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Electromagnetic reciprocity theorems
and their applications

In this chapter we discuss the basic reciprocity theorems for electromagnetic wave fields in
time-invariant configurations, together with a variety of their applications. The theorems will
be presented both in the time domain and in the complex frequency domain. In view of the time
invariance of the configurations to be considered, there exist two versions of the theorems as
far as their operations on the time coordinate are concerned, viz. a version that is denoted as
the time convolution type and a version that is denoted as the time correlation type. The two
versions are related via a time inversion operation. Each of the two versions has its counterpart
in the complex frequency domain.

The application of the theorems to the reciprocity in transmitting/receiving properties of
electromagnetic sources and receivers (antennas), and to the formulations of the direct
(forward) source and inverse source and the direct (forward) scattering and inverse scattering
problems will be discussed. Furthermore, it is indicated how the theorems lead, in a natural
way, to the integral equation formulation of electromagnetic wave-field problems for numerical
implementation. Finally, it is shown how the reciprocity theorems lead to a mathematical
formulation of Huygens’ principle and of the Ewald-Oseen extinction theorem.

28.1 The nature of the reciprocity theorems and the scope of their
consequences

A reciprocity theorem interrelates, in a specific manner, the field or wave quantities that
characterise two admissible states that could occur in one and the same time-invariant domain
DR in space. Each of the two states can be associated with its own set of time-invariant
medium parameters and its own set of source distributions. It is assumed that the media in the
two states are linear in their electromagnetic behaviour, i.e. the medium parameters are
independent of the values of the field or wave quantities. The domain D to which the reciprocity
theorems apply, may be bounded or unbounded. The application to unbounded domains will
always be handled as a limiting case where the boundary surface 0D of Drecedes (partially or
entirely) to infinity,

From the pertaining electromagnetic field equations, first the local form of a reciprocity
theorem will be derived, which form applies to each point of any subdomain of 2 where the
electromagnetic field quantities are continuously differentiable. By integrating the local form
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over such subdomains and adding the results, the global form of the reciprocity theorem is
arrived at. In it, a boundary integral over 0 occurs, the integrand of which always contains the
unit vector v, along the normal to 9D, oriented away from D (Figure 28.1-1).

The two states will be denoted by the superscripts A and B. The construction of the
time-domain reciprocity theorems will be based on the electromagnetic field equations (see
Equations (18.3-7) and (18.3-8), and (19.3-8)—(19.3-10))

_Ek,m,pameA + B,Ct(e,é\r,ErA t) = "JkA ) (28.1-1)

EnrOnEr + B,C,(ujﬁ,,HpA;x,t) = —Kf‘, (28.1-2)
for state A, and

—ek,m,pameB +3,Cein By ) ==, (28.1-3)

EipsOnEy +OC i mHy ) =K, (28.1-4)

for state B, where C, denotes the time convolution operator (see Equation (B.1-11)) (Figure
28.1-2). In the incorporation of the medium properties we have refrained from introducing a
separate symbol for the electric or magnetic relaxation functions and use for them the same
symbol as for the instantaneous constitutive parameters. In each of the cases, the meaning will
be clear from the context.

If, in D, either surfaces of discontinuity in electromagnetic properties or electromagnetically
impenetrable objects are present, Equations (28.1-1)—(28.1-4) are supplemented by boundary
conditions of the type discussed in Chapter 6, both for state A and state B. These are either (see
Equations (20.1-2) and (20.1-3))

AB . . .
Emp¥mHp "~  is continuous across any interface (28.1-5)

and

i(2)

i(1)

28.1-1 Bounded domain 9P with boundary surface 92 and unit vector v, along the normal to 92,
pointing away from D, to which the reciprocity theorems apply.
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28.1-2 Bounded domain D and States A and B to which the reciprocity theorems apply.

ey’,,,rV,ErA’B is continuous across any interface , (28.1-6)
where v, is the unit vector along the normal to the interface, or (see Equation (20.2-1))

limy 08 PVnEr (x +hyt)=0

on the boundary of an electrically impenetrable object , (28.1-7)
where v is the unit vector along the normal to the boundary of the object, pointing away from
the object, or (see Equation (20.3-1))

Km0 8y peHy (6 + h,t) = 0

on the boundary of a magnetically impenetrable object , (28.1-8)
where v is the unit vector along the normal to the boundary of the object, pointing away from
the object.

To handle unbounded domains, we assume that outside some sphere $(0,4y), with its centre
at the origin of the chosen reference frame and radius 4, the medium is homogeneous, isotropic
and lossless with permittivity &, permeability uo and electromagnetic wave speed ¢g =
(eomg) 2 as well as source-free. These parameters are positive constants, but they need not

have the values pertaining to a vacuum domain. In the domain outside that sphere, the so-called
embedding, the asymptotic causal far-field representations are (see Equation (26.12-5))

_ETMRHTAR - ey

471)x|

(EAB HAB) = [(1+0(x™)]  aslxloe, (28.1-9)

where {Er”;A’B,Hp"";A'B]@,t) denote the far-field wave amplitudes, which are interrelated
through (see Equations (26.12-11) and (26.12-12))

EtmpEmlc)H, ~AB L e Ep B =0, (28.1-10)

—&jp EplcO)E,” AB +uoH;™ AB-o, (28.1-11)
with

&ETAP =0, (28.1-12)
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28.1-3  Unbounded domain D for the application of a reciprocity theorem. Outside the sphere S(0,4),
the medium is homogeneous, isotropic and lossless. Inside 5(0,4), interfaces between different media,
electrically impenetrable objects and magnetically impenetrable objects may be present.

£H AP =0, (28.1-13)

(see Figure 28.1-3).

The construction of the complex frequency-domain reciprocity theorems will be based on
the complex frequency-domain electromagnetic field equations (see Equations (24.4-1) and
(24.4-2))

e m Ol + A ES = =T, (28.1-14)

& s+ AN =K, (28.1-15)
for state A, and

~&m Oy +fierEr ==, (28.1-16)

EnrOnby +E0A, =-KP, (28.1-17)

for state B. If, in D, either surfaces of discontinuity in electromagnetic properties or
electromagnetically impenetrable objects are present, Equations (28.1-14)—(28.1-17) are
supplemented by boundary conditions of the type discussed in Section 24.3, both for state A
and state B. These are either (see Equations (24.3-1) and (24.3-2))

ek,mpvmﬁpA'B is continuous across any interface , (28.1-18)
and

EMP s conti interf: 28.1-19

& nVnkEr is continuous across any interface , (28.1-19)

where v, is the unit vector along the normal to the interface, or (see Equation (24.3-3))
limy, 06, I N (x +hv,s)=0

on the boundary of an electrically impenetrable object , (28.1-20)
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where v is the unit vector along the normal to the boundary of the object, pointing away from
the object, or (see Equation (24.3-4))

lim},l0£k‘m’meﬁpA’B(x +hy,s)=0
on the boundary of a magnetically impenetrable object , (28.1-21)

where v is the unit vector along the normal to the boundary of the object, pointing away from
the object.

In the complex frequency domain, too, we assume, to handle unbounded domains, that
outside some sphere $(0,4g) with its centre at the origin of the chosen reference frame and
radius 4, the medium is homogeneous, 1sotroplc and lossless, with permittivity &;, permeability
Uo and electromagnetic wave speed c = (ggig) 2, as well as source-free. In the domain outside
that sphere, the embedding, the asymptotic causal far-field representations are (see Equation
(26.11-10))

AB [ A, B} = E°°’A B oo;A,B} & exp(—slxl/cg) 1+ O(|x|_1)]
4tlx]

as  |x|—eo, (28.1-22)

where {E‘:";A’B,ﬁ;;A'B}(g,s) denote the far-field wave amplitudes, which are interrelated
through (see Equations (26.11-13) and (26.11-14))

{E

Etm pEml B, P + B B =0, (28.1-23)

& Enl BB po TP = 0, (28.1-24)
with

gL <, (28.1-25)

£,8,48 =0, (28.1-26)

As arule, state A will be chosen to correspond to the actual electromagnetic wave field in the
configuration, or one of its constituents. This wave field will therefore satisfy the condition of
causality, or, for short, will be a causal wave field. If state B is another physical state, for
example, a state that corresponds to source distributions and/or electromagnetic medium
parameters that differ from the ones in state A, state B will also be a causal wave field. If,
however, state B is a computational state, i.e. a state that is representative for the manner in
which the wave-field quantities in state A are computed, or a state that is representative for the
manner in which the electromagnetic field measurement data pertaining to state A are processed,
there is no necessity to take state B to be a causal wave field as well, and it may, for example,
be taken to be an anti-causal wave field (i.e. a wave field that is time reversed with respect to
a causal wave field) or no wave field at all (which happens, as an example, if one of the
corresponding constitutive parameters is taken to be zero). No matter how the source
distributions and the constitutive parameters are chosen, the wave-field quantities will always
be assumed to satisfy the pertaining electromagnetic field equations and the pertaining
boundary conditions.

To accommodate causal, anti-causal as well as non-causal states in the complex frequency-
domain analysis of reciprocity, the Laplace transform with respect to time of any #ransient, not
necessarily causal or anti-causal, wave function f= f(x,f) will always be taken as (see Equation
(B.1-5))
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f (x,5) = J exp(—s?) f(x,f) dr  for Re(s) =g, (28.1-27)
teRr.

i.e. the support of the wave function is, in principle, taken to be the entire interval of real values
of time. Whenever appropriate, the support of the wave function will be indicated explicitly.
For neither causal, nor anti-causal wave fields (but of a transient nature) the right-hand side of
Equation (28.1-27) should exist for some value Re(s) = sq on a line parallel to the imaginary
axis of the complex s plane (Figure 28.1-4) for the transformation to make any sense at all.
For causal wave functions with support T* = {te® ;t > t,}, Equation (28.1-27) yields
fes)=1 exp(=shfxfdr  forRe(s)>sp. (28.1-28)
t=t,

Here, the right-hand side is regular in some right half Re(s) > s§ of the complex s plane (Figure
28.1-5).
For anti-causal wave functions with support 7~ = {t€R ;t < tp}, Equation (28.1-27) yields
A f -
flxs) = exp(—st) f(x,f)dt  for Re(s) < sq . (28.1-29)

{=—o00

Here, the right-hand side is regular in some left half Re(s) < sq of the complex s plane (Figure
28.1-6).

A consequence of Equation (28.1-29) is that f (%,—s) is regular in the right half Re(s) >
—sg of the complex s plane if f(x,s) is regular in the left half Re(s) < sg. This result will be
needed in reciprocity theorems of the time correlation type.

For the time convolution C, ( fi, fo;x,t) of any two transient wave functions we have (see
Equations (B.1-11) and (B.1-12))

Clfis f0:5) = f1e.5) fo () (28.1-30)
T s =Re(s) +j Im(s)
Im(s) A
0 5o Re(s) —»
Bromwich path
for inversion

28.1-4  Line Re(s) = 5y, parallel to the imaginary axis of the complex s plane, at which the time Laplace
transform of a wave field that is neither causal, nor anti-causal, but of a transient nature, exists.
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Im(s)

Bromw1ch path
fori mvcrswn

28.1-5  Right half Re(s) > s§ of the complex s plane, in which the time Laplace transform of a causal
wave function exists,

s = Re(s) + j Im(s)

Re(s) —=

28.1-6  LefthalfRe(s) < sy of the complex s plane, in which the time Laplace transform of an anti-causal
wave function exists.

This relation only holds in the common domain of regularity of f 1(x,s) and fz (x,s). If, in
particular, both f; = f;(x,f) and f, = f,(x,?) are causal wave functions, they have a certain right
half of the complex s plane as the domain of regularity in common. (Note thatin this case f 16e,8)
is regular in some right half of the complex s plane, while f o(x,s) is also regular in some right
half of the complex s plane.) If, on the other hand, f; = f1(x,?) is a causal wave function and f,
= f>(x,t) is an anti-causal wave function, the common domain of regularity where Equation
(28.1-30) holds, is at most a strip of finite width parallel to the imaginary axis of the complex
s plane. (Note that in this case f 1(x,s) is regular in some right half of the complex s plane, while
fz(x s) is regular in some left half of the complex s plane.)
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For the time correlation R/ f}, fo;%,%) of any two transient wave functions we have (see
Equations (B.1-14) and (B.1-15))

R 1. fors) = f1.5) o (6ms) - (28.1-31)

This relation only holds in the common domain of regularity of f 1(x,s) and fz (). If, in
particular, both f] = fi(x,?) and f5, = f5(x,£) are causal wave functions, the common domain of
regularity where Equation (28.1-31) holds, is at most a strip of finite width parallel to the
imaginary axis of the complex s plage. (Note in this case that f 1(x,s) is regular in some right
half of the complex s plane, and that f,(x,~s) is regular in some left half of the complex s plane.)
If, on the other hand, fj = fi(x,?) is a causal wave function and f, = f>(x,?) is an anti-causal wave
function, the common domain of regularity where Equation (28.1-31) holds is some right half
of the complex s plane. (Note that in this case f 1(x,5) is regular in some right half of the complex
s plane, and that f,(x,—s) is also regular in some right half of the complex s plane.)

In subsequent calculations the time correlation will, whenever appropriate, be replaced by
(see Equation (B.1-18))

Ri(f1, fx.0) = C(f1.3,(f)ix1) (28.1-32)

where J, is the time reversal operator. The latter operator changes causal wave functions into
anti-causal ones, and vice versa.

Exercises

Exercise 28.1-1

Of what type is the domain of regularity of the Laplace transform of the time convolution
C,(f1> f2:x,t) of two wave functions fj = fi(x,?) and f, = f5(x,r) that are both anti-causal?

Answer:  Some left half of the complex s plane.

Exercise 28.1-2

Of what type is the domain of regularity of the Laplace transform of the time correlation
R,(f1, fo:x,t) of the anti-causal wave function fi = fi(x,?) and the causal wave function f, =

Hx,0?
Answer:  Some left half of the complex s plane.

28.2 The time-domain reciprocity theorem of the time convolution type

The time-domain reciprocity theorem of the time convolution type follows upon considering
the local interaction quantity Em,r, pa,,, [C,(E,A,H pB;x,t) - C,(ErB,H pA;x,t)]. Using standard rules
for spatial differentiation and adjusting the subscripts to later convenience, we obtain

Epp rp0 [C, E,A ,HPB;x,t) - C,(E,B ,HpA;x,t)]

m,r,p-m

A ;B B, A
= &, r0,Co(E, Hj 3%,0) + &gy n0mCi(Ex \Hp 3%,2)
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A B A B
=ct(€j,n,ranEr Hjx.t) — C(E, vsr,n,janI{j X,0)

= C Y midmELH 1) + CoER i pOmH L 1) (28.2-1)
With the aid of Equations (28.1-1)—~(28.1-4), the different terms on the right-hand side become
C(61, 0B, H}530) = =3,CyptpsHy o H538) = C(K} H P (2822)
—CUES £y, 0nH 0,8y =~ CUE e B ) — CUEN T P i) (28.2-3)

and
~ClEpmudmE Hyxt) = 3.C (u n HE H ) + C (K Ho ) (28.2-4)
CUES e pOmHy ) = B CHEL sefmEL ) + CLEE T x) (28.2-5)

in which the convolution of three functions is a shorthand notation for the convolution of a
function with the convolution of two other functions. (Note that in the convolution operation
the order of the operators is immaterial.) Combining Equations (28.2-2)—28.2-5) with Equation
(28.2-1), it is found that

A . B B, A
Emyrpm |CHES Hyox,t) = CY(E H e,
B A A B B A A_ B
=—0,Cler— ek mEy »Ei 3%:8) + 0C 1y j — i poHp Hj 3%,8)
+ CUEES ) - KA HP ) - CUR ERxd) + Cuiy Hyx) (28.2-6)

Equation (28.2-6) is the local form of electromagnetic reciprocity theorem of the time-
convolution type. The first two terms on the right-hand side are representative for the differences
(contrasts) in the electromagnetic properties of the media present in the two states; these terms
vanish at those locations where e,]?}((x,t) = ek"}(x,t) and ,upi?j(x,t) = ujﬁ,(x,t) for all reR.. In case
the latter conditions hold, the two media are denoted as each other’s adjoint. Note is this respect
that the adjoint of a causal (anti-causal) medium is causal (anti-causal) as well. The last four
terms on the right-hand side of Equation (28.2-6) are representative for the action of the sources
in the two states; these terms vanish at those locations where no sources are present.

To arrive at the global form of the reciprocity theorem for some bounded domain D, it is
assumed that 9 is the union of a finite number of subdomains in each of which the terms
occurring in Equation (28.2-6) are continuous. Upon integrating Equation (28.2-6) over each
of these subdomains, applying Gauss’ divergence theorem (Equation (A.12-1)) to the resulting
left-hand side, and adding the results, we arrive at (Figure 28.2-1)

A, B B A
e,,,,,,pJ. Vo [CHES Hy 0.8) = CUEy Hy x.f)| dA
x€0D

B A A B B A, AB
:J‘ [—atC,(e,’k— & rEr  Ep x8) +0,C(py — 1 p,Hp Hj ;x,t)] dv
xeD

+ I [Ct(JkA’EkB;x,t)"Ct(KjA,HjB;x’t)
xeD

~CUREM ) + CK Y H xn) av . (28.2-7)

Equation (28.2-7) is the global form, for the bounded domain D, of the electromagnetic
reciprocity theorem of the time convolution type. Note that in the process of adding the
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9D

i(2)

i(1)

28.2-1 Bounded domain P with boundary surface 9 to which the reciprocity theorems apply.

contributions from the subdomains of D, the contributions from common interfaces have
cancelled in view of the boundary conditions of the continuity type (Equations (28.1-5) and
(28.1-6)), and that the contributions from boundary surfaces of electromagnetically impenetra-
ble parts of the configuration have vanished in view of the pertaining boundary conditions of
the explicit type (Equation (28.1-7) or Equation (28.1-8)). In the left-hand side, therefore, only
a contribution from the outer boundary 0D of P remains insofar as parts of this boundary do
not coincide with the boundary surface of an electromagnetically impenetrable object. In the
right-hand side, the first integral is representative for the differences (contrasts) in the
electromagnetic properties of the media present in the two states; this term vanishes if the media
in the two states are, throughout D, each other’s adjoint. The second integral on the right-hand
side is representative for the action of the sources present in D in the two states; this term
vanishes if no sources are present in D.

The limiting case of an unbounded domain

In quite a number of cases the reciprocity theorem Equation (28.2-7) will be applied to an
unbounded domain. To handle such cases, the embedding provisions of Section 28.1 are made
and Equation (28.2-7) is first applied to the domain interior to the sphere .5(0, 4} with its centre
at the origin and radius 4, after which the limit 4—o is taken (Figure 28.2-2).

Whether or not the surface integral contribution over $(0,4) does vanish as A->o, depends
on the nature of the time behaviour of the wave fields in the two states. In case the wave fields
in state A and state B are both causal in time (which is the case if both states apply to physical
wave fields), the far-field representation of Equations (28.1-9)-(28.1-13) apply for sufficiently
large values of A. Then, the time convolutions occurring in the integrands of Equation (28.2-7)
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-

28.2-2 Unbounded domain D to which the reciprocity theorems apply. S(0,4) is the bounding sphere
that recedes to infinity; S(0, ) is the sphere outside which the medium is homogeneous, isotropic and
lossless.

are also causal in time, and at any finite value of ¢, 4 can be chosen so large that on $(0,4) the
integrand vanishes. In this case, the contribution from $(0,4) vanishes. If, however, at least
one of the two states is chosen to be non-causal (which, for example, can apply to the case
where one of the two states is a computational one), the time convolutions occurring in Equation
(28.2-7) are non-causal as well and the contribution from $(0,4) does not vanish, no matter
how large a value of 4 is chosen. As outside the sphere $(0,4) that is used to define the
embedding (see Section 28.1) the media are each other’s adjoint and no sources are present, the
surface integral contribution from $(0, ) is, however, independent of the value of 4 as long as
4> Ay (see Exercise 28.2-2),

The time-domain reciprocity theorem of the time convolution type is mainly used for
investigating the transmission/reception reciprocity properties of electromagnetic systems and
devices (for example, antennas) (see Sections 28.6 and 28.7) and for the modelling of direct
(forward) source problems (see Section 28.8) and direct (forward) scattering problems (see
Section 28.9). References to the earlier literature on the subject can be found in a paper by De
Hoop (1987).

Exercises

Exercise 28.2-1

To what form reduce the contrast-in-media terms in the reciprocity theorems Equations (28.2-6)
and (28.2-7) if the media in states A and B are both instantaneously reacting with permittivities
8,3; and sr]?k, and permeabilities yjﬁ‘, and up}? i
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Answer:
B A A _B B A A B
Cilent— eivEr Ep ) =[£,3,6) = 8y (0)| C(E i s.t)

and

B A A B B A A_.B
Colttpj = By Hy H P .0) =1 6) = 1 p(0)| Co(E, HP )

Exercise 28.2-2

Let Dbe the bounded domain that is internally bounded by the closed surface 5| and externally
by the closed surface $,. The unit vectors along the normals to §; and §, are chosen as shown
in Figure 28.2-3.

The reciprocity theorem Equation (28.2-7) is applied to the domain D. In D, no sources are
present, neither in state A nor in state B, and the medium in Din state B is in its electromagnetic
properties adjoint to the one in state A, Prove that

A B B, A
Emrp j Vi [CUES H ,8) = CUER H )| dA
XS

1
=Emrp f Vi [CHE, Hy 33, = CUE Hy )| dA (28.2-8)
x652

i.e. that the surface integral is an invariant.

28.3 The time-domain reciprocity theorem of the time correlation type

The time-domain reciprocity theorem of the time correlation type follows upon considering the
local interaction quantity &, . ,0,, [R,(E;A‘,HPB;x,t) + R,(E,B,HPA;x,—t)]. On account of Equa-
tions (B.1-14) and (B.1-18) and the symmetry of the convolution operator, this quantity can be
rewritten as &,, . ,0,, [C,(E,A,J ,(HPB) %8 +C(J ,(E,B),HPA;x,t)]. Using standard rules for spatial
differentiation and adjusting the subscripts to later convenience, we obtain

A B B A
EmrpOm | CHE T (HY ) + C (T, Hy .t

A B B A
= Ej,n,ranct(Er JiH;)x) — ek,m,pamct(Jt(Ek ).H, X,0)

1l

A B A
Colejn B T E)5,) = CUES 1, DT H i1
+ ClEpmtOm i EL) Hy5:8) = CT (Bl gy 1) (28.3-1)

With the aid of Equations (28.1-1)~(28.1-4) and the rule J,(9, f) = —9,(J,( f)), the different terms
on the right-hand side become

A B
Cy(&jn,10nE, J(H; )ix,t)
A AL B A B
=—0,C,(W;j p-Hy, I, (H; )ix,t) — C(K; I (H; )x.0) (28.3-2)
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28.2-3 Domain D, bounded internally by the closed surface S; and externally by the closed surface 5,.

B
—C,(ErA,er‘n’ OnYCH )ixt)

= atct(EIA’Jt(gl‘}?k)’Jt(EkB);xJ) - Ct(ErA!Jt(JrB);x,t) ’ (28.3'3)
and
A
Ct(ep,m,kamJt(El?)’Hp ;x’t)
B B A B A
= 3C, U B ) P H i) ~ CO KD H ) (28.3-4)
B A
—Ct(JI(Ek )vek,m,pame ;x,t)
B
=3 C I ED) &0 Er ) — CUES I ), (28.3-5)

in which the convolution of three functions is a shorthand notation for the convolution of a
function with the convolution of two other functions. (Note that in the convolution operation
the order of the operators is immaterial.) Combining Equations (28.3-2)—28.3-5) with Equation
(28.3-1), it is found that

EmrpOm [CHENT(H)0.0) + CLO(ED) H )
=3CiIe5) — e BT ED 1) + 3C Ty ttp) ~ i HA I (H Pyt
— CIATER Y t) - CUK T (HP)x0)
— CUUIPE ) = COK)Hy 5x0) (28.3-6)
Equation (28.3-6) is the local form of electromagnetic reciprocity theorem of the time
correlation type. The first two terms on the right-hand side are representative for the differences

(contrasts) in the electromagnetic properties of the media present in the two states; these terms
vanish at those locations where J ,(sfk)(x,t) = ekf‘,(x,t) and J, ,(ppl?j)(x,t) = ujf},(x,t) for all te®. In
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case the latter conditions hold, the two media are denoted as each other’s time-reverse adjoint.
Note is this respect that the time-reverse adjoint of a causal (anti-causal) medium is an
anti-causal (causal) medium. The last four terms on the right-hand side of Equation (28.3-6)
are representative for the action of the sources in the two states; these terms vanish at those
locations where no sources are present.

To arrive at the global form of the reciprocity theorem for some bounded domain 9, it is
assumed that D is the union of a finite number of subdomains in each of which the terms
occurring in Equation (28.3-6) are continuous. Upon integrating Equation (28.3-6) over each
of these subdomains, applying Gauss’ divergence theorem (Equation (A.12-1)) to the resulting
left-hand side, and adding the results, we arrive at (Figure 28.3-1)

A B B A
em,,,p_[ m [R(ENHS w0 + R(ES Hy x-1) dA
xedD

A B B A
= Erp j n [CAED T, ) + CILEP)Hy wp] dA
xedD

A
= f [8C el ~ el BT ES 0 +3C Tty ) = 1 o B T (HPyx)| dV
xXeD

A B A
—I [Ct(Jk JiEg )ix ) + Ci(K; ,Jt(FIjB);x,t)
xeD

+CUDE D + CO,(K)) Hi ] v (28.3-7)

Equation (28.3-7) is the global form, for the bounded domain D, of the electromagnetic
reciprocity theorem of the time correlation type. Note that in the process of adding the
contributions from the subdomains of D, the contributions from common interfaces have
cancelled in view of the boundary conditions of the continuity type (Equations (28.1-5) and

i)

i1

28.3-1 Bounded domain D with boundary surface 02 to which the reciprocity theorems apply.



Electromagnetic reciprocity theorems and thelr applications 821

(28.1-6)), and that the contributions from boundary surfaces of electromagnetically impenetra-
ble parts of the configuration have vanished in view of the pertaining boundary conditions of
the explicit type (Equation (28.1-7) or Equation (28.1-8)). In the left-hand side, therefore, only
a contribution from the outer boundary 0 of D remains insofar as parts of this boundary do
not coincide with the boundary surface of an electromagnetically impenetrable object. In the
right-hand side, the first integral is representative for the differences (contrasts) in the
electromagnetic properties of the media present in the two states; this term vanishes if the media
in the two states are, throughout ©, each other’s time-reverse adjoint. The second integral on
the right-hand side is representative for the action of the sources present in 2 in the two states;
this term vanishes if no sources are present in D.

The limiting case of an unbounded domain

In a number of cases the reciprocity theorem Equation (28.3-7) will be applied to an unbounded
domain. To handle such cases, the embedding provisions of Section 28.1 are made and Equation
(28.3-7) is first applied to the domain interior to the sphere $(0,4) with its centre at the origin
and of radius 4, after which the limit A—eo is taken (Figure 28.3-2).

Since outside the sphere 5(0,4p) that is used to define the embedding (see Section 28.1) the
media are each other’s time-reverse adjoint and no sources are present, the surface integral
contribution from $(0,4) is, in any case, independent of the value of 4 for 4 > 4 (see Exercise
28.3-2). Whether or not this contribution vanishes as 4—eo, depends on the nature of the time
behaviour of the wave fields in the two states. In case the wave fields in state A and state B are
both causal in time (which is the case if both states apply to physical wave fields), the time
correlations occurring in the integrands of Equation (28.3-7) are neither causal nor anti-causal,
and the contribution of $(0,4) is a non-vanishing function that is independent of the value of
A. If, however, state A is chosen to be causal and state B is chosen to be anti-causal (which, for

28.3-2 Unbounded domain D to which the reciprocity theorems apply. S(0,4) is the bounding sphere
that recedes to infinity; $(0,4p) is the sphere outside which the medium is homogeneous, isotropic and
lossless.
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example, can apply to the case where state B is a computational one), the correlations occurring
in Equation (28.3-7) are causal as well and the contribution from $(0,4) vanishes for
sufficiently large values of 4.

The time-domain reciprocity theorem of the time correlation type is mainly used in the
modelling of inverse source problems (see Section 28.10) and inverse scattering problems (see
Section 28.11). References to the earlier literature on the subject can be found in a paper by De
Hoop (1987).

Exercises

Exercise 28.3-1

To what form reduce the contrast-in-media terms in the reciprocity theorems Equations (28.3-6)
and (28.3-7) if the media in states A and B are both instantaneously reacting?

Answer:
B A LA B B A A B
atct(Jt(Er,k) - Ek,r’Er JHE )sxt) = [Er,k(x) - sk’,(x)} atCt E.J(Ep )%t
and

O C (k) = iy TUH DY 0) = [ 1o () = 150 OCHHA T (H Pt

Exercise 28.3-2

Let Dbe the bounded domain that is internally bounded by the closed surface S and externally
by the closed surface §,. The unit vectors along the normals to S1 and S, are chosen as shown
in Figure 28.3-3.

The reciprocity theorem Equation (28.3-7) is applied to the domain D. In D, no sources are
present, in either state A or state B, and the medium in 9 in state B is in its electromagnetic
properties the time-reverse adjoint to the one in state A. Prove that

A B B, , A
Emrp J' Vi | CHE T (HY Yi0) + C (T (ED), i )] dA
X€ES,
A B B A
= Emnrp J. Vi [CHE T (HY ) + CTED) H )] dA (28.3-8)
X€ES.

2

i.e. the surface integral is an invariant.

28.4 The complex frequency-domain reciprocity theorem of the time
convolution type

The complex frequency-domain reciprocity theorem of the time- convolution type follows upon
considering the local interaction quantity Em,r, pa,,, [E ;A‘(x,s)HpB(x,s) - E,B (x,s)HpA(x,s)]. Using
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28.3-3 Domain D, bounded internally by the closed surface §; and externally by the closed surface S5.

standard rules for spatial differentiation and adjusting the subscripts to later convenience, we
obtain

S pOm [Er o) () = EP (o)A )]

= 61,9 [ELA AP 0.5) + 0 [EL @, (59)]

T,
s A S A A 4B
=[5, 0nE 08) | AP (.5) - E (35) (&7, /0l (5:5))
~B A ~B A
—epmidmEr 0e5)]) B ) + B (55) [Em, pOmHy x.9)]. (28.4-1)

With the aid of Equations (28.1-14)-(28.1-17), the different terms on the right-hand side
become

(610, 9nB 09| BP () = ) B ) AP ) - BP9 A (), (28.42)

—EPs) (e, j0uH (5] = iR E s ER () - ENws) T P xs), (28.4-3)
and

[epmidmER )] B es) = AP @) B ) + Ry es) By (s) . (28.4-4)

ER55) [e1m OBl (6.5)] = iy (65) B .5) B (8) + EB s i) . (28.4-5)

Combining Equations (28.4-2)—(28.4-5) with Equation (28.4-1), it is found that
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Em,rpOm | B eV H (x,5) — E; B )]
~[firaw) = iy 9| EA @S EL (x5)
+[Epmies) = £y )| At ) AP (xs)
+ I eEL0s) - R AR x9)
~ PP ) + R D) A xs) (28.4-6)

Equation (28.4-6) is the local form of the complex frequency-domain counterpart of the
electromagnetic reciprocity theorem of the time convolution type. The first two terms on the
right-hand side are representative for the differences (contrasts) in the electromagnetic
propertles of the media yresent in the two states; these terms vanish at those locations where
77, k(x 5) = 7j; ,(x s)and §p, }(x s) = C y P(x s) for all 5 in the domain in the complex s plane where
Equatlon (28 4-6) holds. In case the latter conditions hold, the two media are denoted as each
other’s adjoint. The last four terms on the right-hand side of Equation (28.4-6) are representative
for the action of the sources in the two states; these terms vanish at those locations where no
sources are present.

To arrive at the global form of the reciprocity theorem for some bounded domain D, it is
assumed that P is the union of a finite number of subdomains in each of which the terms
occurring in Equation (28.4-6) are continuous. Upon integrating Equation (28.4-6) over each
of these subdomains, applying Gauss’ divergence theorem (Equation (A.12-1)) to the resulting
left-hand side, and adding the results, we arrive at (Figure 28.4-1)

Emrp J V[ e L (x,5) - EP (o), (5] dA
xedD
- J' {_ [5e5) = iy o) | EP e EL (x,5)
xeD »
+ [5 p]?j(x,s) - fjg(x,s)] IfIPA(x,s)I;TjB(x,s)} dv
+ J [FAwsEL (s) - R )P (x,5)
xeD

~JP@s)ER ) + R 2w A )] av (28.4-7)

Equation (28.4-7) is the global form, for the bounded domain D, of the complex frequency-
domain counterpart of the electromagnetic reciprocity theorem of the time convolution type.
Note that in the process of adding the contributions from the subdomains of D, the contributions
from common interfaces have cancelled in view of the boundary conditions of the continuity
type (Equations (28.1-18) and (28.1-19)), and that the contributions from boundary surfaces of
electromagnetically impenetrable parts of the configuration have vanished in view of the
pertaining boundary conditions of the explicit type (Equation (28.1-20) or Equation (28.1-21)).
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i(2)

i(1)

28.4-1 Bounded domain 9P with boundary surface 9P to which the reciprocity theorems apply.

In the left-hand side, therefore, only a contribution from the outer boundary 09 of D remains
insofar as parts of this boundary do not coincide with the boundary surface of an electromag-
netically impenetrable object. In the right-hand side, the first integral is representative for the
differences (contrasts) in the electromagnetic properties of the media present in the two states;
this term vanishes if the media in the two states are, throughout D, each other’s adjoint. The
second integral on the right-hand side is representative for the action of the sources in 2 in the
two states; this term vanishes if no sources are present in D.

The limiting case of an unbounded domain

In quite a number of cases the reciprocity theorem Equation (28.4-7) will be applied to an
unbounded domain. To handle such cases, the embedding provisions of Section 28.1 are made
and Equation (28.4-7) is first applied to the domain interior to the sphere S(0,4) with its centre
at the origin and of radius 4, after which the limit 4—o- is taken (Figure 28.4-2).

Whether or not the surface integral contribution over $(0,4) does vanish as Ao, depends
on the nature of the time behaviour of the wave fields in the two states. In case the wave fields
in state A and state B are both causal in time (which is the case if both states apply to physical
wave fields), the far-field representations of Equations (28.1-22)—(28.1-26) apply for suffi-
ciently large values of A. Then the contribution from $(0,4) vanishes in the limit A—eo, If,
however, at least one of the two states is chosen to be non-causal (which, for example, can apply
to the case where one of the two states is a computational one), the contribution from 5(0,4)
does not vanish, no matter how large 4 is chosen. However, since outside the sphere $(0,4g)
that is used to define the embedding (see Section 28.1) the media are each other’s adjoint and
no sources are present, the surface integral contribution from $(0, A) is independent of the value
of 4 as long as A > 4y (see Exercise 28.4-4).

The complex frequency-domain reciprocity theorem of the time convolution type is mainly
used for investigating the transmission/reception reciprocity properties of electromagnetic
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8():/“0

28.4-2  Unbounded domain D to which the reciprocity theorems apply. $(0,4) is the bounding sphere
that recedes to infinity; S(0,4p) is the sphere outside which the medium is homogeneous, isotropic and
lossless.

systems and devices (for example, antennas) (see Sections 28.6 and 28.7) and for the modelling
of direct (forward) source problems (see Section 28.8) and direct (forward) scattering problems
(see Section 28.9).

Exercises

Exercise 28.4-1

Show, by taking the Laplace transform with respect to time, that Equation (28.4-6) follows from
Equation (28.2-6).

Exercise 28.4-2

Show, by taking the Laplace transform with respect to time, that Equation (28.4-7) follows from
Equation (28.2-7).

Exercise 28.4-3

To what form reduce the contrast-in-media terms in the reciprocity theorems Equations (28.4-6)
and (28.4-7) if the media in states A and B are both instantaneously reacting?

Answers:
~B A A AA A B B A A A ~B
[finkes) = ity 65)| B e B (15) = 5 [65400) - 0 B es) B ws9)
and

[Ci6s) = Eps)| B e P 0ns) = 5 [ty 00) — /5 0)| B es) AP )
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28.4-3 Domain D, bounded internally by the closed surface S, and externally by the closed surface S,.

Exercise 28.4-4

Let Dbe the bounded domain that is internally bounded by the closed surface §; and externally
by the closed surface S,. The unit vectors along the normals to §; and $, are chosen as shown
in Figure 28.4-3.

The reciprocity theorem Equation (28.4-7) is applied to the domain . In D, no sources are
present, in either state A or state B, and the medium in 2 in state B is in its electromagnetic
properties adjoint to the one in state A. Prove that

A A ~ A A
Emr.p J V[ B 000 (0,5) — EP (0,5) B x,s)| dA
XES

1

= Erp J' v [ELeHy (5) - EP o)A ()] A, (28.4-8)
XES,

2

i.e. the surface integral is an invariant.

28.5 The complex frequency-domain reciprocity theorem of the time
correlation fype

The complex frequency-domain reciprocity theorem of the time correlation type follows upon
considering the local interaction quantity &, pa,,, [E ,A(x,s)HpB(x,—s) +E ,B(x,—s)H pA(x,s)].
Using standard rules for spatial differentiation and adjusting the subscripts to later convenience,
we obtain
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Emrp0m | Er ) (5) + B2 em5) B )]
= 00 [ OB (575) | = B,y [ B C5) B )]
= [£,00E, 59) | AP 51-5) = EA09) [, 0P i)
+[EpmidmEi 05-5)| B 0,5) ~ EL(e5) e, bl (5,5)] (28.5-1)

With the aid of Equations (28.1-14)—(28.1-17), the different terms on the right-hand side
become

(61,0, 0,5)| P e-5)
= £/ p B, AP -5) - RAs) AP (es) (285-2)
—E rA(x,s) [sry,,, ja,ﬁjB(x,-—s)]
= A=) B ) ER (0 —s) — B2 ,5) Be—s) (28.5-3)
and
(e madmE )| B 0r,s)
= Ly 1B (=), 0ns) ~ R P (e ~)B x,5) (28.5-4)
—E,? (x,—s) [3k,m, pamﬁpA(x,s)]
= - ) E ) EL (t-s5) — EL(r-5)T P ss) . (28.5-5)
Combining Equations (28.5-2)—(28.5-5) with Equation (28.5-1), it is found that
Em,r,pOm [E‘ rA(x,s)ﬁ PB (x,—s)+E ,B (e, —s)H, pA(x,s)]
=~ [fisaems) + iy e.)| EA e ) EP (xi9)
~[Eite + §pw9)]| B o) AP s
—JR@EP ) - R 9P (x,s)
— P wm9)E ) - R P e H ) (28.5-6)

Equation (28.5-6) is the local form of the complex frequency-domain counterpart of the
electromagnetic reciprocity theorem of the time correlation type. The first two terms on the
right-hand side are representative for the differences (contrasts) in the electromagnetic
properties of the media present in the two states; these terms vanish at those locations where
ﬁ,}?k(x,—s) = —ﬁk‘f‘,(x,s) and ¢ p]?j(x,—s) == jﬁ,(x,s) for all s in the domain in the complex s plane
where Equation (28.5-6) holds. In case the latter conditions hold, the two media are denoted as
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each other’s time-reverse adjoint. The last four terms on the right-hand side of Equation (28.5-6)
are representative for the action of the sources in the two states; these terms vanish at those
locations where no sources are present.

To arrive at the global form of the reciprocity theorem for some bounded domain 2, it is
assumed that 9 is the union of a finite number of subdomains in each of which the terms
occurring in Equation (28.5-6) are continuous. Upon integrating Equation (28.5-6) over each
of these subdomains, applying Gauss’ divergence theorem (Equation (A.12-1)) to the resulting
left-hand side, and adding the results, we arrive at (Figure 28.5-1)

A A ~B ~ B A A
Emrp I V[ B 5)Hp (5-5) + B, (x,=5)H (x,5)] dA
160D

= J' [~mes) = iy e.5)| EAws)EL0rs)
xeD
+[-ER 09 - Efrs)] ﬁpA(x,s)ﬁjB(x,—s)} av

_ J (8w B s) + RAwHAPw-s)
xeD

+F P9 E es) + Ky ems) B ()] 4V (28.5-7)

Equation (28.5-7) is the global form, for the bounded domain 2, of the complex frequency-
domain counterpart of the electromagnetic reciprocity theorem of the time correlation type.
Note that in the process of adding the contributions from the subdomains of D, the contributions
from common interfaces have cancelled in view of the boundary conditions of the continuity
type (Equations (28.1-18) and (28.1-19)), and that the contributions from boundary surfaces of

i(2)

i

28.5-1 Bounded domain D with boundary surface 99D to which the reciprocity theorems apply.
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electromagnetically impenetrable parts of the configuration have vanished in view of the
pertaining boundary conditions of the explicit type (Equations (28.1-20) or (28.1-21)). In the
left-hand side, therefore, only a contribution from the outer boundary 0 of D remains insofar
as parts of this boundary do not coincide with the boundary surface of an electromagnetically
impenetrable object. In the right-hand side, the first integral is representative for the differences
(contrasts) in the electromagnetic properties of the media present in the two states; this term
vanishes if the media in the two states are, throughout D, each other’s time-reverse adjoint. The
second integral on the right-hand side is representative for the action of the sources in Din the
two states; this term vanishes if no sources are present in D.

The limiting case of an unbounded domain

In quite a number of cases the reciprocity theorem Equation (28.5-7) will be applied to an
unbounded domain. To handle such cases, the embedding provisions of Section 28.1 are made
and Equation (28.5-7) is first applied to the domain interior to the sphere 5(0,4) with its centre
at the origin and of radius 4, after which the limit A—eo is taken (Figure 28.5-2).

Whether or not the surface integral contribution over S(0,4) does vanish as 4—oo, depends
on the nature of the time behaviour of the wave fields in the two states. In case the wave fields
in state A and state B are both causal in time (which is the case if both states apply to physical
wave fields), the far-field representations of Equations (28.1-22)—(28.1-26) apply for suffi-
ciently large values of 4. Then, since outside the sphere S(0,4g) that is used to define the
embedding (see Section 28.1) the media are each other’s time-reverse adjoint and no sources
are present, the surface integral contribution from $(0,4) is, in any case, independent of the
value of 4 as long as 4 > A4 (see Exercise 28.5-4). If, however, state A is chosen to be causal
and state B is chosen to be anti-causal (which, for example, can apply to the case where state
B is a computational one), the contribution from $(0,4) vanishes for sufficiently large values
of 4.

The complex frequency-domain reciprocity theorem of the time correlation type is mainly
used in the modelling of inverse source problems (see Section 28.10) and inverse scattering
problems (see Section 28.11).

Exercises

Exercise 28.5-1

Show, by taking the Laplace transform with respect to time, that Equation (28.5-6) follows from
Equation (28.3-6).

Exerclse 28.5-2

Show, by taking the Laplace transform with respect to time, that Equation (28.5-7) follows from
Equation (28.3-7).
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28.5-2 Unbounded domain D to which the reciprocity theorems apply. S(0,4) is the bounding sphere
that recedes to infinity; S(0,4;) is the sphere outside which the medium is homogeneous, isotropic and
lossless.

Exercise 28.5-3

To what form reduce the contrast-in-media terms in the reciprocity theorems Equations (28.5-6)
and (28.5-7) if the media in states A and B are both instantaneously reacting?

Answer:
B A A oA 2B B A A A ~B
-5 e-5) - ity (e0)| EL ) EL (vm5) = s [300) - ey (9] B ()i (eim)
and

(-6 059 - Efpw)| A ) P (i) = s 0) = 30| By s 5-9)

Exercise 28.5-4

Let Dbe the bounded domain that is internally bounded by the closed surface 51 and externally
by the closed surface .5,. The unit vectors along the normals to ; and S, are chosen as shown
in Figure 28.5-3.

The reciprocity theorem Equation (28.5-7) is applied to the domain 2. In D, no sources are
present either in state A or in state B, and the medium in D in state B is in its electromagnetic
properties the time-reverse adjoint to the one in state A. Prove that

AA, 4B 4B AA
Emrp J‘ V| BP0 (0,5) + P (x,-5)H, (x,5)] dA
xes

1

= Emnrp

J V| E S B (m5) + EP(x-5)A, (5] dA (28.5-8)
XeS,

i.e. the surface integral is an invariant.
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28.5-3 Domain D, bounded internally by the closed surface 5, and externally by the closed surface .5,

28.6 Transmission/reception reciprocity properties of a pair of
electromagnetic antennas

Any electromagnetic system or device, when in operation, emits electromagnetic radiation into
its environment and, reciprocally, any electromagnetic system or device is susceptible to an
electromagnetic field that is present in its environment. In a number of cases, this phenomenon
is an unwanted effect because it can lead to an undesired interaction between systems and
devices that are not designed to do so. Quantitatively, the potentiality of a system or device to
emit electromagnetic radiation and its ability to pick up an electromagnetic field from its
environment are interrelated via reciprocity. These aspects will be further discussed in Chapter
30 in the realm of the ElectroMagnetic Compatibility of electromagnetic systems and devices.

A device or system that is specifically designed to emit electromagnetic radiation into its
environment or to pick up an electromagnetic field from its environment, is commonly denoted
as an (electromagnetic) antenna. An active antenna (that is usually electronically activated via
a low-frequency termination) is denoted as a transmitting antenna; a passive antenna (that is
usually connected to a passive load via a low-frequency termination) is denoted as a receiving
antenna. Here, too, the potentiality of an electromagnetic device or system to act as a
transmitting antenna and the potentiality of such a system to act as a receiving antenna are
quantitatively interrelated via reciprocity. This aspect will be further disussed in the present
section.

Transmitting antennas can be divided into two types, viz. the ones whose action can be
computationally modelled by prescribed values of (volume or surface distributed) electric
current densities, and the ones whose action can be computationally modelled by prescribed
values of the (volume or surface distributed) magnetic current densities. Examples of electric
current transmitting antennas are the wire electric dipoles as used in radio broadcasting in the
medium-wave and short-wave frequency bands. Examples of magnetic current antennas are
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the wire loop magnetic dipoles as used in mobile communication systems. Also the receiving
antennas are divided into two types, viz. the ones whose action can computationally be modelled
by their sensitivity to the electric field strength (throughout their volume or at their surface),
and the ones whose action can computationally be modelled by their sensitivity to the magnetic
field strength (throughout their volume or at their surface). Examples of electric field sensitive
receiving antennas are the electric dipole antennas as used in the reception of television
broadcast signals. Examples of magnetic field sensitive receiving antennas are the coil-wound
ferrite rod antennas as used in the reception of medium-wave radio broadcast signals.

To analyse the reciprocity properties of the different antennas in their transmitting and
receiving situations, we consider the fundamental configuration of two antennas that are
surrounded by an arbitrarily inhomogeneous and anisotropic medium. The configuration
occupies the entire three-dimensional space ®3. Antenna A occupies the bounded domain Antp
with boundary surface dAnt,, and unit vector along the normal v,, oriented away from Ant.
Antenna B occupies the bounded domain Antg with boundary surface dAntg, and unit vector
along the normal v,,, oriented away from Antg. The domain exterior to Ant,UdAnt, is denoted
by Anty; the domain exterior to AntgUdAnty is denoted by Antg. The domains Ant, and
Antg are disjoint (Figure 28.6-1).

As to the boundary conditions across interfaces between parts of the surrounding medium
with different electromagnetic properties and the boundary conditions at the boundary surfaces
of electromagnetically impenetrable objects, the provisions necessary for the global reciprocity
theorems to hold are made. The standard limiting procedure of Section 28.1 for the handling
of an unbounded domain applies. Since transmission and reception are both causal phenomena,
the transmission/reception reciprocity properties are based on the reciprocity theorems (28.2-7)
and (28.4-7) of the time convolution type, in which theorem causality is preserved.

Volume action antennas

Avolume action antenna is characterised by the property that in the transmitting mode its action
can be accounted for by prescribed values of the volume source densities of electric current and
magnetic current, whose common support is the domain occupied by that antenna, while in the
receiving mode it is sensitive to the electric field strength and/or the magnetic field strength
over the domain it occupies. To investigate the transmission/reception reciprocity properties of
a pair of such antennas, we take state A to be the causal electromagnetic state for which the
volume source densities have the support Ant, (i.e. in state A, Antenna A is the transmitting
antenna and Antenna B is the receiving antenna). Furthermore, we take state B to be the causal
electromagnetic state for which the volume source densities have the support Antg (i.e. in state
B, Antenna B is the transmitting antenna and Antenna A is the receiving antenna). Application
of the global time-domain reciprocity theorem of the time convolution type, Equation (28.2-7),
to the entire configuration yields, assuming the embedding medium to be self-adjoint,

J [T EL ) - C& A P dv
xeAn

ta

- J' [C2 B - iy By x| dv (28.6-1)
xeA

nty
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28.6-1  Configuration for the transmission/reception reciprocity properties of a pair of electromagnetic
antennas Ant, and Antg.

The complex frequency-domain counterpart of Equation (28.6-1) follows from Equation
(28.4-7) as

j V@Bl ws) - RPA)B x| dv
xeAn

tA

= J' [7P@s)E ws) - Ry @), xs)] dv. (28.6-2)
xeA

nty

In Equations (28.6-1) and (28.6-2), the terms containing the volume source densities of electric
current are representative for the action of the antenna as a (volume distributed) electric current
transmitting antenna, while the terms containing the volume densities of magnetic current are
representative for the action of the antenna as a (volume distributed) magnetic current
transmitting antenna. Furthermore, the terms containing the electric field strength quantify the
action of the antenna as a (volume distributed) electric field receiving antenna, while the terms
containing the magnetic field strength quantify the action of the antenna as a (volume
distributed) magnetic field receiving antenna. From Equations (28.6-1) and (28.6-2), and hence
from the principle of reciprocity, it is concluded that a spatially distributed electric current
antenna is only sensitive to the electric field (and insensitive to the magnetic field), while a
spatially distributed magnetic current antenna is only sensitive to the magnetic field (and
insensitive to the electric field). The reciprocity relations imply that the different sensitivities
are related (viz. through Equations (28.6-1) and (28.6-2)).
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Surface action antennas

A surface action antenna is characterised by the property that in its transmitting mode its action
can be accounted for by prescribed values of the tangential components of the electric field
strength and the magnetic field strength at its boundary surface, while in its receiving mode it
is sensitive to the tangential components of the electric field strength and/or the magnetic field
strength at that surface. This description of the action of the antenna is employed when the
description of its action by volume sources is either inapplicable or irrelevant. (Most
applications of this type of antenna are found in microwave engineering, where surface action
antennas are commonly denoted as “aperture antennas”.) To investigate the reciprocity
properties of a pair of such antennas, we take state A to be the causal electromagnetic state for
which the prescribed surface source densities have the support dAnt, (i.e. in state A, Antenna
A is the transmitting antenna and Antenna B is the receiving antenna). Furthermore, we take
state B to be the causal electromagnetic state for which the prescribed surface source densities
have the support dAntg (i.e. in state B, Antenna B is the transmitting antenna and Antenna A is
the receiving antenna). Application of the global time-domain reciprocity theorem of the time-
convolution type, Equation (28.2-7), to the entire domain ®3~Ant A NAnt§ exterior to the
antennas yields, assuming the embedding medium to be self-adjoint,

A .. B B ;A
em,,’pJ- V| CUESH s0,8) = CUED H x| dA
xcdAnt,

=Emrp

J. Y [CAES H ) - CES H )| dA (28.6-3)
xeoA

nty

The complex frequency-domain counterpart of Equation (28.6-3) follows from Equation
(28.4-7) as

& A 5B ~B S A
Emrp J VB @B (5) — B2 (e.5) ) (x,5)] dA
xcoAnt,

A B A A A A
= Eprp J V[ ER ) A 0s) — B ) H) ()] dA (28.6-4)
xedAnty

In Equations (28.6-3) and (28.6-4), the terms containing the source densities of electric surface
current (i.e. &, PVmHP) are representative for the action of the antenna as a (surface distributed)
electric current transmitting antenna, while the terms containing the source densities of
magnetic surface current (i.e. —;, .V,E,) are representative for the action of the antenna as a
(surface distributed) magnetic current transmitting antenna. Furthermore, the terms containing
the tangential electric field strength quantify the sensitivity of the antenna as a (surface
distributed) electric field receiving antenna, while the terms containing the tangential magnetic
field strength quantify the sensitivity of the antenna as a (surface distributed) magnetic field
receiving antenna. From Equations (28.6-3) and (28.6-4) it is concluded that a surface
distributed electric current antenna only senses the electric field, while a surface distributed
magnetic current antenna only senses the magnetic field. The reciprocity relations imply that
the different sensitivities are related (viz. through Equations (28.6-3) and (28.6-4)).
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Exercises

Exercise 28.6-1

Use Equation (28.2-7) to derive the time-domain transmission/reception reciprocity theorem
for a pair of antennas A and B if Antenna A is a volume action antenna and Antenna B is a
surface action antenna. (Note the orientation of the unit vector v,, along the normal on dAntg.)

Answer:

J [C A EExn - & B x| dv
xeAnt,

= Enrp J Ve [CHER H P ) - CLE A HY )] dA (28.6-5)
xedAnty
Exercise 28.6-2

Use Equation (28.4-7) to derive the complex frequency-domain transmission/reception reci-
procity theorem for a pair of antennas A and B if Antenna A is a volume action antenna and
Antenna B is a surface action antenna. (Note the orientation of the unit vector v, along the
normal on dAntg.)

Answer:

J. [FEe9ELxs) - BB )] av
xeAn|

ta
=&y p J Y [EP0e) B ) = E A s A (,5)] dA (28.6-6)
xedAnty
Exercise 28.6-3

If in the interior of Ant, and Antg the electromagnetic field quantities would be set equal to
zero and these wave-field quantities would on dAnt, and dAntg jump to their respective
boundary values, the jumps would, on account of Equations (28.1-1)—(28.1-4), give rise to
surface electric current densities with equivalent volume densities

AB AB
Ji =8k,m,p"me 68AntA,B(x)

and surface magnetic current densities with equivalent volume densities

AB _ AB
Kj = _Ej,n,rVnEr 68AntA'B(x) s

where J¢(x) is the surface Dirac delta distribution operative on the surface S. Show, by taking
the time convolution of the inner products of JB with EkB’A and of KjA’B with HjB'A, that in
this physical picture Equation (28.6-3) is compatible with Equation (28.6-1).

Exercise 28.6-4

Show, in a manner similar to Exercise 28.6-3, that Equation (28.6-4) is compatible with
Equation (28.6-2).
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28.7 Transmission/reception reciprocity properties of a single
electromagnetic antenna

To analyse the transmission/reception reciprocity properties of a single antenna, we consider
the fundamental configuration of a single antenna surrounded by an arbitrarily inhomogeneous
and anisotropic medium. The configuration occupies the entire three-dimensional space 3.
The antenna occupies the bounded domain Ant, with boundary surface dAnt and unit vector
along the normal v,, oriented away from Ant (Figure 28.7-1).

The domain exterior to AntUdAnt is denoted by Ant’. As to the boundary conditions across
interfaces between parts of the configuration with different electromagnetic medium properties
and the boundary conditions at the boundary surfaces of electromagnetically impenetrable
objects, the provisions necessary for the global reciprocity theorems to hold are made. The
standard limiting procedure of Section 28.1 for the handling of an unbounded domain applies.
Since transmission and reception are both causal phenomena, the transmission/reception
reciprocity properties are based on the reciprocity theorems (28.2-7) and (28.4-7) of the time
convolution type in which theorems causality is preserved.

Volume action antenna

If Ant is a volume action antenna, its action in the transmitting mode is accounted for by
prescribed values of the volume source densities of electric and magnetic current, whose support
is the domain occupied by the antenna, while in the receiving mode it is sensitive to the electric
and magnetic field strengths over the domain it occupies. To investigate the transmission/

28.7-1 Configuration for the transmission/reception reciprocity properties of a single electromagnetic
antenna Ant,
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reception reciprocity properties of a single antenna of this kind, state A is taken to be the causal
state associated wnh the wave field {E,T,H T} generated by the prescribed volume source
densities {Jk K } whose support is Ant. ThlS state is denoted as the transmitting state and will
be denoted by the superscript T. Next, state B is taken to be the causal state associated with the
wave field that is generated by unspecified sources located in the domain Ant” exterior to the
antenna. In the surrounding medium these sources would generate an incident wave field
{Er,H } if the antenna were not activated. The total wave field {E,R,H } in the presence of
the antenna is then the superposition of the incident wave field and the scattered wave field
{E/Hy}, de.

(ENHY) = (E +ESHY + HY) . (28.7-1)

The relevant state is denoted as the receiving state and will be denoted by the superscript R.
Note that in the receiving state the domain Ant occupied by the antenna is source-free and that
the scattered wave field in this state is source-free in the domain Ant” exterior to the domain
occupied by the antenna. Application of the time-domain reciprocity theorem of the time-
convolution type, Equation (28.2-7), to the transmitted and the scattered wave fields and to the
domain Ant’ exterior to the transducer yields, assuming the medium to be self-adjoint,

Emrp j Vo [CUE Hyet) — CESH, )] dA = 0. (28.7-2)
xedAnt

Here, we have used the property that the total wave field in the transmitting state and the
scattered wave field in the receiving state are both source-free in the domain Ant” exterior to
the transducer and causally related to the action of (primary or secondary) source distributions
with the domain Ant occupied by the antenna as their supports, on account of which both the
volume integral over the domain exterior to the antenna and the surface integral over the outer
boundary of the domain of application of Equation (28.2-7) vanish. Using Equation (28.7-1),
it follows from Equation (28.7-2) that

T R R ,T
Emrp J. Vi [C, E, H,x1) - C(E, H, ;x,t)]dA
xedAnt

= J- Vo [CHE HSx,0) = Cy(EpH i) dA (28.7-3)
xedAnt

Next, Equation (28.2-7) is applied to the total wave fields in the transmitting and the receiving
states and to the domain Ant occupied by the antenna. This yields, again assuming the medium
to be self-adjoint,

T ,,R R ,,T
Emrp J Y [CUE, Hy 5:0) — CHE,H, )| dA
xedAnt

= J [C B - C&H ] av. (28.7-4)
xeA

nt

Combining Equations (28.7-3) and (28.7-4), and using the continuity of the tangential
components of the electric and the magnetic field strengths across dAnt in both states, we arrive
at
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Emrp '[ V[ CHE Hpiet) = CL(ELH, x| dA
xedAnt

= J [ E&xn - & HR ) av . (28.7-5)
xeAl

nt

The complex frequency-domain counterpart of Equation (28.7-5) follows, in a similar manner,
from Equation (28.4-7) as

AT, 4 Ai AT
Emrp J- VB 068)H0,5) = B (e.5) ) (,5)] dA
xedAnt

= j [ B 08 = B AR )] av ' (28.7-6)
xeA

nt

In view of what has been found in Section 28.6, the right-hand sides of Equations (28.7-5) and
(28.7-6) are representative for the sensitivity of the antenna to a received electromagnetic field
generated elsewhere in the domain exterior to the antenna. The left-hand sides express that the
antenna can, in the receiving state, be conceived as to be excited, across its boundary surface,
by the incident wave field. Equations (28.7-5) and (28.7-6) relate these two aspects quantita-
tively.

Surface action antenna

If Ant is a surface action antenna, its action in the transmitting mode is accounted for by
prescribed values of the tangential components of the electric and the magnetic field strength
at its boundary surface, while in the receiving mode it is sensitive to the tangential components
of the electric field strength and the magnetic field strength at that surface. This description of
the action of the antenna is employed for the typical “aperture antennas” used in radar
applications. To investigate the transmission/reception reciprocity properties of a single antenna
of this kind, state A is, as above, taken to be the causal state associated with the wave field
{ErT H, T} generated by the prescribed surface source densities of electric current (i.e.

Er.m,p¥m H T) and of magnetic current (i.e. —¢;, V,E, T), whose support is dAnt. This state is
denoted as the transmitting state and will be denoted by the superscript T. Next, state B is taken
to be the causal state associated with the wave field that is generated by unspecified sources
located in the domain Ant exterior to the antenna. In the surrounding medium these sources
would generate anincident wave field {Er ,H } if the antenna were not activated. The total wave
field {E H, R} in the presence of the antenna is again the superposition of the incident wave
field and the scattered wave field {E;’ ,H },ie.

(ERHY) = (E +ESHY v HS) . (28.7-7)

The relevant state is denoted as the receiving state and will be denoted by the superscript R.
Note that in the receiving state the scattered wave field is source-free in the domain Ant” exterior
to the domain occupied by the antenna. Application of the time-domain reciprocity theorem of
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the time convolution type, Equation (28.2-7), to the transmitted and the scattered wave fields
and to the domain Ant’ exterior to the antenna yields, assuming the medium to be self-adjoint,

Em,rp

Vo [CHE Hy ) = CUESH, )] dA =0 (28.7-8)
o xcoAnt

Next, using Equation (28.7-7), it follows that

°

T R R, T
Em,r.p Vi [C,(Er Hp sx,t) — CAE, .H) ;x,t)] dA
o xedAnt
=Enrp J V| CAES Hyx) ~ CAELH, )] dA (28.7-9)
xedAnt

The complex frequency-domain counterpart of Equation (28.7-9) follows, in a similar manner,
from Equation (28.4-7) as

& gR AR 5T
Emrp j V[ 00 9)By (r5) - ER (.5, (x,5)] a4
xcoAnt
= Emrp J V| o)A xs) - Ees) ) (,5)| dA (28.7-10)
xedAnt

In view of what has been found in Section 28.6, the left-hand sides of Equations (28.7-9) and
(28.7-10) are representative for the sensitivity of the antenna to a received electromagnetic field
generated elsewhere in the domain exterior to the antenna. The right-hand sides express that
the antenna can, in the receiving state, be conceived as to be excited, across its boundary surface,
by the incident wave field. Equations (28.7-9) and (28.7-10) relate these two aspects
quantitatively.

28.8 The direct (forward) source problem. Point-source solutions and
Green's functions

In the direct (or forward) source problem we want to express the electromagnetic field quantities
in a configuration with given electromagnetic properties in terms of the source distributions
that generate the wave field. The domain in which expressions for the generated electromagnetic
wave ﬁeld {Er H T} ={ E,T H T} (,?) are to be found is in general the entire three-dimensional
space %3, The standard _Prov1s1ons of Section 28.1 for the handling of an unbounded domain
are made. Since { }isa physxcal wave field, it satisfies the condition of causality. The
source dlstnbutlons {J,if K T} = {Jk , ](x f) that generate the wave field, have the bounded
support ol (Figure 28.8- l)

The electromagnetic properties of the medium present in the configuration are characterised
by the relaxation functions {g .44 p} = {&x o), p} (x,£), which are causal functions of time. The
case of an instantaneously reacting medium easily follows from the more general case of a
medium with relaxation.
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Time-domain analysis

For the time-domain analysis of the problem the global reciprocity theorem of the time-
convolution type, Equation (28.2-7), is taken as the point of departure. In it, state A is taken to
be the generated electromagnetic wave field under consideration, i.e.

(EAEM = (BT H @) forxex’, (28.8-1)
AL A T ..T T
{Jx K7} = {Jg K M) forxeD’, (28.8-2)
and
A A 3
{ex,rttp = (et plx)  forxex”. (28.8-3)

Next, state B is chosen such that the application of Equation (28.2-7) to the domain P leads to
the values of {E,T,HPT} at some arbitrary point x'eR’, Inspection of the right-hand side of
Equation (28.2-7) reveals that this is accomplished if we take for the source distributions of
state B a point source of electric current at x” in case we want an expression for the electric field
strength at x” and a point source of magnetic current at x” in case we want an expression for the
magnetic field strength at x’, while the medium in state B must be taken to be adjoint to the one
in state A, i.e.

{epobtp g} = {ex it p}(x))  forxe®’ . (28.8-4)

28.8-1 Configuration for the direct (forward) source problem. D7 is the bounded support of the source
distributions. The configuration occupies the entire X3; S(0, 4) is the bounding sphere that recedes to infinity.
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Furthermore, if in the configuration electromagnetically impenetrable objects are present, the
electromagnetic field in state B must satisfy on the boundaries of these electromagnetically
impenetrable objects the same boundary conditions as in state A, while the electromagnetic
field in state B must be causally related to the action of its (point) sources. The two choices for
the source distributions will be discussed separately below.

First, we choose

IP=a,(x-x1) and K, =0, (28.8-5)

where 6(x — x',{) represents the four-dimensional unit impulse (Dirac distribution) operative at
the point x = x’ and at the instant ¢ = 0, while a, is an arbitrary constant vector. The
electromagnetic field causally radiated by this source is denoted as

(ESHPY = (EPP H Py oex) ), (28.8-6)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. Now, Equation (28.2-7) is applied to %3,
The standard provisions of Section 28.1 for the handling of an unbounded domain yield

A.,B B A
Emrp J' Y [CoES Hy s,8) = CUES Hy x,f)| dA
xe5(0,4)
T, JB, JB ., T

=& J Vo [CUE, Hy P 1) - C(E ) ., 1)] dA—0
xe5(0,4)
as A—yoo. (28.8-7)
Furthermore, in view of Equation (28.8-5) and the properties of d(x — x'¢),

J [CTP ER ) - Y H )] dV

xe®

= J- C(a,0(x —x', t),E,T;x,t) dv= a,ErT (x50) . (28.8-8)
xe®’

Since, further, the sources have the support DT,

J [C,(JkA,E,?;x,t) - C(& HPxn) dv

XeR’

= J' [CEES R 1) - C (i B x| av (28.8-9)
xeD”

Collecting the results, we arrive at

a,E,T(x;t)=J T[c,(E,{?B,J,f 1) - C(H B K xx, D] AV forxex®, (28.8-10)
xeD

where, in the right-hand side, we have used the symmetry of the convolution in its functional
arguments. From Equation (28.8-10) a representation for E,T (x,?) is obtained by taking into
account that EkJ B and HjJ;B are linearly related to a,. The latter relationship is expressed by

B i = (656G @ a,. 551D
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Since, however, for the right-hand side the reciprocity relations (see Exercises 28.8-1 and
28.8-3)

EJ;B HJB ’, EJ EK\,  ,
{Gry \Gily Y oex's) = {Grg =G j J(50,0) (28.8-12)

hold, Equation (28.8-10) leads, with Equations (28.8-11) and (28.8-12), and invoking the
condition that the resulting equation has to hold for arbitrary values of a,, to the final resuit

EXn =j [CUGH I W+ CGE K wan]dv  forx'er’. (28.8-13)
xeD"

Equation (28.8-13) expresses the electric field strength E,T of the generated electromagnetic
field at x” as the superposition of the contributions from the elementary distributed sources
JkT dVand KjT dV at x. The intervening kernel functions are the electric-field/electric-current
Green’s function G,Ifk] = Gf;f(x',x,t) and the electric-field/magnetic-current Green’s function
GfJK = G,’Ef(x’,x,t). These Green’s functions are the electric field strength at x’, radiated in the
actual medium with constitutive parameters {& .4} = {sk’,,uj’p}(x,t), by a point source of
electric current at x and a point source of magnetic current at x, respectively.
Secondly, we choose

JP=0 and K, =b,0(x~x0), (28.8-14)

where b, is an arbitrary constant vector. The electromagnetic field causally radiated by this

source is denoted as
K; ; ,
(ECH) = (B P H Y, (28.8-15)
where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. Now, Equation (28.2-7) is applied to .

The standard provisions of Section 28.1 for the handling of an unbounded domain yield

AB B A
Emrp J Vi |CUES H, 33,t) = CHE, Hs,0)| dA
xeS(0,4)
=Enrp J Vin {C,(E,T ,HPK;B;x,x’, 1) - CES ‘B,HPT;x,x’, t)] dA—0
xeS$(0,4)
as A—oo, (28.8-16)

Furthermore, in view of Equation (28.8-14) and the properties of é(x — x'?),

j [Ca2 E ) - C& Y H ] dv
xeR’

=- J Cy(b,00e — X, ), H, sx,8) AV = ~b, H,) (1) . (28.8-17)
xe®’
Since, further, the sources have the support DT,

j [c0 EE ) - c & HP x| av
xR’

KB

= J T[C,(],;F,E;f;B;x,x',t)—C,(KjT,Hj xxin|av. (28.8-18)
xeD
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Collecting the results, we arrive at

T, KB ,T.  _, KB .. T
b,H, (x’,0) = J- T[-C,(Ek Ji X8 + C(H; K xx t)]
X

for x'e®’ , (28.8-19)

where, in the right-hand side, we have used the symmetry of the convolution in its functional
arguments. From Equatlon (28.8-19) a representation for H, T(,\: ,t) is obtained by taking into
account that BB and H B are linearly related to b,. The latter relationship is expressed by

(B HP) o) = (GEXCE G e b, (28.8-20)

Since, however, for the nght-hand side the reciprocity relations (see Exercises 28.8-2 and
28.8-4)

{GkEII;( ;B HKB}(x x t) { {{IK} (x:x,t) (28.8-21)

hold, Equation (28.8-19) leads w1th Equations (28.8-20) and (28.8-21), and invoking the
condition the resulting equation has to hold for arbitrary values of b, to the final result

T 4 4 4
H, (x}1) =J' gT[Ct( > Jk X5x,0) + C( ijK, K ix xt)} for x'e®’ . (28.8-22)
Xe

Equation (28 8-22) expresses the magnetic field strength H,, T of the generated electromagnetic
ﬁeld at x” as the superposition of the contributions from the elcmentary distributed sources
Jk dV and K; T dv atx. The intervening kernel functions are GHJ —G (x x,t), the magnetic-
ﬁeld/electrzc—current source Green's function and G] HK —G (x X,1), the magnetic-field/mag-
netic-current source Green’s function. These Green s functlons are the magnetic field strength
at x’, radiated in the actual medium with constitutive parameters {sk‘,,uj’ p} = {ek,r,uj,p}(x,t),
by a point source of electric current atx and a point source of magnetic current at x, respectively.

Complex frequency-domain analysis

For the complex frequency-domain analysis of the problem the complex frequency-domain
global reciprocity theorem of the time convolution type, Equation (28.4-7), is taken as the point
of departure. In it, state A is taken to be the generated electromagnetic field under consideration,
ie.

EAEN = (ELA s forxe, (28.8-23)
FAEM = (7 R ws)  forxeD, (28.8-24)
and
AA 2AL a2 3
{77k r’ij} - {nk r,gj,p}(x S) for XeXT . (288‘25)

Next, state B is chosen such that the application of Equatlon (28.4-7) to the entire &3 leads to
the values of {E, H T} at some arbitrary point x’e®>. Inspection of the right-hand side of
Equation (28.4-7) reveals that this is accomplished if we take for the source distributions of
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state B a point source of electric current at x” in case we want an expression for the electric field
strength at x” and a point source of magnetic current at x’ in case we want an expression for the
magnetic field strength at x’, while the medium in state B must be taken to be adjoint to the one
in state A, i.e.

Ulrobpg) = (i p)es)  forxe®’. (28.8-26)

Furthermore, if in the configuration electromagnetically impenetrable objects are present, the
electromagnetic field in state B must satisfy on the boundaries of these objects the same
boundary conditions as in state A, while the electromagnetic field in state B must be causally
related to the action of its (point) sources. The two choices for the source distributions will be
discussed separately below.

First, we choose

JP=a,(s)0(x~x) and K} =0, (28.8-27)

r

where 6(x — x") represents the three-dimensional unit impulse (Dirac distribution) operative at
the point x = x’, while 4, = 4,(s) is an arbitrary vector function of s. The electromagnetic field
causally radiated by this source is denoted as

EPAD) = (EPP AP xs) (28.8-28)
where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. Now, Equation (28.4-7) is applied to %3,
The standard provisions of Section 28.1 for the handling of an unbounded domain yield

HA B ~B oA
Emrp J. VL e)Hy (0,5) — B2 () 0,5)| dA
xe5(0,4)

= Enrp f Vm [ErT (x,9)H, pj B (xx,s)—E rJ ;B(x,x’, s)ﬁIpT(x,s)] dA—0
xe5(0,4)
as A—oo, (28.8-29)

Furthermore, in view of Equation (28.8-27) and the properties of d(x —x”),

J. [P@s)E ws) - R (), )] dv
xeR®

= J' 4,(5)0C¢ — x')E T (e,5) dV=a,(s) E, " (' 5) . (28.8-30)
xe.‘R,’

Since, further, the sources have the support DT,

J [T ws) - R 9B xs)] dv
xeR’

= J 7 B Pxts) - K o) BB exs)| av.. (28.8-31)
xep”

Collecting the results, we arrive at
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a.()E o, s) = J ) [EPwx 7 0s) - B P )k )] av

for x'e®> . (28.8-32)

From Equation (28.8-32) a representatlon for E T(x 5) is obtained by taking into account that
E/ k’ and H B are linearly related to 4,(s). The latter relationship is expressed by

(EPP BP0t s) = (GEIP Gy e )4 (s) - (28.8-33)

Since, however, for the right-hand side the reciprocity relations (see Exercises 28.8-5 and
28.8-7)

(GEIRGI P wxts) = (G -G ) (28.8-34)

hold, Equation (28.8-32) leads, with Equations (28.8-33) and (28.8-34), and invoking the
condition that the resulting equation has to hold for arbitrary values of @,(s), to the final result

EX(e)s) = J GR W el s + GE xR o\ 9)]dv forxer’. (28.8-35)

Equation (28 8-35) expresses the electric field strength E T of the generated electromagnetic
ﬁeld at x’ as the superposition of the contributions from the elementary distributed sources
7z r dVand K T dv at x. The intervening kernel functions are G, T = (x x,8), the electric-
fi eld/electrzc current source Green's function, and the electric-fi eld/magnetzc -current source
Green's function G J (x x,s). These Green’s functions are the electric field strength at
x’, radiated in the actual medium with constitutive parameters {nk ,,C . P} {ryk r,f,’ Y p}(x,s) by
a point source of electric current at x and a point source of magnetic current at x, respectively.
Secondly, we choose

P =0 and R =b,(s)x-x), (28.8-36)

where ISP = l;p(s) is an arbitrary vector function of s. The electromagnetic field causally radiated
by this source is denoted as

(ELAP) = (BEP APy, (28.8-37)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. Now, Equation (28.4-7) is applied to .
The standard provisions of Section 28.1 for the handling of an unbounded domain yield

A A A A A A
Emr.p I Vm [EL ) (05) - EP(.5) B 0,5)] dA
xe$(0,4)

= Emrp J V[ 000 B, P e, 5) - B e 9) B (x,5)) dA—0
xe5(0,4)

as Ad—oo, (28.8-38)
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Furthermore, in view of Equation (28.8-36) and the properties of d(x — x"),

J [FPwnE ) - Ryl )] av
xR

=— j by(s)00e — x)H, (5,5) AV = ~b,(5) B () . (28.8-39)
3
XeR’
Since, further, the sources have the support D7,

J [FAwaElws) - K wsA o) av
xe®’

= J' T[J‘kT B P xts) - K o) Pt )| av . (28.8-40)
XeD

Collecting the results, we arrive at

T AKB,. s 7 AKB, s B
by A, ' 5) = j [FEEP x0T ) + B P xR ()] av

for xe®’ . (28.8-41)

From Equation (28.8-41) a representation for H T(x s) is obtained by taking into account that
E KB and H KB are linearly related to b 5(8). The latter relationship is expressed by

KB KB EKB HKB
{Ey " H  Ywx,s) = (G

} e, s)b (s). (28.8-42)
Since, however, for the right-hand side the reciprocity relations (see Exercises 28.8-6 and
28.8-8)

4 EK;B HKB J AHK,,  ,
{Grp™s }eex,s) = {-G k,Gp, j 1xx,s) (28.8-43)

hold, Equation (28.8-41) leads, with Equations (28.8-42) and (28.8-43), and invoking the
condition that the resulting equation has to hold for arbitrary values of b,(s), to the final result

5T, AHT, , +T AHK, , > ’
Aws) = J. Gk wxs)i s + Gy ()R )] aV forx'er’. (28.8-44)
X

Equation (28.8-44) expresses the magnetic field strength I:IPT of the generated electromagnetic
field at x” as the superposition of the contributions from the elementary distributed sources
J kT dVand fch dV at x. The intervening kernel functions are GP = )3{ (x’,x,s), the magnetic-
field/electric-current source Green’s function, and the magnetic-field/magnetic-current source
Green’s function GHK = GHK(x x,s). These Green’s functions are the magnetic field strength
at x’, radiated in the actual medxum with constitutive parameters {7} ,,C i) = {7k, r,C i p1(6:9),
by a point source of electric current atx and a point source of magnetic current atx, respectlvely
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Exercises

Exercise 28.8-1

Let {E,A,HPA} = {Ef,HPA}(x,xﬁt) be the electromagnetic field at x that is causally radiated by
the point source at x” with volume source density {J, ,f‘,KjA} = {akAé(x —x7),0} and let
{E, kB,HjB} ={E ,33 ,HjB }x,x",f) be the electromagnetic field at x that is causally radiated by the
point source at x” with volume source density {JrB,KpB} = (a,B0(x — x",£),0}, withx’ #x”. The
two sources radiate in adjoint media occupying the entire ®”. The standard provisions given in
Section 28.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (28.2-7)) to ®>. (b) Write

A EJA A A HIA A
Er =Grg (x,x’,t)ak, Hp =Gpi (x,x’,t)ak,

EJ: g
EkB = Gk,rj’B(x,x", t)arB, ijB = ngj’B(x,x", t)a,.B,
invoke the condition that the result should hold for arbitrary a,f‘ and a,B, and show that
GEAax 0 = GEBW x" ).

Exercise 28.8-2

Let {E,A,HPA} = {E;"‘,HPA}(x,x’,t) be the electromagnetic field at x that is causally radiated by
the point source at x” with volume source density {J,ﬁ,KjA} = { akA(S(x -x),0} and let
{ EkB,HJ-B} = {E,?,HjB }x,x”,£) be the electromagnetic field at x that is causally radiated by the
point source at x” with volume source density {/, ,B ,KpB} = {O,prcS(x —x"0)}, withx” #x”. The
two sources radiate in adjoint media occupying the entire ®3. The standard provisions given in
Section 28.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (28.2-7)) to ®”. (b) Write

; HIA
ErA = G,):’;CJ’A(x,x’, t)a,:\ s HpA = kaj xex, t)akA,
B EK, ;
EP =GE by, HP =Gl P by,

invoke the condition that the result should hold for arbitrary a,f‘ and bB, and show that
GIlA" X1 = -GEFB@ x"1).

Exercise 28.8-3

Let {ErA,HpA} = {E;“,HPA)(x,x’,t) be the electromagnetic field at x that is causally radiated by
the point source at x* with volume source density {J,f‘,KjA} = {O,bjAcS(x —-x't)} and let
{EkB ,HjB} = {EkB ,HJ-B}(x,x”,t) be the electromagnetic field at x that is causally radiated by the
point source at x” with volume source density {J, ,B,KPB} = {aBo(x - x",1),0}, with x’ #x”. The
two sources radiate in adjoint media occupying the entire ®3. The standard provisions given in
Section 28.1 for handlin§ an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (28.2-7)) to K. (b) Write
HKA

ER=GEAwxnb®, B =G b,

B EJB ;B
Ek = Gk’;.l (x,x”,t)a,B, I{jB = GJ{:,I.J (x,x”, t)arB,
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invoke the condition that the result should hold for arbitrary bjA and a2, and show that
GfJK A x8) = —Gj{’,u B(x’, x",1). (Note that this result is consistent with the result of Exercise
28.8-2.)

Exercise 28.8-4

Let {ErA,HpA} = {Ef‘,HpA}(x,x',t) be the electromagnetic field at x that is causally radiated by
the point source at x’ with volume source density {JkA,KjA} = {O,bjAé(x -x0)} and let
(EEHP) = {EPH)(x,x") be the electromagnetic field at x that is causally radiated by the
point source at x” with volume source density {J,.B ,KPB} = { O,pré(x —x"1}, withx’ #x”. The
two sources radiate in adjoint media occupying the entire ®3. The standard provisions given in
Section 28.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (28.2-7)) to . (b) Write

EP = GEEAex b, Hp =Gy A nb)
EE =GP by, HP =Gl P nby,

invoke the condition that the result should hold for arbitrary bjA and pr, and show that
GHIGAx" 1) = G B, 0).

Exercise 28.8-5

Let {ﬁrA,I-AIpA} = {E,A,ﬁf}(x,x',s) be the electromagnetic field at x that is causally radiated by
the point source at x’ with volume source density {J ,;A,KjA} = {ﬁkA (s)0(x —x"),0} and let
{E‘ ,? ,HjB} = {13" ,? ,HjB}(x,x”,s) be the electromagnetic field at x that is causally radiated by the
point source at x” with volume source density {/ rB,IA(PB} = {&gB(s)é(x —x"),0}, with x” # x”.
The two sources radiate in adjoint media occupying the entire K. The standard provisions given
in Section 28.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (28.4-7)) to the entire R®3. (b) Write

A A .A A A A .A
EA=GEAwx il A =Gy

r p.k
A~ EJ;B A HJI;B

ER=GEPwx il B =GP0 93 ),

igvoke the conditipn that the result should hold for arbitrary ﬁ,f‘(s) and Zi,B(s), and show that
Gfkj A’ x,5) = GkE,J B! x”,s).

(x.x, s)ﬁ;f\ (s),

Exercise 28.8-6

Let {E;A,FIPA} = {Eﬁ,flPA}(x,x’,s) be the electromagnetic field at x that is causally radiated by
the point source at x’ with volume source density {/ kA,I%jA} = {&,f‘(s)d(x —x"),0} and let
(E B ,HJ-B} = (E® ,PAIJ-B }(x,x",s) be the electromagnetic field at x that is causally radiated by the
- point source at x” with volume source density {/ ,B ,kpB} = {O,pr(s)é(x ~x")}, with x” # x”.
The two sources radiate in adjoint media occupying the entire ®3. The standard provisions given
in Section 28.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (28.4-7)) to the entire ®>. (b) Write

~A AELA AA A AHILA AA
Er =Gr,k (x,x',s)ak (S)’ Hp = p,k (xvx,as)ak (S),
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ER=GE P x0b (), B =G P, 9by(s),
invoke the condition that the result should hold for arbitrary @ (s) and b B(s) and show that
GHJ A(x” x S) - GEK B(xl ” S)

Exercise 28.8-7

Let {E H A} = {E H A}(x x',5) be the electromagnetlc field at x that is causally radiated by
the pomt source at x w1th volume source density (J i A} = {0,b A(s)é(x —x")} and let
{E © H, B} {E,c ,H B}(.1: x”,s) be the electromagnetxc field at X thatis causally radiated by the
point source at x” w1th volume source density {J K B} = { a,.B (5)0(x —x"),0}, with x* # x”.
The two sources radiate in adjoint media occupying the enure R®3, The standard provisions given
in Section 28.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (28.4-7)) to the entire ®>. (b) Write

EA=GE A wx 9t s), B =Gl Ao s),
Ek = GkE,JB(x x",5)d, (s), ] B = HJB(x x",5)a, (s)

invoke the condltlon that the result should hold for arbitrary a A(s) and b B(s) and show that
G,,EJK A x'5) = -Gj, HJ B(x’ x”,s). (Note that this result is consistent with the result of Exercise
28.8-6.)

Exercise 28.8-8

Let { AR A} {E H A}(x,x ,s) be the electromagnetlc field atx that is causally radiated by
the pomt source at x’ w1th volume source density {J [ K A} = {0 A(s)é(x —x")} and let
{E,c H B} {EkB H B}(x x”,s) be the electromagnetlc field atx that is causally radiated by the
point source at x” thh volume source density {J 8K B} = {0, bB(s)cS(x —x")}, withx” # x”.
The two sources radiate in adjoint media occupying the entire °, The standard provisions given
in Section 28.1 for handling an unbounded domain are made. (a) Apply the reciprocity theorem
(Equation (28.4-7)) to the entire 9(3. (b) Write

EP=GE A wxbs), AP =G Awxs)b),
EB= G,ff B b9, AP =GP 9b ),

invoke the condition that the result should hold for arbitrary b A(s) and b B(s) and show that
GHK A(x x S) GHKB(x/ ” )

HKB

Exercise 28.8-9

Give the expressions for the time-domain Green’s functions (a) G (x x,1), (b) G (x,x 5,
©G (x,x ), (d) GHK(xx 0, for a homogeneous isotropic, lossless medium W1th permit-
t1v1ty £ and permeablhty 4 that occupies the entire 1{ (Hint: Use Equations (26.4-7)—(26.4-11).)

Answers:

@ G =-10,Glex,1)0, 5+ 73,3 L,Glxx’ 1) ,
EK ’

®) G ==t 0,GCxX'1) ,
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©) Gt =& mpdnCE't),
(@ Gplg( =~£9,G(x,X,1)0p, ; + ;[lapathG(x, X0,
in which

ot — |x —x'|/c)

Glxx't) = —m for |x-x'|#0, withc= (e;t)_l/2

Exercise 28.8-10

Give the expresswns for the complex frequency -domain Green’s functions (a) G (x X', 8),
(b) G (x x's), © G, (x x,s), (d) GHK(x x',5) for a homogeneous, isotropic, medlum with
transverse adm1ttance per length 7 and longltudmal impedance per length C that occupies the
entire ®3. (Hint: Use Equations (26.3-1)—(26.3-5).)

AnswerS'
(a) ,k /= {6k, 5)0pk +1] ) G xxs)
(b) G,EJK— ~Ep.1,j%n Gx,x,s),
(©) (A;kaJ= Epm, Om G(x, 5,
@ GIF=-i6ux,)s, ;+E719,9,60x,5),
in which
Gy = 2D Mo, with= (D%

4rlx - x’|

Exercise 28.8-11

Show that Equation (28.8-35) follows from Equation (28.8-13) and Equation (28.8-44) from
Equation (28.8-22) by taking the Laplace transform with respect to time.

28.9 The direct (forward) scattering problem

The configuration in an electromagnetic scattering problem generally consxsts of a background
medium with known electromagnetic properties, occupying the entire ®3 (the “embedding”),
in which, in principle, the radiation from given, arbitrarily distributed electromagnetic sources
can be calculated with the aid of the theory developed in Section 28.8. In the embedding, an
electromagnetically penetrable object of bounded support D° (the “scatterer”) is present, whose
known electromagnetic properties differ from the ones of the embedding (Figure 28.9-1).

The scatterer is electromagnetically irradiated by given sources located in the embedding,
in a subdomain outside the scatterer. The problem is to determine the total electromagnetic field
in the configuration. The standard procedure is to calculate first the so-called “incident”
electromagnetic field, i.e. the wave field that would be present in the entire configuration if the
object showed no contrast with respect to its embedding. (This can be done by employing the
representations derived in Section 28.8.) Next, the total wave field is written as the superposition
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incident
ave field

28.9-1  Scattering configuration with embedding K3 and scattering object 2*.

of the incident wave field and the “scattered” wave field, and, through a particular reasoning,
the problem of determining the scattered wave field is reduced to calculating its equivalent
contrast source distributions, whose common support will be shown to be the domain D*
occupied by the scatterer. The standard provisions of Section 28.1 for handling an unbounded
domain are made. Both the incident wave field and the scattered wave field are causally related
to the action of their respective sources.

Time-domain analysis

In the time-domain analysis of the problem, the electromagnetic properties of the embedding
are characterised by the relaxation functions {gg ..u;p,} = {& .44 p}(%,), Which are causal
functions of time. The electromagnetic properties of the scatterer are characterised by the
relaxation functions {eg .45} = {8 .44 ) (x.1), which are causal functions of time as well. The
cases of an instantaneously reacting embedding and/or an instantaneously reacting scatterer
easily follow from the more general cases for media with relaxation. The contrast in the medium
properties only differs from zero in D%, and hence

{8/2, - ek,r,ﬂj,sp - u;p} =1{0,0} for xeD® ,, (28.9-1)

where D° is the complement of DUdD® in ®3, i.e. the part of &> that is exterior to D°. The
incident wave field is denoted by
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(B} Hp) = (E;Hp)(x)  forxex?, (28.9-2)

and is considered to be known. (Once its generating sources are given, the expressions of the
type derived in Section 28.8 yield the wave-field values at any xeR3.) The total wave field is
denoted by

{E,.H,} = (E.H,)(xf) forxex’, (28.9-3)
and the scattered wave field by

{ESHSY = (E H})(xr)  forxe®®, (28.9-4)
Then,

(EH,) = {E}+ESHy + HS)  forxe®’. (28.9-5)

First, we investigate the structure of the electromagnetic field equations in the domain 2°
occupied by the scatterer. Since the sources that generate the total wave field are located in the
domain exterior to the scatterer, the total wave field is source-free in D%, and hence

~Etm,pOmHp + 0Cyleg poEpixt) =0 for xeD’, (28.9-6)
& OnEy + O,Ci1y pHyixf) =0 for xe D', (28.9-7)

Since the sources that generate the total wave field would also generate the incident wave field,
also this part of the wave field is source-free in D%, and hence

—Etm Oy + 9C e By x) =0 forxeD, (28.9-8)
&nrOnE, +0Ciuy ppHyx) =0 forxed". (28.9-9)

In view of Equation (28.9-5), Equations (28.9-6)—(28.9-9) lead to equations with the scattered
wave field on the left-hand side that can, alternatively, be written as

~Efm, pameS +0,Clep By i18) = —0,Cley — Ek,,.,E,.i ) forxeD’, (28.9-10)

&mrOnEy + 3C (1 p o) = =3,Cyuy ~ y poHyixt)  for xeD’, (28.9-11)
or as

&, pOmHp + OCylep By X,8) = —0,Cyle, — & pEpixt)  for xe D, (28.9-12)

&, OnEr + 0, Co(ty pHyy i5,) = =0,C(itfy ~ j poHpist)  for xeD’, (28.9-13)

Equations (28.9-10) and (28.9-11) express that the scattered wave field in 2° can be envisaged
as to be excited through both the presence of a contrast in the medium properties and the
presence of an incident wave field. If either of the two is absent, the scattered wave field
vanishes in D% This system of equations customarily serves as the starting point for the
wave-field computation via a numerical discretisation procedure applied to the pertaining
differential equations (finite-difference or finite-element techniques).

Equations (28.9-12) and (28.9-13) express that the scattered wave field can be envisaged as
to be generated by contrast sources (with support D°) radiating into the embedding. This system
of equations customarily serves as the starting point for the wave-field computation via an
integral equation approach. This aspect, for which we also need the electromagnetic field
equations that govern the wave field in l)sl, will be further discussed below. Now, in D* the
scattered wave field is source-free since the (actual) total wave field and the (calculated)
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incident wave field are assumed to be generated by the same source distributions. Consequently
(note that in D% the medium parameters are the ones of the embedding),

—ek)m’pame +Cyler . Epx0)=0  for xeD®’ , (28.9-14)

& sy + iy poHx$) =0 forxeD® (28.9-15)
Equations (28.9-12) and (28.9-13), and (28.9-14) and (28.9-15) can be combined to

~Etm pOmHy + Cller B k) = —(J50)  for xe{D’ D), (28.9-16)

EmpOnEs + Cliy poHy ) =—(K0)  for xe{n’0%), (28.9-17)
where

T =0C(epr — ex pEpixt)  forxen® (28.9-18)

is the equivalent contrast volume source density of electric current and
K =0,Cyujp — pj poHyixt)  forxeD® (28.9-19)

is the equivalent contrast volume source density of magnetic current. If the contrast volume
source densities J;§ and st were known, Equations (28.9-16) and (28.9-17) would constitute a
direct (forward) source problem in the embedding of the type discussed in Section 28.8. As yet,
however, these contrast volume source densities are unknown.

To construct a system of equations from which the scattering problem can be solved, we
employ the source type integral representations for the scattered wave field (see Equations
(28.8-13) and (28.8-22)), viz.

E, S = J. C (G, i) x’x )+ C (Gr ¥ ,K S, x,t)] dv  for x’eiI(3 , (28.9-20)
Hps(x’,t) =J DS[C,( % Jk x,x0+C/(G p j K ,x,t)] v forx’e®®, (28.9-21)

in which the Green’s functions apply to a medium with the same electromagnetic properties as
the embedding. Writing Equations (28.9-18) and (28.9-19) with the aid of Equation (28.9-5) as

T =0C ef,— ex pEy +ESixt)  forxep?, (28.9-22)
K =0,Cywy —wy poHy + Hywf)  for xeD?, (28.9-23)

and invoking Equations (28.9-20) and (28.9-21) for x’eD®, a system of integral equations result
from which J§{ and K; * can be solved. Once these quantities have been determined, the scattered
wave field can be calculated in the entire configuration by reusing Equations (28.9-20) and
(28.9-21) for all xe®>, and since the incident wave field was presumably known already, the
total wave field follows.

Except for some simple geometries, where analytic methods can be employed, the integral
equations for the scattering of electromagnetic waves have to be solved with the aid of numerical
methods. The circumstance that the Green’s tensors are singular when x’ = x presents
difficulties, in the sense that in the neighbourhood of x” the integrations with respect to x cannot
be evaluated by a simple numerical formula (such as the tetrahedral formula, which is the
three-dimensional equivalent of the one-dimensional trapezoidal formula), but have to be
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evaluated by a limiting analytic procedure. For the rest, the application of numerical methods
to the relevant integral equations presents no essential difficulties.

Complex frequency-domain analysis

In the complex frequency-domain analysis of the problem, the electromagnetic properties of
the embedding medium are characterised by the functions {ﬁk r,C y p} {7k ,,CJ ) (x,sA) The
electromagneuc properties of the scatterer are characterised by the functions {’7k ,,C] b} =
{7 /4 ,,C . p}(x s). The contrast in medium propemes only differs from zero in D%, and hence

{ﬂk,, - nk‘,,Cj,P - Zj,p} = {0,0} for xeD® , (28.9-24)
where D% is the complement of D5UJD® in R, i.e. the part of ®3 that is exterior to . The
incident wave field is denoted by

(ELAY ={E A (xs)  forxe®’, (28.9-25)

and is considered to be known. (Once its generating sources are given, the expressions of the
type derived in Section 28.8 yield the wave-field values at any xe®>.) The total wave field is
denoted by

{E.A) ={A.E)xs) forxex’, (28.9-26)
and the scattered wave field by

(EXE) = (E5 B xs)  forxe . (28.9-27)
Then,

(E B} = (B +ESH +HS)  forxe® . (28.9-28)

First, we investigate the structure of the complex frequency-domain electromagnetic field
equations in the domain 2° occupied by the scatterer. Since the sources that generate the total
wave field are located in the domain exterior to the scatterer, the total wave field is source-free
in D, and hence

~Etm,pOm by + i Er=0  forxe’, (28.9-29)
EmpOnbyr+ EoH, =0  forxes® (28.9-30)

Since the sources that generate the total wave field would also generate the incident wave field,
also this part of the wave ﬁeld is source-free in D, and hence

~Efem,pOm H +i,Er =0 forxed’, (28.9-31)
%,n,ranEr+§,-,pHp=0 for xe D", (28.9-32)

In view of Equation (28.9-28), Equations (28.9-29)-(28.9-32) lead to equations with the
scattered wave field on the left-hand side that can, alternatively, be written as

i mpOmHy + HerEr = =g, — A E)  forxen®, (28.9-33)
Enponky +CpHy ==, ~E; )H,  forxen’, (28.9-34)
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or as
~Em,pOmHly + ﬁk ,z?: Y= (g~ E,  forxed’, (28.9-35)
EngOnky + &l =~ ~ € )H,  forxeD’. (28.9-36)

Equations (28.9-33) and (28.9-34) express that the scattered wave field in D can be envisaged
as to be excited through both the presence of a contrast in the medium properties and the
presence of an incident wave field. If either of the two is absent, the scattered wave field
vanishes in ©° This system of equations customarily serves as the starting point for the
wave-field computation via a numerical discretisation procedure applied to the pertaining
differential equations (finite-difference or finite-element techniques).

Equations (28.9-35) and (28.9-36) express that the scattered wave field can be envisaged as
to be generated by contrast sources (with support %) radiating into the embedding. This system
of equations customarily serves as the starting point for the wave-field computation via an
integral equation approach. This aspect, for which we also need the electromagnetic field
equations that govern the wave field in ©°, will be further discussed below. Now, in D% the
scattered wave field is source-free since the (actual) total wave field and the (calculated)
incident wave field are assumed to be generated by the same source distributions. Consequently
(note that in D% the medium parameters are the ones of the embedding),

~Em,pOm H +,Er =0 for xen®, (28.9-37)
En Onby + Cj,pHp =0 forxeD®. (28.9-38)
Equations (28.9-35) and (28 9-36), and (28.9-37) and (28.9-38), can be combined to
~EmpOmHy + 1, ES =—1J$ 0} forxe{n’ o), (28.9-39)
EimsOnky + & A, =—{st 0} forxe{D’D%}. (28.9-40)
where
JE =g~ ), forxen® (28.9-41)

is the equivalent contrast volume source density of electric current and
Ki=@Clp-CpH,  forxep® (28.9-42)

is the equivalent c contrast volume source density of magnetic current. If the contrast volume
source densities J;§ r and K?# were known, Equations (28.9-39) and (28.9-40) would constitute
a direct (forward) source problem in the embedding of the type discussed in Section 28.8. As
yet, however, these contrast volume source densities are unknown.

To construct a system of equations from which the scattering problem can be solved, we
employ the source type integral representations for the scattered wave field (see Equations
(28.8-35) and (28.8-44)), viz.

ES(,s) = J- [éﬁcj(x’,x,s)fks(x,s)-b-CA;,,E]K(x',x,s)IE'js(x,s)] dv  forx'er>, (28.9-43)

ﬁps o, s) =J. o, k(x x,5)J; K(,8) + Gy (x X s)K (x,s)} for x’eﬂ(s , (28.9-44)
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in which the Green’s functions apply to a medium with the same electromagnetic properties as
the embedding. Writing Equations (28.9-41) and (28.9-42) with the aid of Equation (28.9-28)
as

I = Gito =B} + B forxeD), (28.9-45)
R =S, -G )HE+Hy)  forxeD’, (28.9-46)

and invoking Equations (28.9-43) and (28.9-44) for x’e D%, a system of integral equations result
from which J £ and K js can be solved. Once these quantities have been determined, the
scattered wave field can be calculated in the entire configuration by reusing Equations (28.9-43)
and (28.9-44) for all xe®>, and since the incident wave field was presumably known already,
the total wave field follows.

Except for some simple geometries (see, for example, Bowman, Senior and Uslenghi 1969),
where analytic methods can be employed, the complex frequency-domain integral equations
for the scattering of electromagnetic waves have to be solved with the aid of numerical methods.
The circumstance that the Green’s tensors are singular when x” = x presents difficulties, in the
sense that in the neighbourhood of x’ the integrations with respect to x cannot be evaluated by
a simple numerical formula (such as the tetrahedral formula, which is the three-dimensional
equivalent of the one-dimensional trapezoidal formula), but have to be evaluated by a limiting
analytic procedure. For the rest, the application of numerical methods to the relevant integral
equations presents no essential difficulties. Recent advances on this subject can be found in Van
den Berg (1991) and in Fokkema and Van den Berg (1993).

28.10 The inverse source problem

The configuration in an electromagnetic inverse source problem generally consists of a
background medium with known electromagnetic properties, occupying the entire ®3 (the
“embedding”), in which, in principle, the radiation from given, arbitrarily distributed electro-
magnetic sources can be calculated with the aid of the theory developed in Section 28.8. In the
embedding an, either known or guessed, bounded domain DT is present in which electromag-
netically radiating sources of unknown nature and unknown spatial distribution are present.
The presence of these sources manifests itself in the entire embedding. In some bounded
subdomain D% of 'J{3, and exterior to DT, the radiated electromagnetic field is accessible to
measurement (Figure 28.10-1).

We assume that the action of the radiating sources can be modelled by volume source
densities of electric current and magnetic current. The objective is to reconstruct these volume
source densities with support DT from (a set of) measured values of the electric field strength
and/or the magnetic field strength in D*. Since the inverse source problem is, by necessity, a
remote sensing problem, the global reciprocity theorems of Sections 28.2-28.5 can be expected
to provide a means for interrelating the known, measured wave-field data with the unknown
source distributions. The standard provisions of Section 28.1 for handling an unbounded domain
are made. The radiated wave field is, by its nature, causally related to the sources by which it
is generated. For gathering maximum information, the reciprocity theorems are applied to the
domain interior to a closed surface 2 that completely surrounds both T and D®. If necessary,
measurement on $ can also be carried out.
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Time-domain analysis

In the time-domain analysis of the problem, the electromagnetic properties of the embedding
medium are characterised by the relaxation functions {ex,rttjp} = {€k,r5,p} (x,8), which are
causal functions of time. The case of an instantaneously reacting embedding medium easily
follows from the more general case of a medium with relaxation. The causally radiated
electromagnetic field is denoted by {E,T ,HpT} = {E,T ,HPT} (,0).

First, the measured electromagnetic field data are interrelated with the unknown source
distributions {J,T ,KjT} = {JkT,KjT}(x,t) via the global time-domain reciprocity theorem of the
convolution type, Equation (28.2-7). This theorem is applied to the domain interior to the closed
surface $%. In it, we take for state A the actual state present in the configuration, i.e.

EAEN @) = (ENH ) forxe®, (28.10-1)
UAKM @) = (UK ) forxe”, (28.10-2)
and
A A 3
{ek’,,yj,p}(x,t) = { &g, p} (00) forxe® . (28.10-3)

For state B, we take a “‘computational” or “observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

(ELH Yo = (BEH Y p)  forxe®’, (28.10-4)
and its source distributions will be taken to have the support D% ie.
PR = (JP K ) forxeD®. (28.10-5)

Furthermore, the medium properties of the embedding in state B will be taken to be the adjoint
of the ones in state A, i.e.

B
(Ergoltp ) (60) = (et p)(e8)  forxe®’ . (28.10-6)
Then, application of Equation (28.2-7) to the domain interior to §* yields

J' [Chad By - Cu& )] av
xeD”

= J [CP B ) - Cuiy H, )| av
xeD?
+Emrp J- V| CUE B3 - CU(E Hy )] da (28.10-7)
xes

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known, provided that the necessary measurements pertaining to the state T and the wave-field
evaluations pertaining to the state £2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
makes a difference for the surface contribution over 5%, In case the wave-field generation in
state £ is taken to be causal, the convolutions occurring in the integral over 5% are causal as
well and the surface integral over $% vanishes since the one over a sphere with infinitely large
radius does and in between S and that sphere no sources of the radiated or computational wave
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28.10-1 Configuration of the inverse source problem: D7 is the support of the unknown radiating
sources; on D and 5% the transmitted wavefield is accessible to measurement.

fields are present. If, however, the wave-field generation in state €2 is taken to be anti-causal,
the convolutions occurring in the integral over $* are not causal and the surface integral over
5% does not vanish, although its value is a constant for each choice of the source distributions
in state €2 (see Exercise 28.2-2).

Secondly, the measured electromagnetic field data are interrelated with the unknown source
distributions {JkT,KjT} = {JkT,I('jT}(x,t) via the global time-domain reciprocity theorem of the
correlation type, Equation (28.3-7). This theorem is applied to the domain interior to the closed
surface $°. In it, we take for state A the actual state present in the configuration, i.e.

(EAHEM e = (ELH ) forxe®’, (28.10-8)
AR e = (LK) forxed, (28.10-9)
and
A A 3
{e,ryp}et) = (et pl(xt)  forxex”. (28.10-10)

For state B, we take a “‘computational” or “observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

(ECHPY o) = (ECH Y op)  forxe®’, (28.10-11)
and its source distributions will be taken to have the support 9)9, ie.

PR e = (JAKS ) forxen®. (28.10-12)
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Furthermore, the medium properties of the embedding in state B will be taken to be the
time-reverse adjoint of ones in state A, i.e.

B B 3
{&rgottp, jY 00,8y = (e ). T )} () forxeR . (28.10-13)
Then, application of Equation (28.3-7) to the domain interior to §* yields

Q. T
- I [CUE TED w0 + Cu& T (H x| dv
xep”
£ £,
= J’ . [COAE ) + C UK Hy x| dv
xe

+ Erp J i [CUE T )53, + CLU(E ) By )] A (28.10-14)
XES
The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known provided that the necessary measurements pertaining to the state T and the wave-field
evaluations pertaining to the state £ are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
makes a difference for the surface contribution over 5. In case the wave-field generation in
state £ is taken to be causal, the correlations occurring in the integral over 5% are non-causal
and the surface integral over 5% does not vanish, although its value is a constant for each choice
of the source distributions in state Q (see Exercise 28.3-2). If, however, the wave-field
generation in state £ is taken to be anti-causal, the correlations occurring in the integral over
S are causal and the surface integral over 5% does vanish, since the one over a sphere with
infinitely large radius does and in between $% and that sphere no sources of the radiated or
computational wave fields are present.
For additional literature on the subject, see De Hoop (1987).

Complex frequency-domain analysis

The electromagnetic properties of the embedding medium are characterised by the relaxation
functions {7 ,.G; p} = {flgrC)p}(x.s) in the complex frequency-domain analysis of the
problem. The causally radiated -electromagnetic field is denoted by {ErT ,HPT} =
{EXHT)x.s).

First, the mi:asgred eleoAtrorAnagnetic field data are interrelated with the unknown source
distributions {J, kT ,KjT} ={J kT ,I(}T}(x,s) via the global complex frequency-domain reciprocity
theorem of the time convolution type, Equation (28.4-7). This theorem is applied to the domain
interior to the closed surface $%. In it, we take for state A the actual state present in the
configuration, i.e.

ELAMN @) = (B s forxe, (28.10-15)
TARM @) = (FTRN ) forxenT, (28.10-16)
and

(Dir L) 68) = (A i p) (i) forxe® . (28.10-17)
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For state B, we take a “computational” or “‘observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

ELAP 9 = (EL A ) s)  forxe®’, (28.10-18)
and its source distributions will be taken to have the support D*, i.e.
PR = (F2R ) ws)  forxen®. (28.10-19)

Furthermore, the medium properties in the embedding in state B will be taken to be the adjoint
of the ones in state A, i.e.

A B & B A &
(rplp )68 = (figpnljp)(ns)  forxes’. (28.10-20)
Then, application of Equation (28.4-7) to the domain interior to 5 yields

J‘ [jkT(x,S)é];Q (x,8) — f{jT(x,s) [?J.‘Q(x, S)] dv
xeD”
= Jm 2° [jrg (x,s)E',T(x,s) - I%pg(x,s)ﬁpT(x,s)] dv

+Emrp j i [ )8 ) - £ 0e)B, (,5)] dA (28.10-21)
XeS

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known, provided that the necessary measurements pertaining to the state T and the wave-field
evaluations pertaining to the state £2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
makes a difference for the surface contribution over S In case the wave-field generation in
state £2 is taken to be causal, the surface integral over $* vanishes since the one over a sphere
with infinitely large radius does and in between $* and that sphere no sources of the radiated
or computational wave fields are present. If, however, the wave-field generation in state 2 is
taken to be anti-causal, the surface integral over 5% does not vanish, although its value is a
constant for each choice of the source distributions in state £2 (see Exercise 28.4-4).

Secondly, the measured electromagnetic field data are interrelated with the unknown source
distributions {f kT,IA(jT} ={/J kT,I%jT}(x,s), via the global complex frequency-domain reciprocity
theorem of the time correlation t)!ffe, Equation (28.5-7). This theorem is applied to the domain
interior to the closed surface $*. In it, we take for state A the actual state present in the
configuration, i.e.

(B A MY ws) = (B A Yws)  forxe®, (28.10-22)
FEEM s = (R s forxed”, (28.10-23)
and
~A CA A - 3
{Mier G p08) = (Aol p) (0ss)  forxe®’ . (28.10-24)

For state B, we take a “computational” or “observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

(ELA Y s) = (BEA ) (xs)  forxeg’, (28.10-25)
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and its source distributions will be taken to have the support D ie.
PR ) = (FER D (xs)  forxen®, (28.10-26)

Furthermore, the medium properties in the embedding in state B will be taken to be the
time-reverse adjoint of the ones in state A, i.e.

.B 2B L 2
{Arjolp, ) 68) = (g pu=Cj )} ms)  forxe®’. (28.10-27)
Then, application of Equation (28.5-7) to the domain interior to s yields

_ J @ EL ) + R 0)A )] v
xeD”

= f Q[fﬁ(x,—s)E,T(x,s)+f(p9(x,—s)HPT(x,s)} av
xeD

+Emrp f I £ ) B 0e-s) + B (e9)H) (,5)] A . (28.10-28)
XeS

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known provided that the necessary measurements pertaining to the state T and the wave-field
evaluations pertaining to the state £2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
makes a difference for the surface contribution over 5. In case the wave-field generation in
state £ is taken to be causal, the surface integral over 5 does not vanish, although its value is
a constant for each choice of the source distributions in state £2 (see Exercise 28.5-4). If,
however, the wave-field generation in state £ is taken to be anti-causal, the surface integral
over 5* vanishes since the one over a sphere with infinitely large radius does and in between
5% and that sphere no sources of the radiated or computational wave fields are present.

A solution to the inverse source problem is commonly constructed as follows. For the source
distributions in the computational state £2 we take a sequence of M linearly independent spatial
distributions with the common spatial support D*. The corresponding sequence of electromag-
netic field distributions (in the medium adjoint, or time-reverse adjoint, to the actual one) is
computed. Next, the unknown source distributions are expanded into an appropriate sequence
of N expansion functions with the common spatial support D7 or a subset of it; the
corresponding expansion coefficients are unknown. Substitution of the results in Equations
(28.10-7), (28.10-14), (28.10-21) or (28.10-28) and evaluation of the relevant integrals leads
to a system of M linear algebraic equations with N unknowns. When M < N, the system is
underdetermined and cannot be solved. When M = N, the system can be solved, unless the
pertaining matrix of coefficients is singular. However, even if this matrix is non-singular, it
turns out to be ill-conditioned in most practical cases. Therefore, one usually takes M > N, and
abest fit of the expanded source distributions to the measured data is obtained by the application
of minimisation techniques (for example, least-square minimisation). Note that each of the
Equations (28.10-7), (28.10-14), (28.10-21) or (28.10-28) leads to an associated inversion
algorithm.

The computational state 2 is representative for the manner in which the measured data are
processed in the inversion algorithms. Since a computational state does not have to meet the
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physical condition of causality, there is no objection against its being anti-causal. Which of the
two possibilities (causal or anti-causal) leads to the best results as far as accuracy and amount
of computational effort are concerned, is difficult to judge. Research on this aspect is still in
full progress (see Fokkema and Van den Berg 1993).

It is to be noted that the solution to an inverse source problem is not unique because of the
existence of non-radiating source distributions (i.e. non-zero distributions with the support
DT that yield a vanishing wave field in the domain exterior to DY), Therefore, a numerically
constructed solution to an inverse source problem is always a solution (and not the solution)
that depends on the solution method employed.

Examples of electromagnetic inverse source problems are found in radio-astronomy where
radio stars serve as a source of electromagnetic radiation.

28.11 The inverse scattering problem

The configuration in an electromagnetic inverse scattering problem generally consists of a
background medium with known electromagnetic properties, occupying the entire %3 (the
“embedding”), in which, in principle, the radiation from given, arbitrarily distributed electro-
magnetic sources can be calculated with the aid of the theory developed in Section 28.8. In the
embedding an, either known or guessed, bounded domain D° (the “scatterer”) is present in
which the medium properties show an unknown contrast with the ones of the embedding. The
contrasting domain is irradiated by an incident electromagnetic field that is generated by sources
in some subdomain ' of ®3 and that propagates in the embedding. The presence of the
contrasting domain manifests itself through the presence of a non-vanishing scattered electro-
magnetic field in the entire embedding. In some bounded subdomain D of ﬂé, and exterior to
D%, the scattered electromagnetic field is accessible to measurement (Figure 28.11-1).

The objective is to reconstruct the medium parameters (or their contrasts with the ones of
the embedding) from (a set of) measured values of the electric field strength and/or the magnetic
field strength in D2, Since the inverse scattering problem is, by necessity, a remote sensing
problem, the global reciprocity theorems of Sections 28.2-28.5 can be expected to provide a
means for interrelating the known, measured wave-field data with the unknown medium
properties in the scattering region. The standard provisions of Section 28.1 for handling an
unbounded domain are made. The scattered wave field is, by its nature, causally related to the
contrast sources by which it is generated. For gathering maximum information, the reciprocity
theorems are agplied to the domain interior to a closed surface 5% that completely surrounds
both D’ and D™, If necessary, also measurements on S5 can be carried out. In general, DS and
D' are disjoint, as well as 2° and D%, This need not be the case for D' and fD‘Q; these domains
may have a non-empty cross-section.

The incident, scattered and total wave fields are introduced as in Section 28.9. Now, the
easiest way to address the inverse scattering problem is to consider it partly as an inverse source
problem with the contrast volume source densities as the unknowns, where the non-uniqueness
of the contrast volume source distributions is to be removed by invoking the remaining
conditions to be satisfied. In the latter, the condition that the reconstructed contrast-in-medium
parameters must be independent of the incident wave field plays a crucial role. Once the contrast
volume source distributions have been determined, the scattered wave field is, following the
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28.11-1 Conﬁguranon of the inverse scattering problem: D is the support of the unknown contrast in
medium properties; on D% and 5% the scattered wavefield is accessible to measurement.

procedures of Section 28.9, calculated in the domain D° and since the incident wave field and
the medium parameters of the embedding are known, the parameters of the medium in D°
follow.

Time-domain analysis

In the time-domain analysis of the problem, the electromagnetic properties of the embedding
medium are characterised by the relaxation functions {& ,.u; ,} = { Ek,r,ﬂj’p}(x,t), which are
causal functions of time. The case of an instantaneously reacting embedding medium easily
follows from the more general case of a medium with relaxation. The unknown electro-
magnetlc properties of the scatterer are characterised by the relaxation functions {¢; b, p}
{eg i, p}(x 1), which are causal functions of time as well. The incident wave field is
{E; Hp}= {E,‘,H‘}(x 1), the scattered wave field is { E;H;;} = {E; ,H }(x,f) and the total wave
field is {E,Hp} ={E,,H,}(x,1), with {E,H,} = {E}+ E€H '+ H S} Thc equivalent contrast
volume source distributions that generate the scattered wave ﬁeld are then (see Equations
(28.9-18) and (28.9-19))

Ji = C,(s,:, — & pEsxt)  for xeD", (28.11-1)
st = C,(uj?p - ,uj,p,Hp;x,t) for xe D, (28.11-2)
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First, the measured scattered wave-field data are interrelated with the unknown contrast
source distributions {J§, K }={JEK s)(x,t) via the global time-domain reciprocity theorem of
the convolution type, Equatlon (28.2- 7) This theorem is applied to the domain interior to the
closed surface 5. In it, we take for state A the actual scattered state present in the configuration,
ie.

{ErA,HA}(x D={ESH ) forxe®’, (28.11-3)

i K A)et) = {JE.K '} )  forxeD’, (28.11-4)
and

{eiitn) (60 = (it p)(et)  forxe®’. (28.11-5)

For state B, we take a “computational” or “observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

(EPHP) ot = (ESH )k  forxe®, (28.11-6)
and its source distributions will be taken to have the support D ie.
VR KRy = (TS 00p)  forxen®. (28.11-7)

Furthermore, the medium properties in the embedding in state B will be taken to be the adjoint
of the ones in state A, i.e.

B B 3
{erjottp, j}x,0) = {&r, ot p} 2,0) for xe® . (28.11-8)
Then, application of Equation (28.2-7) to the domain interior to $% yields

J. T[C,(JkS,E,f?;x,t) - /(K H x| dv
xeD

Q2 2
= LEDQ [CL02E ) - C (K, Hyn)| dv

+ Emrp J m [CA(B H s.t) - CUE, Hy)| dA (28.11-9)
X€ES

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known provided that the necessary measurements pertaining to the state s and the wave-field
evaluations pertaining to the state £ are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generatlon of the wave field by its sources. This
makes a difference for the surface contribution over $%. In case the wave-field gcneratlon in
state £ is taken to be causal, the convolutlons occurring in the integral over 5% are causal as
well and the surface integral over 5% vanishes since the one over a sphere with infinitely large
radius does and in between s and that sphere no sources of the scattered or computational
wave fields are present. If, however, the wave-field generahon in state £2 is taken to be
anti-causal, the convolutions occurring in the integral over 5% are not causal and the surface
integral over S does not vanish, although its value is a constant for each choice of the source
distributions in state £2 (see Exercise 28.2-2).

Secondly, the measured scattered wave-field data are interrelated with the unknown contrast
source distributions {J§,K;*} = {J¢,K;*} (x,) via the global time-domain reciprocity theorem of
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the correlation type, Equation (28.3-7). This theorem is applied to the domain interior to the
closed surface 5%, In it, we take for state A the actual scattered state present in the configuration,
ie.

(EAHMN 0 = (ESHS) () forxe®, (28.11-10)
AR @) = (JEKS ) (xh  forxeD', (28.11-11)
and
A A 3
{ex,rtjplet) = {ex,rt,p} (1) for xe®’ . (28.11-12)

For state B, we take a “‘computational” or “observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

(ECH ) wn = {ESH )  forxex’, (28.11-13)
and its source distributions will be taken to have the support D2 ie.
TR o = (U2 K ) forxeD®. (28.11-14)

Furthermore, the medium properties of the embedding in state B will be taken to be the
time-reverse adjoint of the ones in state A, i.e.

B B
(ettt} 00t) = (T (e )y )0ty for xe®’ . (28.11-15)
Then, application of Equation (28.3-7) to the domain interior to 5 yields

Q 2
_ J' [T ED 0 + O T H )] av
xeD"
Q 2
= J Q[C,(J,(J, )ESx.0) + C (K Hy,)) dV
xeD

+Emrp J- I CUES T (Hx,0) + CL OB, Hyt)| dA (28.11-16)
XxeS$

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known provided that the necessary measurements pertaining to the state s and the wave-field
evaluations pertaining to the state £2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
makes a difference for the surface contribution over S*. In case the wave-field generation in
state £2 is taken to be causal, the correlations occurring in the integral over $*? are non-causal
and the surface integral over 5% does not vanish, although its value is a constant for each choice
of the source distributions in state 2 (see Exercise 28.3-2). If, however, the wave-field
generation in state 2 is taken to be anti-causal, the correlations occurring in the integral over
$% are causal and the surface integral over 5% vanishes since the one over a sphere with
infinitely large radius does and in between $% and that sphere no sources of the scattered or
computational wave fields are present.

A solution to the time-domain inverse scattering problem is commonly constructed as
follows. First, the contrast-in-medium parameters are discretised by writing them as a linear
combination of M expansion functions with unknown expansion coefficients. Each of the
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expansion functions has D5, or a subset of it, as its support. Next, for each given incident wave
field, the scattered wave field is measured in N subdomains of ©. The latter discretisation
induces the choice of the N supports of the source distributions of the observational state.
Finally, a number I of different incident wave fields is selected, where “different” may involve
different choices in temporal behaviour, in location in space, or in both. With NI > M, the
non-linear problem of evaluating the M expansion coefficients of the contrast-in-medium
discretisation is solved by some iterative procedure (for example, by iterative minimisation of
the global error over all domains where equality signs should pointwise hold, and all time
intervals involved). In this procedure, Equations (28.11-1), (28.11-2), (28.11-9) or (28.11-16)
and the source type integral representations (28.9-20) and (28.9-21) are used simultaneously.

Complex frequency-domain analysis

In the complex frequency-domain analysis of the problem, the electromagnetic properties of
the embedding medium are characterised by the relaxation functions {#,.¢; ip) =
{ﬂk ,,C i p}(x,s) The unknown electromagnetic properties of the scatterer are charactensed by
the relaxation functions {nkr,CJ p}= {né r,CJ p}(x,s). The incident wave field is {E,,H } =
{Er ,H }(x.5), the scattered wave field is { ESH s] ={ E, ,H s}(x,s) and the total wave fleld is
{E } {E,,H }x,s), with {E,,H }= {E i E $ H i Hps} The equivalent contrast volume
source d1stnbut10ns that generate the scattered wave ﬁeld are then (see Equations (28.9-41) and
(28.9-42)).

Jg = (g, - DE,  forxen’, (28.11-17)
R=(ES,~E B,  forxeD (28.11-18)

First, the measured scattered wave-field data are interrelated with the unknown contrast
source distributions {f ks,f{js} via the global complex frequency-domain reciprocity theorem of
the time convolution type, Equation (28.4-7). This theorem is applied to the domain interior to
the closed surface S*. In it, we take for state A the actual scattered state present in the
configuration, i.e.

EAAMN @) = (ESHS)(xs)  forxex’, (28.11-19)
(FARMs) = (FERS)(x,s)  forxeD®, (28.11-20)
J k»2j
and
AA 2A A £ 3
{7k, rCj pt (x8) = {7k, oG iplGes)  forxex”. (28.11-21)

For state B, we take a “computational” or “observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

{EkBﬁjB}(x,S) = {Ekg,l‘?jg}(x,S) for xe®” (28.11-22)
and its source distributions will be taken to have the support D ie.

(PR ) = (JE2R ) (s)  forxeD®. (28.11-23)
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Furthermore, the medium properties of the embedding in state B will be taken to be the adjoint
of the ones in state A, i.e.

B 2B .2 3
{ﬂr,bép,j}(x»s) = {ﬂk,th,p}(x’s) forxex . (28.11-24)
Then, application of Equation (28.4-7) to the domain interior to s% yields

J- [é@oES (ws) - K o) es) | av
xeD

A Q A A A
= LDQ B ) = R, () By s AV

+ Emrp J I (B B 0s) - B2 e A (,5)) dA . (28.11-25)
b =A)

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known provided that the necessary measurements pertaining to the state s and the wave-field
evaluations pertaining to the state £ are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
makes a difference for the surface contribution over $%. In case the wave-field generation in
state © is taken to be causal, the surface integral over 5% vanishes since the one over a sphere
with infinitely large radius does and in between 5% and that sphere no sources of the scattered
or computational wave fields are present. If, however, the wave-field generation in state £ is
taken to be anti-causal, the surface integral over 5% does not vanish, although its value is a
constant for each choice of the source distributions in state 2 (see Exercise 28.4-4).

Secondly, the measured scattered wave-field data are interrelated with the unknown contrast
source distributions {f ,f,kjs} = {f ks,f(js}(x,s) via the global complex frequency-domain reci-
procity theorem of the time correlation type, Equation (28.5-7). This theorem is applied to the
domain interior to the closed surface $%. In it, we take for state A the actual scattered state
present in the configuration, i.e.

(EAEM @) = (ESHS)(xs)  forxe®’, (28.11-26)
FARMs) = (FERS ) s)  forxed’, (28.11-27)
and
~A ¢A A & 3
(i3} 055) = Uy p)(0s)  forxes’. (28.11-28)

For state B, we take a “‘computational” or “observational” one; this state will be denoted by the
superscript £2. The corresponding wave field is

ELAP ) = (ELA s forxe’, (28.11-29)
and its source distributions will be taken to have the support D2 ie.
PR ) = (FP R s)  forxeD®. (28.11-30)

Furthermore, the medium properties of the embedding in state B will be taken to be the
time-reverse adjoint of the ones in state A, i.e.
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AB 2B S
(Y 08) = (=i p=C; p}ims)  forxe® . (28.11-31)
Then, application of Equation (28.5-7) to the domain interior to 5 yields

- J' 7 ES0ms) + B e5) B %x,-s)] av
xeD*
A Q A A Q A
= J' o [7 2 e=s)E 3 0r.5) + By (o) Hrs)| dV
X

+Emrp J m [0 B, ems) + E 2 ems)By0es)] 04 . (28.11-32)
xes

The left-hand side of this equation contains the unknown quantities, while the right-hand side
is known provided that the necessary measurements pertaining to the state s and the wave-field
evaluations pertaining to the state 2 are carried out. For the latter (computational) state we can
choose between either causal or anti-causal generation of the wave field by its sources. This
makes a difference for the surface contribution over $%. In case the wave-field generation in
state £2 is taken to be causal, the surface integral over 5% does not vanish, although its value is
a constant for each choice of the source distributions in state £ (see Exercise 28.5-4). If,
however, the wave-field generation in state £2 is taken to be anti-causal, the surface integral
over $* vanishes since the one over a sphere with infinitely large radius does and in between
$% and that sphere no sources of the scattered or computational wave fields are present.

A solution to the complex frequency-domain inverse scattering problem is commonly
constructed as follows. First, the contrast-in-medium parameters are discretised by writing them
as a linear combination of M expansion functions with unknown expansion coefficients. Each
of the expansion functions has 2%, or a subset of it, as its support. Next, for each given incident
wave field, the scattered wave field is measured in N subdomains of 2. The latter discretisation
induces the choice of the N supports of the source distributions of the observational state.
Finally, a number { of different incident wave fields is selected, where “different” may involve
different choices in complex frequency content, in location in space, or in both. With NI 2 M,
the non-linear problem of evaluating the M expansion coefficients of the contrast-in-medium
discretisation is solved by some iterative procedure (for example, by iterative minimisation of
the global error over all domains where equality signs should pointwise hold, and all time
intervals or complex frequency values involved). In this procedure, Equations (28.11-17) and
(28.11-18), (28.11-25) or (28.11-32) and the source type integral representations (28.9-43) and
(28.9-44) are used simultaneously.

The computational state £2 is representative for the manner in which the measured data are
processed in the inversion algorithms. Since a computational state does not have to meet the
physical condition of causality, there is no objection against its being anti-causal. Which of the
two possibilities (causal or anti-causal) leads to the best results as far as accuracy and amount
of computational effort are concerned, is difficult to say. Research on this aspect is still in full
progress (see Fokkema and Van den Berg 1993).

Examples of electromagnetic inverse scattering problems are found in the electromagnetic
environmental monitoring of waste disposal in the ground, in geophysical exploration for
minerals and fossil energy resources, and in the non-destructive evaluation of mechanical
structures.
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28.12 Electromagnetic wave-field representations in a subdomain of the
configuration space; equivalent surface sources; Huygens' principle and the
Ewald-Oseen extinction theorem

In Section 28.8, wave-field representations have been derived that express the electric field
strength and the magnetic field strength at any point of a configuration in terms of the volume
source distributions of electric current and magnetic current that generate the wave field. In
them, the point-source solutions (Green’s functions) to the radiation problem play a crucial role.
In a number of cases we are, however, only interested in the values of the wave-field quantities
in some subdomain of the configuration, and a wave-field representation pertaining to that
subdomain would suffice. In the present section it is shown, how the reciprocity theorem of the
time convolution type leads to the desired expressions, be it that now, in addition to the volume
integrals over the volume source distributions (as far as present in the subdomain of interest),
surface integrals over the boundary surface of this subdomain occur. In these representations,
again the point-source solution (Green’s functions) are the intervening kernels.

We assume that the Green’s functions introduced in Section 28.8 are defined in the entire
®3. The standard provisions of Section 28.1 for the handling of an unbounded domain are made.
Let, further, D be the subdomain of 9{3 in which expressions for the generated electromagnetic
field are to be found. The boundary surface of Dis 9 and the complement of DUID in & is
denoted by D’ (Figure 28.12-1). In fact, the relevant wave field need only be defined in 2 and
on 0. The constitutive properties must, however, be defined in the entire _'&3 in order that the
necessary point-source solutions can be defined in ®3. In this sense, %> serves as an embedding
of . The Green’s functions of the embedding are assumed to satisfy the causality conditions
at infinity.

Since the generated electromagnetic field is a physical wave field, it is causally related to
its source distributions.

Time-domain analysis

For the time-domain analysis of the problem the electromagnetic properties of the medium
present in &> are characterised by the relaxation functions {egrmp} = {ek,r,ﬂj’p}(x,t), which
are causal functions of time, and the global reciprocity theorem of the time convolution type,
Equation (28.2-7), is applied to the subdomain D of ﬂ{3. In the theorem, state A is taken to be
the generated electromagnetic field under consideration, i.e.

(EMHDY = (B H) )  forxeD, (28.12-1)
(TAKR) = Tk ) forxeD, (28.12-2)
and
A A 3
{ek,raﬂj,p} = {Ek,rvuj,p}(xat) forxex” . (28‘12'3)

Next, state B is chosen such that the application of Equation (28.2-7) to the subdomain Dleads
to the values of {E,H,} at some arbitrary point x’€D. Inspection of the right-hand side of
Equation (28.2-7) reveals that this is accomplished if we take for the source distributions of
state B a point source at x” of electric current in case we want an expression for the electric field



Electromagnetic reciprocity theorems and their applications 871

28.12-1  Configuration for the wavefield representations in the subdomain Dof the configuration space
®3 for which the Green’s functions are defined. 3D is the (smooth) boundary surface of D. The Green’s
functions satisfy causality conditions at infinity,

strength at x” and a point source at x” of magnetic current in case we want an expression for the
magnetic field strength at x’, while the medium in state B must be taken to be adjoint to the one
in state A, i.e.

B
(et} = et ) xD)  forxe®’. (28.12-4)

The two choices for the source distribution will be discussed separately below.
First, we choose

IP=a6(~x) and K, =0, (28.12-5)

where 0(x — x',#) represents the four-dimensional unit impulse (Dirac distribution) operative at
the point'x = x” and at the instant ¢ = 0, while a, is an arbitrary constant vector. The
electromagnetic field that is, for the present application, radiated by this source and satisfies
the causality condition at infinity, is denoted as

(Ee-HPY = (B H Py, - (28.12-6)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. In view of Equation (28.12-5) and the
properties of 6(x — x',f), we have

.[ [C2 P ) - Cuiy H ) dv
x€D

= J. Cya,0(x —x'\0,E,.x,0) dV = a, . E (X, )xpx")  for x’eﬂ{3 , (28.12-7)
xeD

where
o) ={140}  forx'e{(D,o0D,D'} (28.12-8)
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is the characteristic function of the set D, and 2 is the complement of DUJDin R?. With this,
we arrive at
’ ’ J;B . , J;B ,
@0 0xp@) = | [CUED Jgxx't) - CH™ Ky, )| dv
xeD

+e,,,,,,PJ' Vs [CUE; ™, e t) - CUEH, Pix )] A forx'ex’,  (28.12:9)
x€0D

where we have used the symmetry of the convolution in its functional arguments. From
Equation (28.12-9) a representation for E,(x’,£)x 5 (x") is obtained by taking into account that
E{’B and HjJ B are linearly related to a,. Introducing the Green’s functions through

(R H Py oex'n) = (GET 6B e day (28.12-10)
using the reciprocity relations for these functions (see Exercises 28.8-1 and 28.8-3)
EJ;B ~HJB ’ EJ EK,, ,
{Gk,r ,Gj,r }(xrx 1t) = {Gr,k v_Gr,j }(x &xyt) » (28'12‘11)

and invoking the condition that the resulting equation has to hold for arbitrary values of a,,
Equation (28.12-9) leads to the final result

4 4 EJ ’ EK ?
E (x\ 0y px") =J. [C,(G,,k X, x0) + Cy(Gy ,Kj;x,x,t)] dv
xeD

EJ
+I [CUG T~ Em pmHp 1,0)
x€dD

+C,(G,’EJ-K,ej,,,,r;v,,E,';x’,x,t)]dA for x'e®’ . (28.12-12)

Equation (28.12-12) expresses, for x’eD, the electric field strength E, of the generated
electromagnetic field atx” as the superposition of the contributions from the elementary volume
sources J; dV and K; dV at x as far as present in 2 and the contributions from the equivalent
elementary surface sources —&, ,V,,H,, dA of electric current and g;, ,v,E,» dA of magnetic
current at x on the boundary 9 of the domain of interest.

Secondly, we choose

JP=0 and K, =b,0x-x)1), (28.12-13)

where b, is an arbitrary constant vector. The electromagnetic field that is, for the present
application, radiated by this source and satisfies the causality condition at infinity, is denoted
as

EOH) = (B H ) ), (28.12-14)
where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. In view of Equation (28.12-13) and the
properties of o(x — x',7), we have

J. [CP B ) - C &, Ht ] av
xeD

= —J- C,(bpé(x -x', ),Hpx,f) dV = —prp(x’, Dxpx)  for x’eﬂf . (28.12-15)
xeD
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With this, we arrive at

’ ’ K;B ’ K;B ’
b Hy (& p() = | [CUBEP T’ t) - C(H P, K )] dv

xeD

+ Emrp J Y [CHESP, Hyix' 1) — C (B, Hy Pixxp)]|dA forx'ex’,  (28.12-16)
x€0D

where we have used the symmetry of the convolution in its functional arguments. From
Equatlon (28 12 16) a representation for Hy,(x",)x p(x") is obtained by taking into account that
E B and H& A B are are linearly related to b . Introducing the Green’s functions through

(EEPH P ) = (GERP G Py exin b, (28.12-17)
using the reciprocity relations for these functions (see Exercises 28.8-2 and 28.8-4)
(GEXR G Py ) = (-G, GIF o) (28.12-18)

and invoking the condition the resulting equation has to hold for arbitrary values of b, Equation
(28.12-16) leads to the final result

Hp(x:t)x@(x'>=J [CAG I T xn) + C(Gl Ky e av
xeD

HJ
+ J. [C,(Gp’k €k, pVmHp X X,1)
xedD

+CUG K uErxixn)]|dA  forx'eR . (28.12-19)

Equation (28.12-9) expresses, for x’eD, the magnetic field strength H,, of the generated
electromagnetic field at x” as the superposition of the contributions from the elementary volume
sources Ji dV and K; dV at x as far as present in D and the contributions from the equivalent
elementary surface sources —&y,,, v, H,r dA of electric current and g; , ,v,E, dA of magnetic
current at x on the boundary 9 of the domam of interest.

Complex frequency-domain analysis

For the complex frequency-domain analysis of the problem the electromagnetic properties of
the medium present in the embedding are characterised by the functions {78 Y P}
{7 ,,C] p}(x,s) and the global complex frequency-domain remprocuy theorem of the time-
convolution type, Equation (28.4-7), is applied to the subdomain D of &3, In the theorem, state
A is taken to be the generated electromagnetic field under consideration, i.e.

{E, , }- {E,,H }ex,s) forxeD, (28.12-20)

FAEMN = Jukj)(s)  forxen, 4 (28.12-21)
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and
{nk,r’Cj,p} - {Uk,raCj,p}(x,S) for xe® . (28'12'22)

Next, state B is chosen such that the application of Equation (28.4-7) to the subdomain ©leads
to the values of { Er,ﬁp} at some arbitrary point x’eD. Inspection of the right-hand side of
Equation (28.4-7) reveals that this is accomplished if we take for the source distributions of
state B a point source at x” of electric current in case we want an expression for the electric field
strength at x” and a point source at x” of magnetic current in case we want an expression for the
magnetic field strength at x’, while the medium in state B must be taken to be adjoint to the one
in state A, i.e.

{ﬁ,’k,f p]?j} = {ﬁk’,,f ip)@s)  for xe®>. (28.12-23)

The two choices for the source distributions will be discussed separately below.
First, we choose

JP=a, ()00 -x) and K} =0, (28.12-24)

r

where d(x — x”) represents the three-dimensional unit impulse (Dirac distribution) operative at
the point x = x’, while 4, = 4,(s) is an arbitrary vector function of s. The electromagnetic field
that is, for the present application, radiated by this source and satisfies the causality condition
at infinity, is denoted as

(BC APy = (B B oexls) (28.12-25)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. In view of Equation (28.12-24) and the
properties of d(x — x”), we have

J. [frB (x,s)‘t’:;“,A (£ X)) -KPB(x,s)ﬁpA(x,s)] dv
xeD

= J G,(5)0(x — X)E, (x,5) AV=4,(s)E (¢, 8)yp(¢")  forx'e®’. (28.12-26)
xeD

With this, we arrive at

A P ’ ’ ~J, ’\NT s r \ND
@ (S)E, (X, 8)xpx) = J [Ek B(x,x,s)J w6,s) = HjJB(x,x,s)Kj(x,s)] dav
xeD

+ Emrp J- Vm[EA,J;B(x,x’,s)Iflp(x,s)—E‘,(x,x’,s)ﬁpJ;B(x,s)]dA forx'e®’. (28.12-27)
x€dD

FromA Equation (28.12-27) a representation for £ +(¥',8)xp(x") is obtained by taking into account
that EkJ B and HjJ B are linearly related to a,(s). Introducing the Green’s functions through

P APy wxs) = (GER G PP e ) (s) (28.12-28)
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using the reciprocity relations for these functions (see Exercises 28.8-5 and 28.8-7)
(GG P w0 = (G -GN wxs), (28.12-29)

and invoking the condition that the resulting equation has to hold for arbitrary values of d,(s),
Equation (28.12-27) leads to the final result

o ’ ’ AEJ, , 7 A ’ i
E, (¢, )xp(x) = f [GE 2 ues) + GER o, x9)R ()| aV

AET, )
+ J- {G,,k (x ,x,s)[-ek,m, p Vme(x,s)]
xe0D

+ G x,s) [ej,,,,r’v,,lz"rr(x,s)]}dA for x'e®’ . (28.12-30)

Equation (28.12-30) expresses, for x’e€D, the electric field strength E of the generated
electromagnetic fleld atx’ as the superposition of the contributions from the elementary volume
sources J, 4V and K dV at x as far as present in D and the contributions from the elementary
equivalent surface sources ~Em,p¥m H dA of electric current and &, v, E, dA of magnetic
current at x on the boundary 9D of the domam of interest.

Secondly, we choose

P =0 and Ry =b,(s)5(x—x), (28.12-31)

where Ep = l;p(s) is an arbitrary vector function of s. The electromagnetic field that is, for the
present application, radiated by this source and satisfies the causality condition at infinity, is
denoted as

(ERB®) = (EFPA Pywxls), (28.12-32)

where the first spatial argument indicates the position of the field point and the second spatial
argument indicates the position of the source point. In view of Equation (28.12-31) and the
properties of 3(x ~ x"), we have

I [FPwE ) - R (o), (xs)] dV
xeD

= J' i by(5)30c — XY, (x,5) AV = ~by() K, (¢, )y p(x") forx'eR’ . (28.12-33)
xe

With this, we arrive at

~by(VH, 08,5 p (') = J [E5P 0! 5) Ty 0,5) — AP (e, 5)R; 0,5)| dv

+e,,,’,,pJA V[ EXP e, B x5) - E e ') H, P (rs)|dA forr'er’. (28.12-34)
xeoD

From Equatxon (28 12-34) arepresentation for H ,(%',5)x p(x") is obtained by taking into account
that Ek B and H B are linearly related to b 5(8)- Introducmg the Green’s functions through
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(ESP AP e, s) = (GEFP G TP e, )by (s) - (28.12-35)
using the reciprocity relations for these functions (see Exercises 28.8-6 and 28.8-8)

{Glff . JIZKB}(” 5)={~G1%.G H,K}(x,x 5), (28.12-36)

and invoking the condition that the resulting equation has to hold for arbitrary values of l;,,(s),
Equation (28.12-34) leads to the final result

y (ot ’ sHI, , - AHK )
B 9100) = | [GH x5 ixs) + GIK e x0)K ()] av
x€D

AHI, , 'y
+ J. {Gp,k (x,x,s){—e‘k,m, prumef(x,s)}
x€0D

+ G x9) g0 E,(x,s)]} forx'e®’ . (28.12-37)

Equation (28.12-37) expresses, for x’eD, the magnetic field strength fl of the generated
electromagnetic ﬁeld atx’ as the superposition of the contributions from the elementary volume
sources J. dVand K dV at x as far as present in © and the contributions from the elementary
equivalent surface sources ~Ej,m,p’VmHp dA of electric current and &, V,E, dA of magnetic
current at x on the boundary 9D of the domam of interest.

For x’eD, Equations (28.12-12), (28.12-19), (28.12-30) and (28.12-37) express the values
of the electric field strength and the magnetic field strength in some point of P as the sum of
the contributions from the volume sources of electric current and magnetic current as far as
these are present in D, and the equivalent surface sources on 9. Evidently, the equivalent
surface sources yield, in the interior of 2, the contribution to the wave field insofar that arises
from (unspecified) sources that are located in 2, i.e. in the exterior of ©. In particular, the
surface integrals in these expressions vanish in case the wave field is not only defined in 2 and
on 9D, but also in 2, if there are no sources exterior to 9D, and the wave fields in state B are
causally related to their point source excitations (see Exercises 28.2-2, 28.3-2, 28.4-4 and
28.5-4). In the latter case, Equations (28.12-12), (28.12-19), (28.12-30) and (28.12-37) reduce
to Equations (28.8-13), (28.8-22), (28.8-35) and (28.8-44), respectively.

Another property of Equations (28.12-12), (28.12-19), (28.12-30) and (28.12-37) is that the
wave field emitted by the volume sources in © and the wave field emitted by the equivalent
surface sources on 9D apparently cancel each other when x’eD’. This property is known as the
Ewald-Oseen extinction theorem (Oseen 1915, Ewald 1916).

Another special case arises when Equations (28.12-12), (28.12-19), (28.12-30) and (28.12-
37) are used in a domain in which no volume source distributions are present. Then, they express
Huygens’ principle (Huygens 1690) that states that an electromagnetic wave field due to sources
“behind” a closed surface that divides the configuration space into two disjoint regions and “in
front” of which no volume sources are present, can be represented as due to equivalent surface
sources located on that surface, while that representation yields the value zero “behind” that
surface. In particular, Huygens stated his principle for the case where the relevant surface is a
wave front of the wave motion in space-time. A number of historical details about the
development of the mathematical theory of Huygens’ principle can be found in Baker and
Copson (1950). Additional literature on the subject can be found in Blok, Ferwerda and Kuiken
(1992) and in De Hoop (1992).
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Applications of the wave-field representations in a subdomain of space, are found in the
integral equation formulation of scattering problems, while the Ewald-Oseen extinction
theorem is at the basis of the so-called “null-field method” to solve such problems.

Exercises

Exercise 28.12-1

Let Dbe a bounded subdomain of three-dimensional Euclidean space ®°. Let 3D be the closed
boundary surface of Dand denote by D’ the complement of DUdDin &>, The unit vector along
the normal to 0D, pointing away from D (i.e. towards D"), is denoted by v (Figure 28.12-2).

In the domain D’ an electromagnetic field {E,,H,} is present whose sources are located in
D, Use Equations (28.12-12) and (28.12-19) to arrive at the equivalent surface source
time-domain integral representations

’ ’ EJ ,
E (X 0xp(x) =J' [Ct(Gr,k Eheym,pVmHpi X %,8)
x€0D
EK , P
FCUGCEN &y ruEriX x4 forx'e® (28.12-38)
and
H, (X, )y ) = [C (Gms w H ' x,0)
pDX (X ) = NUp ke Ekm,pYmdp’ 3%, X,
xedD

+CGIK &) uEpix )] dA  forxex’ . (28.12-39)

Exercise 28.12-2

Let D be a bounded subdomain of three-dimensional Euclidean space &3, Let 9D be the closed
boundary surface of D and denote by D’ the complement of DUJDin &>, The unit vector along
the normal to 0D, pointing away from D (i.e. towards D), is denoted by v (Figure 28.12-2).

In the domain P’ an electromagnetic field {ﬁp,Er} is present whose sources are located in
D. Use Equations (28.12-30) and (28.12-37) to arrive at the equivalent surface source complex
frequency-domain integral representations

A B , A EJ ) A
E.(xs)xpy(x") = {Gr,k (x ’x»s)[ek,m,p Vme(x,s)]
x€0D
+ G x,s) (&) vaEy (x,s)]} dA  forx'e®’ (28.12-40)
and

Xy ’ ’ AHI, , 3,
B¢, 5) 0 (x") = I . {Gp,k X, 8) Ep Vel (35,5)
xedD

+ 6 x5) [~ 1B )] dA forver® . (28.12-41)
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28.12-2  Configuration for the equivalent surface source integral representation for an electromagnetic
field in the source-free domain D’ exterior to a bounded subdomain D of %3,
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