~,O
.lk(x,t) = V[1 ~.~ q(P)w~k )(t) .

p=l

(19.4-20)

Upon using Equation (19.4-2), Equation (19.4-19) can be rewritten as

Ne(x,t)

p(x,t) = [Ne(x,t)/Ve] [Ne(x,t)]-1 2 q(P)
p=l

:n(q) , (19.4-21)

and Equation (19.4-20) as

N~(x,t)

Jl~(x,t) = [N~(x,t)/Ve] [N~(x,t)] -1 ~.~ q(P)w(kP)(t)
p=l

= n(qwk). (19.4-22)

In terms of the volume density of electric charge, the total amount Q = Q(t) of electric charge
of the particles in some domain ~D(t) is given by
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Q(t) = ~ p(x,t) dV. (19.4-23)
~ x~ (t)

In what follows, it will be necessary to distinguish between the different types of particles as
far as their electric charges are concerned. Let the subscript B be the label that indicates the
value of the electric charge of the particles of the type B. (As far as the electric properties are
concerned, the subscript B is indicative of the different electrical substances out of which the
collection of particles is composed.) For example, one can take

qB = Be. (19.4-24)

Let, further, the superscript p denote the label of an individual particle within the collection of
a certain type. For all particles of the type B we obviously have

qB(p) = qB’ (19.4-25)

Now let Ne,B = N~,a(X,t) denote the number of particles of type B present in the representative
elementary domain ~D~(x). The number density of particles of type B is then given by

nB(x,t) = N~,a(X,t) / Ve , (19.4-26)

their volume density of electric charge by

N~.B(x,t)
PB(X,t) = V~1 ~_~ q~B)

p=l

= [Ne, B(X,t)/Ve] qB

= nB(x,t) qB, (19.4-27)

and their volume density of electric convection current by

N,,B(X,t)

saAx, t) v,-1= qB B;k~~)

p=l

N~,a[x,t)

= v~aqB E ’ (p)tt)~VB;k~, 1

p=l              Ne,~(x,t)

= [N~,B(X,t)/V~] [N~,B(X,t)]-lqB E                         WB;k(t) (p)

p=l

= nB(x,t)qBVB;k(X,t)

= PB(X,t)VB;k(x,t). (19.4-28)

Taking all types of particles together, the contributions from the different substances add up to
the total volume density of electric charge.

P = E PB (19.4-29)
B

and the total volume density of electric (convection) current

J/c= E JB;k’ (19.4-30)
B
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Conservation of electric charge

Electromagnetic waves

A relationship between PB and JB ;to is established when the conservation law Equation (19.4-17)
is applied to the particles of the type B. Multiplication of Equation (19.4-14) by qB leads to

f x~D(t)~tpB dV + f,I x~O ~ (t) JB’k dAk = f x~9(t)([9B’cr- ljB’ann ) dV ’’
(19.4-31)

where/5B,cr and/5B ,ann denote the volume densities of the rates at which electric charge is created
and annihilated, respectively, through particles of the type B. In the same way, multiplication
of Equation (19.4-18) by qB leads to

~tPB + ~kJB;k = bB,cr -/~B,ann ¯ (19.4-32)

Now, it is an experimentally established fact that on a macroscopic scale no net electric charge
can either be created or annihilated. Therefore, summing over all types of electrically charged
particles, we have

Z/OB,cr = 0 and Z~B,ann = 0. (19.4-33)
B B

Consequently, the summing of Equation (19.4-31) over all types of electrically charged particles
yields

L)~tpdV+ f~D (t        d xc-~ ~ (t) JkdAk=O’                   (19.4-34)

while the summing of Equation (19.4-32) over all types of electrically charged particles yields

~t~o q- ~kJlc = 0. (19.4-35)

Equation (19.4-34) is known as the conservation law of electric charge; Equation (19.4-35) is
known as the continuity equation of electric (convection) current.

Stationary electric currents

A flow of particles is called stationary, or steady, when n, Vr, hcr and bann are independent of
time. Correspondingly, for a stationary electric current (i.e. a stationary flow of electrically
charged particles), since also the electric charge of a particle is independent of time, the
quantities p, Jk,/Scr and/0ann are independent of time.

Static distribution of electric charge

A distribution of particles is called static if no macroscopic transport of particles takes place;
hence, vr = 0 for a static distribution of particles. For a static distribution of electric charge (i.e.
a static distribution of electrically charged particles) we correspondingly have J/~ = 0.
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Exercise 19,4-1

In a collection of particles with number density n we consider a domain in the shape of a cube
with edge length a. (a) What is the value of a if the cube is to contain, on average, a single
particle? (b) What is the value ofa ifn = 5.0 x 1028 m-3 (number density of atoms in silicon)?

Answers: (a) a = n-½; (b) a = 2.71 x 10-10 m.

Exercise 19.4-2

In an ionised gas two types of electrically charged particles are present, viz. positive ions with
number density n+, drift velocity v~ and electric charge q+, and negative ions with number
density n-, drift velocity v~ and electric charge q-. Give the expressions for (a) p, (b) Jk.

Answor: (a) p = n+q+ + n-q-; (b) Jk = n+q+v-~ + n q v~: .

Exercise 19,4-3

In a metal conductor the electric current consists of a flow of (conduction) electrons with
number density ne, electric charge -e, and drift velocity Ve;k. The host lattice is at rest and
contains positively charged nuclei such that the conductor as a whole is electrically neutral.
Give the expressions for (a) p; (b) Jk.

Answer: (a) p = O; (b) Jk = -neeve;k’

Exercise 19,4-4

In a semiconductor the electric current is composed of a flow of electrons with number density
ne and drift velocity Ve;k, and holes with number density nh and drift velocity vh;k. The electric
charge of an electron is -e. The electric charge of a hole is e. Give the expressions for (a) p;
(b) J/c
Answer: (a) p = -nee + nhe; (b) Jk = -neeVe;k + nhevh;k .

Exercise 19.4-5

Show that iff=f(x,t) is a continuous function ofx and t and

f x f (x,t) d V = O
~(t)

for any ~D(0, thenf(x,t) = 0 for all x~D (t). (Hint: The proof follows by reductio ad absurdum.
Assume that f(xo,O > 0, then, on account of the assumed continuity, f(x,t) > 0 in some
neighbourhood B0 ofx0. By taking ~D to be this neighbourhood it follows that

f f(x,t) dV>O,
x~o
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which is contrary to what is given. Repeat the same argument for f(xo,t) < 0 and draw the
conclusion.)

Exercise 19.4-6

Derive Equation (19.4-18) directly from Equation (19.4-17) by taking for the domain ~D the
three-dimensional rectangle D = {x’~R3; xm - AXm/2 < x,~ < xm + Axm/2}. Assume that nvr is
continuously differentiable and use for nvr everywhere on ~)the first-order Taylor expansion
[nVr](X’,t) = [nVr](X,t) + (xr~ -Xm)Om[nVr](X,t) + o(Ix-x’l) as Ix-x’[--->0. Divide the resulting
expression by AXlAX2AX3 and take the limit AXl-->0, Ax2---~0, Ax3--->0.

Exercise 19.4-7

Show that for a stationary flow of particles the conservation law of particle flow, Equation
(19.4-14), reduces to

Ixc_x3~(X)Vr(X) dAr= dtNcr(t) - dtNann(t) = f x [hCr(x) - tiann(x) ] dV.~) (19.4-36)

Exercise 19.4-8

Show that for a stationary electric current the conservation law of electric charge, Equation
(19.4-34), reduces to

Ix J/~(x) dA/~ = 0.
(19.4-37)

Exercise 19.4-9

Show that for a stationary flow of particles the continuity equation of particle flow, Equation
(19.4-18), reduces to

~r(nVr) = her- tiann. (19.4-38)

Exercise 19.4-10

Show that for a stationary electric current the continuity equation of electric (convection)
current, Equation (19.4-35), reduces to

O~Jk= 0. (19.4-39)

Exercise 19,4-11

Prove that for any continuously differentiable function ~/, = cl)(x,t) the following properties hold:

(a) Ot[V~-l ldx’~9~(x)~(x’t)dV]=V~’l f ’ax~De(x)ot~(x’t)dV;
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Here, De(x) is a representative elementary domain and Dp’ 05(x’, t) means differenfiaton with
respect to x~. (Hint: (a) follows by using the definition of derivative with respect to t; (b) follows
by using the definition of derivative with respect to Xp, showing that

and applying Gauss’ integral theorem to the last integral.)

Exercise 19.4-12

Show, by using the method that has led from Equations (19.4-7)-(19.4-9) to Equation (19.4-14),
that for any function gt = gt(x,t) that is associated with the conservative flow of particles with
drift velocity vr we have

dt f x gt(x,t) dV= f Dtgt(x,t) dV+ f gt(x,t)Vr(X,t) dAr.     (19.4-40)
~D (t)          a x~ [t)            ,t x~D (t)

(This result is known as Reynolds’transport theorem.)

Exercise 19.4-13

Show, from the result of Exercise 19.4-12, that for any continuously differentiable function
gt= gt(x,t) which is associated with the conservative flow of particles with continuously
differentiable drift velocity vr = Vr(X,t) we have

dt ~ gt(x,t) dV= ~ {Dtgt(x,t) + Dr [Vr(X,t)gt(x,t)]} dV.

(Hint: Apply Gauss’ integral theorem to the boundary integral in Equation (19.4-40).) Upon
rewriting the left-hand side as

dt~ f ~(x,t) dV (19.4-41)
~9(tl~(X,t) dV=x~9(t) ’

we also conclude that

~t(x,t) = Dt~(x,t) + Dr [Vr(X,t) ~(x,t)]. (19.4-42)

Exercise 19,4-14

In M (M~> 2) metallic conductors that are interconnected at a "node", there is a flow of stationary
currents with magnitude

I(m) = f J~ dA~
(m)
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in the mth conductor (m = 1,...,M); here, S(m) is some cross-section of the mth conductor. Show
that (a) I(m) is independent of the choice of the cross-section that is used to evaluate the integral;
(b) EMil I(m) = 0 (Kirchhoff’s law). (c) Which property of J/~ at the interface conductor/insu-
lator has been used?

Answer: (c) J/~ dA/~ = 0 at any elementary surface of the interface conductor/insulator.

Exercise 19,4-15

Consider a static distribution of particles in which recombination of the particles with other
particles takes place at the rate tiann = n/v where r denotes the "life time" of the particles.
Determine n = n(x,t) as a function of time in the interval to < t < ,,o. (Hint: Use Equation
(19.4-18).)
Answer: n(x,t) = n(x, to) exp[-(t- t0)iv].

Exercise 19.4-16

Into a piece of matter that is present in a domain ~Pin space we inject instantaneously NO particles
at t = t0. Due to recombination with other particles present in D the injected particles have a life
time r (see Exercise 19.4-15). There is no flow of particles across the boundary b~D of ~3. Let
N = N(t) denote the total number of particles of the injected type, present in ~D at the instant t.
Determine (a) the differential equation that N must satisfy; (b) the solution of this equation.
(Hint: Use Equation (19.4-14).)

Answer:

(a) atN = No6(t- to) - NIv; (b) N = 0 for t < to, N = No exp[-(t- to)Iv] for t > t0.

Exercise 19.4-17

Show that for a stationary electric convection current the continuity equation of electric current,
Equation (19.4-35) reduces to

O~J~= 0. (19.4-38)

19.5 The conduction relaxation function of a metal

In a metal, conduction of electricity takes place through the transport of the conduction electrons
present in it. We assume that the metal is macroscopically neutral and that the positive nuclei
of its host lattice are fixed in space. The conduction electrons are set into motion by a
macroscopic electromagnetic field that exerts a force on them, and the resulting drift current is
taken to be identical to the induced electric current introduced into Maxwell’s equations in
matter. (Another mechanism that could set the electrons into motion is diffusion, where a
gradient in the number density of particles causes them to flow. The corresponding diffusion
current is negligible in a metal, but is of major importance in semiconductors.) During their
motion, the electrons collide with the nuclei in the host lattice. The macroscopic effect of these
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collisions is taken into account by assuming that on the average the collisions take place at the
rate of vc per time (Vc = collision frequency (s-I)), and that at each collision the electron transfers
its momentum completely to the host lattice (which is then set into a slow mechanical motion).
The equation of motion of the conduction electron with label (p) that is present in the
representative elementary domain D~(x) is under these assumptions given by

medtW (kp)+ t5~;~ = FI~(x(P!t), (19.5-1)

where m~ is the electron mass, w~:p) = w~:P)(t) is the instantaneous velo,e.ity of the electron,
x(P) = x(P)(t) is its position,/~c(..P~ is the time rate of change of the electron s momentum due to
the collisions, and Fk = Fk(x(-P~t) is given by (see Equation (18.1-1))

Fk =-eEk - eek,m,jWmtzot-~.                                   (19.5-2)

Equation (19.5-1) is now averaged over the representative elementary domain ~)e(x). To rewrite
the first term on the left-hand side of the averaged equation we need the theorem

Dt[ne(X,t)Vk(X,t)] = V~1 ~ dtw(kP)(t) ,
p=l

where v/~ is the drift velocity and

(19.5-3)

Dt = VrOr + Ot (19.5-4)

denotes co-moving differentiation with respect to time. To prove Equation (19.5-3) it is
observed that

N~(x+Ax, t+At)

ne(X + Ax, t + At)vk(x + Ax, t + At) = V~"1 2 W(kp)(t + At) (19.5-5)
p=l

and

ne(X,t)Vl~(X,t) = V~1 ~ w~P)(t) . (19.5-6)
p=l

If, now, the representative elementary domain ag~(x + &r) results from 9~(x) under the
translation

Ax = vat, (19.5-7)

i.e. a displacement with the local drift velocity, we have

N~(x + Ax, t + At) : N~(x,t) , (19.5-8)

since under such a displacement the particles in ~D~(x) are followed on their (collective)
macroscopic course and the flow of conduction electrons is conservative. Substituting the
Taylor expansions

w(kP)(t + At) = w(kP)(t) + Atdtw(kP)(t) + o(At) as At-->0, (19.5-9)

and

ne(X + Ax, t + At)Vk(X + Ax, t + At)

= ne(X,t)vk(x,t) + At{vrOr[ne(X,t)vk(x,t)]

+ Ot[ne(X,t)vk(x,t)] } + o(At) as At---->0 (19.5-10)
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in Equation (19.5-5), subtracting Equation (19.5-6) from the result, dividing the resulting
equation by At, and taking the limit At---~0, we end up with

~v,(x,t)

Vr~r[ne(X’t)vk(x’t)] + ~t[ne(x’t)vk(x’t)] = V~"1 E dtw(~P)(t), (19.5-11)

which is Equation (19.5-3).
The second term in the equation that results after averaging Equation (19.5-1) is written as

(19.5-12)
N~(x,t)

/~c;k = nernel)cVk,
p=l

where ne is the number density of the electrons, gc is their collision frequency and mevk is the
volume averaged momentum of the electrons. Identifying the volume density of material
electric current (see Equation (18.3-4)) with the volume density of electric conduction current
(see Equation (19.4-28)), leads to

j~nd = -neeVk = Jk ’ (19.5-13)

The averaging of Equation (19.5-1) then leads to the following differential equation for the
volume density of electron conduction current:

DtJk + ~eJk = (nee2/me)Ek- elc, rn,jJm(ePoI-~/me) , (19.5-14)

where Dt is given by Equation (19.5-4).
The term "¢r3r in Dt makes the differential equation non-linear (note that ~¢r "- -Jr/nee)¯ In

most practical cases, the drift velocity is so low that [VrOrJl~l ~. 3tJk. In view of this, we take

Dt = Ot (19.5-15)

in Equation (19.5-14). Under this assumption, Equation (19.5-14) reduces for stationary
currents (~tJl¢ = 0) and in the absence of an external magnetic field (i.e./-!j = 0) to Ohm’s law

Jk = ~rEk , (19.5-16)

provided that we approximate ne by its static background value and take

cr = nee2/megc (19.5-17)

as the conductivity for stationary currents. Furthermore,

Wce;j = ePoI~/me (19.5-18)

is the vectorial electron cyclotron angular frequency of an electron gyrating around the
magnetic field. In this respect it is observed that the magnetic field associated, according to
Maxwell’s equations, with a time-varying electric field yields a contribution to the force on a
point charge that is WrnWm[C~ times the value of the electric force; this contribution can therefore
be neglected in Equation (19.5-14) and, in the approximation in which we work,/-~ can be
identified with the external magnetic field (if present). Taking for/-~ in Equation (19.5-18) a
static external magnetic field, the coefficients in the linearised form of the differential equation
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Equation (19.5-14) become time independent. In its standard form the differential equation then
becomes

(19.5-19)

Equation (19.5-19) is already a constitutive relation that expresses the relationship between
J/~ and Er, be it that this constitutive relation is not in the standard form. From it we conclude
that in a metal the phenomenon of (electron) conduction is a local effect and that in its electric
conduction behaviour the metal is isotropic in the absence of an external magnetic field, while
it is anisotropic in the presence of an external magnetic field. To arrive at the corresponding
constitutive relation in the standard form, Equation (19.5-19) as a differential equation in time
has to be solved. This is most easily done with the aid of a Laplace transformation with respect
to time. Carrying out this transformation, Equation (19.5-19) changes into

(19.5-20)

Several cases will be considered separately below.

No external magnetic field present; isotropic conductor

First, the case is investigated where no external magnetic field is present. Then, O)ce;j = 0 and
Equation (19.5-19) reduces to

~tJk + vcJk = VcCrEk. (19.5-21)

Correspondingly, Equation (19.5-20) reduces to

(s + vc)J/~ = Vc~r~/~. (19.5-22)

The solution to Equation (19.5-22) is obtained as

jk = ~2c/~/~, (19.5-23)

with

~:c- ~c~r (19.5-24)
s+vc

The time-domain equivalent of Equation (19.5-23) is the time convolution

Jk(x,t) = c(x,t)E~:(x,t- t’) dr’, (19.5-25)

in which the conduction relaxation function follows from Equation (19.5-24) as

~cc = VcCr exp(-~,ct)H(t) , (19.5-26)

in which H(t) is the Heaviside unit step function.
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No external magnetic field present; isotropic superconductor

In certain materials the collision frequency vc drops to zero value upon cooling the material
below a certain critical temperature Te. Such a material is denoted as a superconductor. In this
case Equation (19.5-21) is, in view of Equation (19.5-17), replaced by

~tJk = (nee2/me)Ek. (19.5-27)

From this equation the constitutive relation in its standard form follows as
2 2

Jk(X,t) nee ~t~ _~Ek f"= (x,t") dt"= nee-- -- Ek(x,t- t’) dr’.
me "= me ,t t’=O

(19.5-28)

Equations (19.5-27) and (19.5-28) are as the first London equations. In fact, Equations (19.5-27)
and (19.5-28) are the constitutive relations for an isotropic collisionless plasma (see Section
19.6). Note that Equation (19.5-28) also results from Equations (19.5-25) and (19.5-26) upon
taking the limit ~,cS0.

External magnetic field present; anisotropic conductor

In the presence of an ^external magnetic field, the vectorial Equation (19.5-20) must be solved
in its full form, i.e. J/c must be expressed in terms of !~r’ To achieve this, we first apply to
Equation (19.5-20) the operator COce;~. This leads to

(s + Vc)COce;~J~ = ~c~rCOce;k!~, (19.5-29)

where the property has been used that
^

(Oce;kt?k,m, jJma)ce;j = 0. (19.5-30)

Secondly, the operator Er, q,kO)ce;q is applied to Equation (19.5-20). This leads to
^

(s +
^ ^

-- ~c~rgr, q,kO) ce;qEk - gr, q,kOJce;q~k,m,jJmo)ce;j . (19.5-31)

However, (see Equation (A.7-51))

~r,q,k~k,m,j = dr, mdq,j - dr, jdq,rn . (19.5-32)

Using Equation (19.5-32) in the last term on the right-hand side of Equation (19.5-31), we obtain
^

(S + Vc)gr, q,kO)ce;qJk
^ ^ ^

= l~c~rt~r,q,kO)ce;qEk - COce;qO)ce;qJr + O)ce;rO)ce;qJq. (19.5-33)

Now, using Equation (19.5-29) in the last term on the right-hand side, Equation (19.5-33)
becomes

(S + I~c)t?r,q,k(Oce;jk
" 2 ^ ^

= ~’cq~r,q,kO)ce;qEk - O)c~eJr + (s + Vc)-lVcaO)ce;rO)ce;kEk, (19.5-34)
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in which
2

Wce= Wce;qWce;q. (19.5-35)

Upon multiplying Equation (19.5-20) by s + % and using Equation (19.5-34), we end up with
2 "

-" (S + l)c)~’c~r!~k -t- b’c~t~k,q,rO)ce;ql~r + (s + ~’c)-lVc~rO)ce;kO)ce;r~r, (19.5-36)

where some subscripts have appropriately been changed.
From Equation (19.5-36) the complex frequency-domain tensorial conduction relaxation

function ~2c;/¢,r = ~%;l¢,r(X,s), introduced through

~¢c;k, rEr (19.5-37)

follows as

I~c~r I(s + ~’c)~k,r + Ek,q,rO)ce;q + (s + I~c)-109ce;k0)ce;r] .,~ ,-..
Kc;k’r

With the aid of the Laplace-transform pairs

(s +
~ exp(-~’ct) cos(rOcet)H(t),

(S + V’c)2 + O~c2e

1 <__.> COce-1 exp(-%t) sin(wcet)H(t)                            ,
(S + ~’c)2 + O)c2e

and

(19.5-38)

(19.5-39)

(19.5-40)

1 1 <._> Wce-2 exp(_Vct)[1 - cos(wcet)]H(t)                                  ,
(S + l~c) (S + I~c)2 + O)c2e

(19.5-41)

in which H(t) denotes the Heaviside unit step function (H(t) = 0 if t < 0, H(0) = ½, H(t) = 1 if
t > 0), the time-domain counterpart of Equation (19.5-37) is obtained as

~c;k,r = Vca exp(-Vct) {c°s(°)cet)fk, r + Ek, q,r(O)ce;q[°)ce) sin(Wed)

+ (~0ce;kO)ce;r/O)c2e) [1 - COS(C0cet)]} H(t).                    (19.5-42)

The time-domain constitutive relation finally follows as the convolution

Jk(x,t) =    c;Lr(x,t’)Er(x,t- t’) dr’. (19.5-43)

External magnetic field present: anisotropic superconductor

For the case of a superconductor in the presence of an external magnetic field, Equation
(19.5-20) reduces to

= (nee2/me)#k - ek, m, jJ,,Wce;j.__ (19.5-44)
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To express ~/~ in terms of !~r, the steps leading to Equations (19.5-37) and (19.5-38) can be
repeated. The result also follows from Equation (19.5-38) upon replacing UcCr by nee2/me and
further substituting ~c = 0. For this case, the result

nee2[me [Sdk,r + t~k,q,rCOce;q + s rOce;kO)ce;r] (19.5-45)

s +O)ce

is then obtained. Using Equations (19.5-39)-(19.5-41) for ~’c = 0, the time-domain counterpart
of Equation (19.5-45) then follows as

2
nee

= ~ {COS(O)cet)r}k,r + g.k,q,r(Ogce;q[O)ce) sin(O)cet)l(c;k,r

+ (09ce;kO)ce;r/~Oc2e) [ 1 - COS(O)cet)]} H(t), (19.5-46)

which is, for the case of an anisotropic superconductor, to be used in the convolution in Equation
(19.5-43). Equations (19.5-46) and (19.5-43) form, in fact, the constitutive relation for an
anisotropic collisionless plasma (see Section 19.6)

Stationary electric current. Hall effect

For stationary electric currents, we have OtJk and Equation (19.5-19) reduces to

-1
Ek =~-lJk -t- @cO’) gk, m,jJrn(.Oce;j. (19.5-47)

Using Equation (19.5-17) for the value of a and Equation (19.5 - 18) for the value of (Oce; j, this
relation can be rewritten as

Ek = ty-lJk _ RHgk, rn,jJm!~O[-Ij, (19.5-48)

in which
1Rn = - -- (19.5-49)

nee
is the Hall coefficient. As Equation (19.5-48) shows, the presence of an external magnetic field
introduces anisotropy in the conduction properties of a material for stationary electric currents;
this effect is known as the Hail effect. In particular, the effect that a given electric current density
yields a contribution to the electric field that is perpendicular to the current density (the second
term on the right-hand side of Equation (19.5-48)) is used to measure the value of the magnetic
field strength by causing a known stationary electric current to flow through a piece of metal
(or semiconductor) and measuring the resulting electric field strength, assuming that the
quantities specifying the properties of the piece of matter used are known. Conversely, the
second term on the right-hand side of Equation (19.5-48) is used to determine the number
density and the nature of the moving carriers of electric charge in metals or semiconductors,
assuming that the external magnetic field is known and the electric field strength perpendicular
to the electric current density is measured.
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Exercise 19. 5-1

Take, in Equation (19.5-25), E/~ = 0 when --~ < t < to and E/~ = E~0) when to < t < oo, where
E~(°) is time independent. Show that in the limit t--+oo, upon using Equation (19.5-26), Equation
(19.5-25) yields Jk--+crEtv (Hint: Observe that

t-t° /¢c(X,tt) dt’--+    ,¢c(X,t’) dt’

¯ 1 t’=0 ,~ t’=0
as t--+oo,

and evaluate the resulting integral.)

9.6 The conduction relaxation function of an electron plasma

Aplasma is a gas in which an ionisation of the atoms has taken place. In an electron plasma
the negative ions are electrons. In the gaseous state considered, the positive ions are not fixed
in a lattice (as is the case in a solid conductor), but under most conditions their drift velocity is
negligibly small compared to the drift velocity of the electrons. This is due to the property that
thermodynamic equilibrium of the plasma is established through the collisions between positive
ions and electrons, and the fact that even the lightest positive ion (viz. a proton) has a mass that
is 1836 times as large as the electron mass. In this degree of accuracy, therefore only the
contribution from the electrons to the volume density of material electric current has to be taken
into account. The analysis of Section 19.5 can be repeated. Using Equation (19.5-17), Equation
(19.5-19) is, for the present application, rewritten as

at4 + re4
2

= gOO)peEk- Ek, m,jJra(Oce;j (19.6-1)

and Equation (19.5-20) as

= eOOgpeEk- gk,m,jJmo)ce;j, (19.6-2)

in which

I nee211/2~ (19.6-3)~°P~ = Le0mej

is the electron plasma angular frequency. The reason for introducing the electron plasma
angular frequency in stead of the static conductivity into the expression for the conduction
relaxation function is that under usual circumstances in a plasma the inertia of the electrons
predominantly influences its conductive behaviour, while in a metal under usual circumstances
the effect of collisions is predominant. Proceeding as in Section 19.5, the complex frequency-
domain conduction relaxation function is then found as (see Equation (19.5-38))

^ 2 1
Kc;k,r = g00)pe [(S+l~c)~3k, r+g.k,q,rO)ce;q+(S+ltc) O)ce;kO)ce;r], (19.6-4)

(s + .02 +  Oc2e
with the corresponding constitutive relation
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"~k = ~¢c;k,r~r

and the time-domain conduction relaxation function as (see Equation (19.5-42))
2

{COS (cocet) Ok, r sin(wcet)g’c;k,r = gOcope exp(-Vct) + t?k,q,r(coce;q/coce)

+ (coce;/6oce;r/%2e [1 - cos(cocet)]} H(t),

with the corresponding constitutive relation

4(x,t) =    c;k,r(X,t )E (x - t’) at’

(19.6-5)

(19.6-6)

(19.6-7)

An important application of the constitutive behaviour of an electron plasma is found in the
theory of ionospheric radio wave propagation. The ionosphere is an ionised part of the
atmosphere surrounding the Earth, with an altitude in between 50 km and 250 km above the
Earth’s surface. The ionisation takes place under the action of the ultraviolet radiation emitted
by the Sun. Therefore, the presence and absence of the ionosphere follows the rhythm of day
and night, which explains the difference between day and night in radiowave propagation
(Ratcliffe 1959, Budden 1961).

In the theory of electromagnetic wave propagation through the ionosphere it is customary
to stress the dielectric properties rather than the conduction properties. In accordance with this,
a dielectric relaxation function is introduced such that (see Equations (19.3-8) and (19.3-9))

Jk = eo~tPk , (19.6-8)

with

Pk(x,t) = e0    e;k,r(X,t )Ek(x - t’) dt" (19.6-9)

with the complex frequency-domain counterparts

]k = eOff’k
and

(19.6-10)

A comparison of Equations ( 19.6-4)-(19.6-7) with Equation s ( 19.6-8)-( 19.6-11) shows that

^     -1 2 1
*¢e;k,r= s COpe [(s + Ve)Okr + e.k,q,rcoce;q + (s + Vc)-lcoce;kO)ce;r], (19.6-12)

(s + <)2 + coc2 ’

with the time-domain countew~

ue;k,r= It [~ exp(-vct)[COS(Wc~t)Sk, r + ek, q,r(Wce;q/Wce) sin(Wcet)

+ (Oce;~ce;r/Oc~) I1 - COS(~cet)]} H(t)]. (19.6-13)

In case the collision effects can be neglected (uc = 0), ~e plasma becomes a collisionless
plasma.

In the presence of an external magnetic field ~e plasma is anisogopic in its electromagnetic
behaviour; in ~e absence of an external magnetic field the plasma is isotopic in its
elec~omagnefic behaviour.

~k = g’O~e;k,r~k’ (19.6-11)
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Exercise 19,6-1

Determine the value of the electron !~lasma frequencyfpe = Wpe/2~r, for a plasma with number
density of electrons ne = 1 x 109 m-~ (me = 9.10938 x 10-31 kg).

Answer: fpe = 2.83930 x 105 Hz.

Exercise 19,6-2

Determine the value of the electron cyclotron frequencyfce = O)ce/2~, if the external magnetic
field has the value tt0H= B with B = 1 T (me = 9.10938 x 10-31 kg).

Answer: fce= 2.7992 x 1010 Hz.

Exercise 19,6-3

Determine the value of the electron cyclotron frequencYfce = COce/2Zr, if the external magnetic
field has the value bt0H = 0.5 x 10-4 T (the Earth’s magnetic field) (me = 9.10938 x 10-31 kg).

Answer: fce= 1.39962 x 106 Hz.

Exercise 19. 6-4

Determine the number density of electrons in the ionosphere (a plasma layer in the Earth’s
atmosphere) if its electron plasma frequency fpe = Wpe/2~r has the value fce = 4.5 x 106 Hz
(me = 9.10938 x 10-31 kg).

Answer: ne = 2.5119 x 1011 111-3.

Exercise 19, 6-5

Give the complex frequency-domain dielectric relaxation function of a collisionless isotropic

electron plasma (no external magnetic field). (Hint: Substitute ~’c = 0 and (.Oce;q -- 0 in Equation
(19.6-12).)

Answer:
2     -2

£:e;k,r (X,$) = (0pe(X)S (}k,r"                                      (19.6-14)

Exercise 19,6-6

Give the time-domain dielectric relaxation function of a collisionless isotropic electron plasma
(no external magnetic field). (Hint: Use the result of Exercise 19.6-5.)

Answer:

~e;k,r(X,t) = CO~e(x)tH(t)dk,r. (19.6-15)
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19.7

Electromagnetic waves

The dielectric relaxation function of an isotropic dielectric

A dielectric material is conceived to consist of a collection of neutral atoms. Each atom is
modelled as a (light) movable cloud of negative electric charge that is elastically bound to a
(heavier) fixed nucleus of equal and opposite positive electric charge. The movable negatively
charged cloud is set into motion by a macroscopic electromagnetic field; the motion of the
positively charged nucleus is neglected. The drift velocity vm of the negatively charged cloud
is assumed to be so small that, on the assumption that no magnetostatic external field is present,
the influence of the magnetic force can be neglected, the latter being of the order of
WmWm/C~ times the electric force. Consider the atoms of a particular substance. Let the mass
of their cloud of movable negative electric charge be m, and let their atomic number be Z; then,
m = Zme, where me is the electron mass, -Ze is the amount of the negative electric charge of
the cloud, and Ze is the amount of the positive electric charge of the nucleus. The atoms of the
substance under consideration that are present in the representative elementary domain
are labelled with the superscript (p). Let u~p) = u~(p)(t) denote the displacement of the barycentre
of the negatively charged cloud with respect to the positively charged nucleus of the atom with
label (p). Then, the equation of motion of the negatively charged cloud of this atom is given by

mdt2uk(p) -I-pc;k’(p) + mcoguk(p) = Fk(x(P!t)                   ,           (19.7-1)

where/~c(;P~ is the time rate of change of the electron cloud’s momentum due to friction with
neighbouring atoms, mco02 is the elastic restoring force, coo is the resonant angular frequency of
the mechanical system, and Fk is the electric force acting on the movable electric charge
distribution. As to this force, we can, in condensed matter, not put this equal to qElo where
q =-Ze and E/~ is the macroscopic electric field, since we must first remove a part of the
macroscopic continuum in order to make room for our atom to move in the remaining vacuum.
Taking, for an isotropic dielectric, the part to be removed to be a ball that is uniformly polarised
(i.e. a ball in which the electric polarisation has the local value we want to determine from the
microscopic theory) with electric polarisation P~, we have (see Exercise 19.7-1)

FI~ = q(El~ + P~/3e0). (19.7-2)

In accordance with the concepts of Section 19.4 and with Equation (18.3-5), we put

Pk = nq(ug) , (19.7-3)

where n is the number density of the atoms of the substance under investigation and (u9 is the
average displacement in age(x). Averaging Equation (19.7-1) over ~D~(x) and using the theorem
(see the derivation of Equation (19.5-3))

N,(x,t)

Dt[n(x,t)(Uk)(X,t)] = V;1 Z dtu(kp)(t) ’

p=l

we obtain the following relation between Pg and E~

Dt2pk + FDtPk + (cog- cop2/3)Pk = eOco~Ek, (19.7-4)

where
2    .1/2

cop = (nq /eom) (19.7-5)
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is the plasma angular frequency of the movable electric charge distribution and F is a
phenomenological damping coefficient that results from

%(x,t)
Ve-1 Zt’c;k ":’(p) = mFDt[n(uk)]                . (19.7-6)

p=l

From Equation (19.7-4) we must express P/~ in terms of E/¢. To this end we use the
approximation Dt = ~t (low-velocity linearisation), take the Laplace transform of Equation
(19.7-4) with respect to time and obtain

(s2 + Fs + COo2 - COp2/3)/;k = eOCOp2!~t~. (19.7-7)

Using Equation (19.7-7), the contribution of the atoms of the type under investigation to the
s-domain dielectxic relaxation function £:e, introduced through

/3k = eo~e!~:’
(19.7-8)

follows as
2

~?e =    wp (19.7-9)
(s + F/2)2 + g? 2’

where

t2: (COo~ - COp2/3 - F2/4)Vz (19.7-10)

is the natural angular frequency of the oscillations of the movable electric charge. The
time-domain expression corresponding to Equation (19.7-8) is

Pl~(X,t) = e0 %(x,t )El~(x,t -’ t’) dr’                    , (19.7-11)d t’=o

in which the time-domain dielectric relaxation function is, from Equation (19.7-9), found as

ge(X,t’) = (COp/O) exp[-(F/2)t’] sin(Sgt’)H(t’) . (19.7-12)

The behaviour of the type of Equations (19.7-11) and (19.7-12) is typical for a so-called
Lorentzian absorption line, for which COp2/3 + F 2/4 < CO02 (as in all practical cases in condensed
matter).

In case the dielectric consists of atoms of different substances, each substance contributes
to Pk in an additive way, and the dielectric relaxation function consists of the sum of the
dielectric relaxation functions of the constituting substances. In optical spectroscopy, the
occurrence of (Lorentzian) absorption lines is used to analyse the composition of substances
and determine which chemical elements are present in the piece of matter under investigation.

Exercises

Exercise 19. 7-1

A ball of radius a is uniformly polafised with electric polarisation Pk" The corresponding
electrostatic field must satisfy the electrostatic field equations ~,n,rOnEr = 0, ~/¢D/¢ = 0 and
D/¢ = e0E/~ + Pk. Show that the field defined by



644 Electromagnetic waves

Elc = -Pl~/3e0 for 0 < Ixl < a, E/~ = (3PmXmXl~ - x,~xmp~)/4Z~eolxl5 for a < Ixl <

where p/~ = (4zca3/3)Pl~ is the electric moment of the ball, satisfies all conditions, including the
one that the field must go to zero at infinity. (Hint: Note that the equation for Er is satisfied if
we take Er = -~rV, where V is the electrostatic potential. Show that then b~/~V= 0, which
equation has the admissible solution V=PmXm/4ZreOa3 for 0 ~< Ixl < a and V=pmXm/4~reOlXl3
for a < Ixl < oo. Verify that the electrostatic potential (and hence the tangential component of
the electric field strength) and the normal component of the electric flux density are continuous
across the boundary Ixl - a of the ball.)

Exercise 19, 7-2

By equating the term Zme~O~Uk in Equation (19.7-1) to the electrostatic force that the positively
charged nucleus exerts on the movable cloud of negatively charged electrons in a ball of radius
a, the value of ~o02 can be expressed in terms of atomic quantities. Use the result of Exercise
18.4-1 to obtain this expression.

Answer: co~ = Ze2/4Zceoa3me.

| 9.8 SI units of the quantities associated with the electromagnetic
constitutive behaviour of matter

Table 19.8-1 lists the SI units of the quantities introduced in this chapter.

Toble 19.8-1 Quantities related to the flow of electrically charged particles and the electromagnetic
constitutive behaviour of matter, and their units in the International System of Units (SI)

Quantity Unit

Name Symbol Name Symbol

Total number N
Volume V
Number density n
Drift velocity vr
Rate of creation
Rate of annihilation /~ann
Volume density of rate of creation her
Volume density of rate of annihilation harm
Area A
Volume density of electric charge p
Volume density of electric current Jk
Volume density of rate of creation of electric /Scr

charge

metre3 m3

metre-3 m-3

metre/second rn/s
second-1 s-1

second-1 s-1

metre-3.second-1 m-3.s-1

metre-3.second-1 m-3.s-1

metre2 m2

coulomb/metre3 C/m3

ampere/metre2 A/m2

3coulomb/(metre .second) C/m3.s
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Table 19.8-1 (continued) Quantifies related to the flow of electrically charged particles and the
electromagnetic constitutive behaviour of matter, and their units in the International System of Units (SI)

Quantity

Name

Volume density of rate of annihilation of
electric charge

Conductivity a k,r
Absolute permittivity ~k,r
Electric susceptibility ~e;k,r
Relative permittivity er;k,r
Absolute permeability /lj,p
Magnetic susceptibility Zm;j,p
Relative permeability ~r;j,p
Conduction relaxation function ~¢c;k,r
Dielectric relaxation function ge;k,r

Magnetic relaxation function ~¢m;j,p
Collision frequency ve
Electron plasma angular frequency tOpe
Electron cyclotron angular frequency tOce;q,t,
Hall coefficient RH

Symbol

Unit

Name Symbol

coulomb/(metre3.second) C/m3.s

siemens/metre S/m
farad/metre F/m

henry/metre H/m

siemens/metre.second S/m.s
second-1 s-1

second-1 s-1

second-1 s-1

radian/second rad/s

radian/second rad/s

metre3/coulomb m3/C
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