
3

In this chapter we analyse the properties of electromagnetic systems that are accessible via
low-frequency terminations (ports). The latter are representative for the presence of electric or
electronic systems or devices whose spatial extent is so small that the travel time for
electromagnetic waves needed to traverse the systems or devices is negligibly small compared
to the characteristic time scale on which the electromagnetic phenomena in them take place.
As a consequence, their behaviour can be described in terms of the simpler concepts of voltages
and electric currents rather than in terms of the electric and the magnetic field strengths of the
pertaining electromagnetic field. In terms of these concepts, the electromagnetic properties of
such systems are described by either their impedance matrix or their admittance matrix, both
for their local and their remote interaction. Furthermore, fundamental aspects of the electro-
magnetic interference and shielding of such systems are investigated in relation to their
ElectroMagnetic Compatibility (EMC). The reciprocity relations discussed in Chapter 28 play
an important role in the analysis.

30.1 The reciprocity surface interaction integral for a low-frequency
multipod system

In our analysis of electric and electronic devices and systems that are accessible via
low-frequency port terminations, the relation between the electromagnetic field quantities and
their low-frequency counterparts (electric) voltage and electric current is needed. This relation
holds on a closed surface $ that surrounds the accessible ports and has a maximum diameter
that is small compared to the wavelength of the electromagnetic field. The main property of
such a field is that, with sufficient accuracy, the electric field strength can be expressed as the
gradient of a scalar electric potential. For example, the near-field part of the electric field
radiated by a system of distributed electric currents present in a homogeneous, isotropic medium
(see Chapter 26) satisfies this requirement. Then, in the complex frequency-domain repre-
sentation of the field, we have
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!~r= -Or~, (30.1-1)

where ~ = ~(x,s) is the electric scalar potential. The terminals themselves are assumed to be
perfectly conducting. On them, the electric scalar potential has a constant value since the
tangential component of the electric field strength on them vanishes. In each low-frequency
N-port system further a reference point (located in the interior of the closed surface surrounding
the N?,port) is chosen where the electric scalar potential is assigned the value zero and the value
that ¢ then has on the port terminal with label a is denoted as the latter’s (electric) voltage
~a = £ra(s) (a = 1 .... ,N). In this respect it is noted that the assignment of a particular value of
the electric scalar potential to a single (reference) point does not influence the value of the
electric field strength in the domain surrounding it in view of the fact that in Equation (30.1-1)
the electric scalar potential is differentiated, which operation annihilates the influence of an
additive constant. With the use of Equation (30.1-1), the surface interaction integral in the
complex frequency-domain reciprocity theorem of the time convolution type over the surface
S that bounds the low-frequency N-port termination can then be rewritten as (Figure 30.1-1).

~    ~ A¢’.B
era’r’P ! ~’ml~’r l-lp dA =-~m,r,p I~rn(Or~ AII-~pB dA

o x~.S

= -t~m,r, p l I~m~r((i~ AHpB) dA + Em,r, p l I)m~ A~rI?lpB dA . (30.1-2)
x~S x~

However, on account of Stokes’ theorem (see Exercise 26.10-1) we have

~’m,r,p f PrnOr(~AI21pB)dA =O , (30.1-3)

since S is a closed surface and gm,r,pl~rn(~)A[212__ has been assumed to be continuouson s.
Furthermore, on account of Maxwell’s first equation we have

~’m,r,p I ~’m~)AOrf-lpB dA = f _~A.~B ^ B
X~-S

J xJmq) !’Jm "1" sD~n) dA . (30.1-4)

Now, in the low-frequency approximation, the Maxwell current density ]m + Sf)m on S is
predominantly concentrated in the conduction current density ]m carried by the conductors that
form the N-port termination. Let -~a be the cross-section of the terminal with label a(a = 1 .....N),
then

N N
^AI     ^B "A^B

= V~la ,

a=l x~-~a a=l

where Qa = ~’a(s) is the (constant) potential of the conductor with label a and

ia(s) = [ "mJm(X, )
~ X~a

(30.1-5)

(30.1-6)
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Figure 30.1 - 1
closed surface ,5.

Electromagnetic system accessible via a low-frequency N-port termination inside a

is the conduction current flowing through the conductor with label a towards (note the
orientation of the unit normal em on S) the remainder of the system. In the low-frequency
approximation therefore

N

Ern,r,p f ~’rnJ~?(X,S)[?-lpB(X,S) dA = Z ~r~(S)~B~ (S) " (30.1-7)
d xa_S                           a=l

Similar results hold for the other combinations of field components occurring in the surface
integrals in the reciprocity relations.

Exercises

Exercise 30, 1-1

Show that for a low-frequency N-port termination of an electric or electronic device the surface
interaction integral occurring in the complex frequency-domain reciprocity theorem of the time
convolution type Equation (28.4-7) can be written as

N

a=l

(30.1-8)
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(Hint: Approximate the local electric field strength by the gradient of its electric scalar potential,
use Maxwell’s first equation, and carry out the steps similar to the ones that have led to Equation
(30.1-7).)

Exercise 30, 1-2

Show that for a low-frequency N-port termination of an electric or electronic device the surface
interaction integral occurring in the time-domain reciprocity theorem of the time convolution
type Equation (28.2-7) can be written as

N

= ~ [Ct(v~A,IaB,t) -Ct(vaB,IaA,t)]. (30.1-9)
a=l

(Hint: Approximate the local electric field strength by the gradient of its electric scalar potential,
use Maxwell’s first equation, and carry out the steps similar to the ones that have led to Equation
(30.1-7).) Note that Equation (30.1-8) is the time Laplace transform of Equation (30.1-9).

Exercise 30. 1-3

Show that for a low-frequency N-port termination of an electric or electronic device the surface
interaction integral occurring in the complex frequency-domain reciprocity theorem of the time
correlation type Equation (28.5-7) can be written as

N

= ~ [l)’aA(s)!~aB(-s) + !~aB(-s)~aA(s)]. (30.1-10)
a=l

(Hint: Approximate the local electric field strength by the gradient of its electric scalar potential,
use Maxwell’s first equation, and carry out the steps similar to the ones that have led to Equation
(30.1-7).)

Exercise 30, 1-4

Show that for a low-frequency N-port termination of an electric or electronic device the surface
interaction integral occurring in the time-domain reciprocity theorem of the time correlation
type can be written as

N

= ~-a [Ct(V~A’Jt([~)’,) + C’(Jt(V~)’[~A")]"
ct=l

(30.1-11)
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(Hint: Approximate the local electric field strength by the gradient of its electric scalar potential,
use Maxwell’s first equation, and carry out the steps similar to the ones that have led to Equation
(30.1-7).) Note that Equation (30.1-10) is the time Laplace transform of Equation (30.1-11).

30.2 The electromagnetic N-por~ system as a transmitting system
(electromagnetic emission analysis)

We consider the electromagnetic system or device shown in Figure 30.2-1 that is accessible via
a low-frequency N-port termination, the latter being located in the interior of a closed surface
S.

The termination is present in an arbitrarily inhomogeneous and anisotropic unbounded
embedding. At infinity, the standard provisions of Section 28.1 for unbounded domains are
made. The maximum diameter of the domain interior to $ is so small that at the ports the electric
voltages {17"a;ct = 1 .... ,N} and the electric currents {]/~;/3 = 1,...,N} can be defined. The domain
containing the termination neednot be connected, i.e. local as well as remote interaction
between the ports is included. Let in the domain exterior to $ no sources be present. The
electromagnetic field in the domain exterior to ,5 is considered to be generated by the excitation
of the N ports; this situation is denoted as the transmitting situation and serves to analyse the
electromagnetic emission of the system. Let, in this situation, to be denoted by the superscript
T, {oar; a = 1 ..... N} denote the voltages across the ports and {]~;/3 = 1 ..... N} denote the electric
currents fed into the ports. For the emission analysis under consideration we shall adhere to the
convention that the polarity of the voltages and the orientation of the electric currents is such
that a positive electromagnetic power flow is oriented towards the embedding.

Now, for any linear, time-invariant, passive, electromagnetic system the property holds that
the voltages across the ports of the system are uniquely determined once the electric currents
fed into them are known, provided that causality is enforced. In view of the superposition
theorem for linear systems (see Section 23.1), the voltages {r2a7"; a = 1,...,N} are therefore
linearly related to the electric currents {~7;/3 = 1,...,N}. This linear relationship is expressed as

N
QJ(s):~_~Ta,~(s)~(s) for ct : 1,...,N, (30.2-1)

where {~a,/~;T ’ ct =    1 ....,N;/3        = 1,...,N} are the elements of the input impedance matrix [;~ T] of
the N-port system.

Under the same conditions, the electric currents {~T;/3 = 1,...,N} are linearly related to the
voltages {l~; a = 1,...,N}. This relationship is expressed as

N
--~"(s) = Z ~’~,a(s)£’J(s) for /3 : 1,...,N, (30.2-2)

where { I3~a;/3 = 1,...,N;~t = 1,...,N} are the elements of the input admittance matrix [I~ T] of
the N-port system.

Both the input impedance matrix and the input admittance matrix can be used to characterise
the N-port system. Substitution of Equation (30.2-2) in Equation (30.2-1) and requiring identity
in {!~T} leads to the relation
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Figt~re 30.2-1 Emission analysis of an electromagnetic system or device accessible via a low-
frequency N-port termination inside a closed surface S. The system is activated by applying either voltages
or electric currents to its ports (transmitting situation).

N

for a = 1,...,N; 7 = 1 ....,N, (30.2-3)

where da,y are the elements of the unit matrix [/]: 6a,y = 1 for a = 7, 6a,y = 0 for a $ y.
Substitution of Equation (30.2-1) in Equation (30.2-2) and requiring identity in {]7;fl =

1,...,N} leads to the relation

N

Z ~,a(s)Za,v(s) = 6i~,y for fl = 1 .... ,N; X’- 1 .....N. (30.2-4)
a=l

Equations (30.2-3) and (30.2-4) express that the input impedance matrix and the input
admittance matrix are each other’s inverses.

The input impedance matrix and the input admittance matrix of an N-port system are
configurational quantities; they are independent of the values of the voltages across or the
electric currents fed into the ports. To investigate their reciprocity properties, consider two
electromagnetic transmitting states, A and B, such that the media in the two states are each
other’s adjoint and apply the complex frequency-domain reciprocity theorem of the time
convolution type Equation (28.4-7) to the domain exterior to S. Then, the domain integral in
Equation (28.4-7) vanishes. Since the two states are causal, the contribution from the sphere
"at infinity" also vanishes. Furthermore, on S, the relation of Equation (30.1-8) between the
electromagnetic field quantities, and the voltages and the electric currents holds. As a
consequence, we have

N N

a=l ~=I
(30.2-5)
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Let, now, in states A and B the input impedance matrices be [2 T;A] and [2 T;B], respectively.
Then, substituting the relations corresponding to Equation (30.2-1) in Equation (30.2-5), we
obtain

N N N N
y, ~-~. ^ T;A ^ T;A ^ T;B ^ T;B ^ T;B ^ T;AZd~3 (s)I~ (s)Ia (s) : ~.~ ~.~ .Z~,a (s)Ia (s)IB (s)
a=l fl=l a=l fl=l

(30.2-6)

Since Equation (30.2-6) has to hold for arbitrary values of the electric currents in the states A
and B, it follows that

^ T;A ^ T’B
Za~ (s) (30.2-7)= zA,~ (s).

Hence, the input impedance matrices corresponding to adjoint media surrounding one and the
same electromagnetic N-port system in the transmitting situation are each other’s transpose; if
the medium in the configuration is self-adjoint or reciprocal, the input impedance matrix is a
symmetrical matrix.

Let, similarly, [I) T;A] and [I~ T;B] denote the input admittance matrices in the states A and
B, respectively. Then, Equation (30.2-5) leads, by using the relations similar to Equation
(30.2-2), to

N N N N

E 5’. ^-a, ts)va ts)v . (30.2-8)= (s)V  (s)V  (s)
a=l fl=l a=l fl=l

Since Equation (30.2-8) has to hold for arbitrary values of the voltages in the states A and B, it
follows that

^ T;B    ^ T’AY/~,~ (s) (30.2-9)ga,~ (s) = .

Hence, the input admittance matrices corresponding to adjoint media surrounding one and the
same electromagnetic N-port system in the transmitting situation are each other’s transpose; if
the medium in the configuration is self-adjoint or reciprocal, the input admittance matrix is a
symmetrical matrix.

Once the electromagnetic N-port system is excited by either voltages across or electric
currents into its ports, its excitation causes an electromagnetic field to be present everywhere
in space. This field will, in general, interfere with any other electromagnetic system present
somewhere else in space. The case where the latter system is again an electromagnetic system
that is accessible via low-frequency terminations will be investigated in Section 30.3; this
system is then in a receiving situation.

Exercises

Exercise 30,2-1

An electromagnetic one-port system is radiating into an unbounded medium that is otherwise
free from sources. What are the relationships between the voltage QT = QT(s) across the port
and the electric current/~ T ... ~ T(S) fed into it? (In this case, it is not necessary to use Greek
subscripts to distinguish between the different ports.)
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Answer: !)" 3‘ = ~ T~ T, where ~ 3" = ~ T(s) is the input impedance; ~ 3" = I7 T!,? 3", where I7 3" =
I) 3‘(s) is the input admittance. (Note that 2 Tit" T = 1.)

Exercise 30.2-2

Give the time-domain relations between electric voltages and electric currents of a low-fre-
quency N-port electromagnetic system in the transmitting situation.

Answer:

or

N

a=l

for a=l .....N, (30.2-10)

for fl=l .....N. (30.2-11)

Exercise 30,2-3

Give the time-domain relation between the input impedance matrix Z~3‘B = zaT, z~(t) and the input
admittance matrix YBT, a = Y~,a(t) of a low-frequency N-port electromagnetic system in the
transmitting situation, expressing that these matrices are each other’s inverses.

Answer:

�~=I
or

N

~=I

for a = l .....N; 7 = I,...,N ,

for /3 = 1,...,N;y= 1 ....,N.

(30.2-12)

(30.2-13)

30.3 The electromagnetic N-port system as a receiving system
(electromagnetic susceptibility analysis)

Again we consider an electromagnetic system that is accessible via a low-frequency N-port
termination, the latter being located in the interior of a closed surface S. The domain interior to
S need not be connected, i.e. local as well as remote interaction between the ports is included.
The termination is present in an arbitrarily inhomogeneous and anisotropic unbounded
embedding. At infinity, the standard provisions of Section 28.1 for unbounded domains are
made. The maximum diameter of the domain interior to S is so small that at the ports the electric
voltages {l)a;a = 1,...,N} and the electric currents {~/~;~; 1 .... ,N} can be defined. In the domain
exterior to S, sources of electromagnetic radiation are present. Under these conditions, the
N-port system is in the receiving situation, which situation serves to analyse the electromagnetic
susceptibility of the system. Let, in the receiving situation, to be denoted by the superscript R,
the electric voltages at the ports be {I~’~R; a = 1 ..... N} and the electric currents flowing out of
the ports be {~#;fl = 1,...,N). In general, the accessible terminals are then connected to an
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Figure 30.3-I Susceptibility analysis of an electromagnetic system or device accessible via a
low-frequency N-port termination inside a closed surface S. The ports are connected to a passive load
(receiving situation).

N-port load. In the susceptibility analysis under consideration, we shall adhere to the customary
convention that the polarity of the voltages and the orientation of the electric currents is such
that a positive power flow is into the load (Figure 30.3-1).

The load is characterised either by its impedance matrix [~ L] with elements ~aL, i~ = ~aC,/~(s)
or by its admittance matrix [I~ L] with elements I~flL, a = ~’~,a(s). The linear relationship between
the voltages across the terminals and the electric currents fed through them into the load are
then either expressed by

N

/~=1
or by

N

~R(s):Z ~’~,a(s)~"aR(s) for /3:1 ....,N. (30.3-2)
/~=1

Substitution of Equation (30.3-2) in Equation (30.3-1) and requiring identity in {r~aR} leads to
the relation

N

Za,~(s)Y~,~,(s)=6a,~, for o~ = 1,...,N; 7= 1 .... ,N. (30.3-3)
/~=1

Substitution of Equation (30.3-1) in Equation (30.3-2) and requiring identity in {]~;/3 =
1,...,N} leads to the relation
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N

for fl=l .....N;V=I .... ,N.

Electromagnetic waves

(30.3-4)

Equations (30.3-3) and (30.3-4) express that the impedance matrix of the load [2 L] and its
admittance matrix [I~ L] are each other’s inverses.

It will now be shown that the receiving properties of the N-port system under consideration
are intimately related to its transmitting properties on one hand and the exciting sources in the
receiving situation on the other hand. As far as the latter are concemed, two cases can be
distinguished: the case where the sources that generate the electromagnetic field are known in
location and properties (accessible sources), and the case where either the location or the
properties of the sources that generate the electromagnetic field are unknown (inaccessible
sources). The two cases will be discussed separately below.

Excitation by accessible sources

Let the exciting field be generated by sources located in the bounded domain ~DR; ~DR is situated
in the domain exterior to the closed surface S that bounds our N-port system (Figure 30.3-2).
The action of the sources is accounted for by the volume source densities of electric current
,~R and magnetic current ~jR with the common support ~DR. We now apply the complex
frequency-domain reciprocity theorem of the time convolution type Equation (28.4-7) to the
domain exterior to the closed surface S and identify state A in with the receiving state, for which
the superscript R is used and state B with the transmitting state as discussed in Section 30.2,
for which the superscript T is used. Both states are causally related to sources that activate them
and hence the contribution from the "sphere at infinity" vanishes. Furthermore, at S, the relation
of Equation (30.1-8) between the fields on S and the electric voltages and currents at the ports
holds. Let the medium in the transmitting state be the adjoint of the one in the actual receiving
state, then the first integral on the right-hand side of Equation (28.4-7) vanishes. (Note that in
this analysis the occurrence of non-reciprocal transmitting/receiving-state switches in, for
example, antenna systems is included.) Furthermore, of the second integral on the right-hand
side of Equation (28.4-7) only the terms containing j~R and/~-jR remain. As a result, we have

N N

-Z ZT-
a=a fl:l dx~Dg

where it has been taken into account that the unit vector along the normal to S is oriented towards
the interior of S and that the polarities of the voltages across the ports in the transmitting and
the receiving states have been chosen the same, while in the transmitting state the orientation
of the electric currents is into the system’s ports, whereas in the receiving state this orientation
is out of the system’s ports.

To arrive at a first result, we substitute Equation (30.2-1) (but for the adjoint medium) in
Equation (30.3-5) and further use the fact that the generated electromagnetic field in the
transmitting state {!~rT,~pT} is linearly related to the values of the electric currents {~aT; a =
1 .... ,N} fed into the ports that excite it. The latter property we express by writing (note again
the orientation of the unit vector along the normal to S)
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Figure 30.3-2 Susceptibility analysis of an electromagnetic system or device accessible via a
low-frequency N-port termination inside a closed surface S. The ports are connected to a passive load
(receiving situation). Exciting sources are known in location and properties (accessible sources).

N

V~(s)Ia (s).
J x+~R a=l

(30.3-6)

With this result the reciprocity relation leads to

Z (X)+Z ~flT, a(S)~flR(s) ~aT(x) Z "e "T= V~(s)Ia (s). (30.3-7)
a=l /3=1 a=l

Keeping in mind that the resulting equation has to hold for arbitrary values of {iaT=l; a =
1.... ,N}, we arrive at

N

for a = 1,...,N. (30.3-8)

Ecjuation (30.3-8) is representative for an N-port network with internal voltage sources
{ Vg;a = 1 .... ,N} and an internal impedance matrix which is the transpose of the input impedance
matrix applying to the same N-port in the transmitting situation, but with the adjoint medium,
i.e. the internal impedance matrix is the input impedance matrix that the N-port would actually
experience if it would be excited at its ports. The corresponding representation is known as the
Thevenin representation. By combining Equation (30.3-8) with the loading conditions of
Equation (30.3-2), the values of the voltages and the electric currents in the receiving situation
can be calculated.

A second result is arrived at upon substituting Equation (30.2-2) (but for the adjoint medium)
in Equation (30.3-3) and use the fact that the electromagnetic field { ~rT,/~pT} in the transmitting
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state is linearly related to the values of the voltages {QaT; a = 1 ..... N} that excite it. The latter
property we express by writing (note again the orientation of the unit vector along the normal
to S)

N
Vi(s)I~(s).

Jx~R                                    fl=l
(30.3-9)

With this result the reciprocity relation leads to

fl=l 1 fl=l
(30.3-10)

Keeping in mind that the resulting equation has to hold for arbitrary values of { I~’~T;/3 = 1,...,N},
we arrive at

N

= I/~(s) for /3= 1,...,N. (30.3-11)

E~uation (30.3-11) is representative for an N-port network with internal electric current sources
{ a; a = 1 ....,N} and an internal admittance matrix which is the transpose of the input admittance
matrix applying to the same N-port in the transmitting situation, but with the adjoint medium,
i.e. the internal admittance matrix is the input admittance matrix that the N-port actually would
experience if it would be excited at its ports. The corresponding representation is known as the
Norton representation. By combining Equation (30.3-11) with the loading conditions of
Equation (30.3-1), the values of the electric currents and voltages in the receiving situation can
be calculated.

For a one-port system the Thevenin representation is shown in Figure 30.3-3 and the Norton
representation in Figure 30.3-4.

Excitation by inaccessible sources

In case the sources that generate the field are inaccessible, or if for some reason the procedure
outlined for accessible sources is undesirable, one can proceed differently. Let the electromag-
netic N-port system, which terminates at the surface S at which the electric voltages and currents
can be defined, be surrounded by another closed surface SR that is amenable for field
measurements to be carried out (for example, the walls of the laboratory space in which some
sensitive measuring apparatus is to be installed). On SR the field description need not be
reducible to the equivalent circuit quantities of electric voltages and currents. The unit vectors
to the normals to ,5 and ,SR are oriented as shown in Figure 30.3-5.

The domain in between ,5 and ,SR is assumed to be free from sources. To this domain we
apply the complex frequency-domain reciprocity theorem of the time convolution type
Equation (28.4-7). Again, state A is identified with the actual state in the receiving situation,
but now the total electromagnetic field is written as the sum of the incident field {/~1,/_)~} that
is emitted by unspecified sources and that would be the total field if the load were "absent",
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Figure 30.3-3 Thevenin (voltage source) representation of a one-port electromagnetic system in the
receiving state.

load

~:igure 30.3-4 Norton (electric current source) representation of a one-port electromagnetic system in
the receiving state.

and the scattered field ^ s ^ s{Er ,H/~ } that is the field that must be superimposed on the incident field
to yield the total field in the presence of the load. Correspondingly,

{/~r~,~}= {/~ + ^s ^i+Er,Hi ~;}. (30.3-12)

What actually "absence" of the load implies for the description of the receiving system will be
specified further on. State B is chosen as an arbitrary transmitting state of the system (see
Section 30.2). The media in the two states are taken to be each other’s adjoint. Under these
conditions, the domain integrals in Equation (28.4-7) vanish. Furthermore, on ,5 the relation of
Equation (30.1-8) between the field quantities and the electric voltages and currents applies.
From Equation (28.4-7) we then obtain

N          N
=- ~.~ Q~a (s)~ Ta (s) - ~.~ ~/:(s)]~(s) .                   (30.3-13)

a=l           ~=1

{Er ,H/~ } and--~- source-free in ~e domain exterior to SR, and both ~eNow, ~th
causally related to the action of sources located in the bounded domain interior to S.
Consequently,

~’ra,r,p i)m [~:(X,S)[~I:(x,S) -- Er (X,s)H: (~,s)] dA

(30.3-14)
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Figure 30.3-5 Susceptibility analysis of an electromagnetic system or device accessible via a
low-frequency N-port termination inside a closed surface S. The ports are connected to a passive load
(receiving situation). Exciting sources are unknown in location and/or properties (inaccessible sources).
The closed surface SR is accessible for carrying out field measurements.

where 5(O,A) is the sphere with radius A and centre at the origin O of the chosen reference
frame and is assumed to completely surround dR. In the limit A-40, however, the right-hand
side of Equation (30.3-14) vanishes in view of the causality condition at infinity. Now, the
left-hand side of Equation (30.3-14) is independent of A, and consequently,

Using Equation (30.3-15) in Equation (30.3-13) we obtain the desired relation

fx~.S"i ^T
t~rn,r,p Rl,’m [Er(X,s)Hp (x’,,)- ~’?(X,,)/r)/~(X,,)] dA

N N

a=l /3=1
(30.3-16)

From this result we arrive at the Thevenin representation by using Equation (30.2-1) (but for
the adjoint medium) and expressing the linear relationship that exists between the electromag-
netic field in the transmitting state and the electric currents that excite it through

fx~_S^i ^T ^T ^i
Era,r,p RVra [Er(X,s)Hp (x,s) - Er (X,s)H~(x,S)] dA

N

--_ Vd(s)r ,  (s) .
~=1

(30.3-17)
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From the condition that the resulting identity has to hold for arbitrary values of {~aT; a =
N}, again Equation (30.3-8) results. As Equation (30.3-8) shows, "absence" of the load

means in the Thevenin representation that the loading terminals of the N-port are left open.
(Note that !~’aR(s) = !~’~(s) if ~flR(s) = 0 for all fl = 1 ..... N.)

From Equation (30.3-16) we arrive at the Norton representation by using Equation (30.2-2)
(but for the adjoint medium) and expressing the linear relationship that exists between the
electromagnetic field in the transmitting state and the electric voltages that excite it through

f
[~i " T Er (X,x)H/;(X,$)I dAr(X,s)Hp (x,s) " T

" i
gm,r,p

~_s R~’m
--

N

=- Z ~/~(s)~(s) . (30.3-18)

From the condition that the resulting identity has to hold for arbitrary values of {l~’I; fl =
N}, again Equation (30.3-11) results. As Equation (30.3-11) shows, "absence" of the load

means in the Norton representation that the loading terminals of the N-port are short-circuited.
(Note that ~?~R(s) = ~/~(s) if !7’aR(s) = 0 for all a = 1,...,N.)

Exercises

Exercise 30.3-1

What is, in the Thevenin representation of an electromagnetic one-port system in the receiving
state, the value of (a) the internal source voltage and (b) the internal impedance in case the
system is excited by accessible sources located in the domain ~gR?

Answer:

(a> ~e(s> : - f tjrR(X,s)[~:rT(X,s> 1~ T(s)]- ~2pR(X,S> [/~p’r(x,s)/+f T(s)]} dV;

(b)

Exercise 30.3-2

What is, in the Thevenin representation of an electromagnetic one-port system in the receiving
state, the value of (a) the internal source voltage and (b) the internal impedance in case the
system is excited by inaccessible sources and the closed surface 5R that completely surrounds
the closed surface that bounds the one-port, is available for carrying out field measurements?

Answer’.

~x ^ i
(a) Qe($> :-Em,r,p

~_5R
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Exercise 30.3-3

What is, in the Norton representation of an electromagnetic one-port system in the receiving
state, the value of (a) the internal source current and (b) the internal admittance in case the
system is excited by accessible sources located in the domain

Answer:

d x~D

Exercise 30.3-4

What is, in the Norton representation of an electromagnetic one-port system in the receiving
state, the value of (a) the internal source current and (b) the internal admittance in case the
system is excited by inaccessible sources and the closed surface SR that completely surrounds
the closed surface that bounds the one-port, is available for carrying out field measurements?

Answer:

L "i
(a) ~ e(s) = -~rn,r,p

~SR

Exercise 30,3-5

Give the equations governing the Thevenin description of an electromagnetic N-port system in
the receiving state in the time domain.

Answer:
N

#=~
for a = 1,...,N. (30.3-19)

Exercise 30,3-6

Give the equations governing the Norton description of an electromagnetic N-port system in
the receiving state in the time domain.

Answer:
N

l#(t) + Z Ct(yTa,~,VaR,t) = l;(t) for fl = 1 ..... N. (30.3-20)
a=l
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30.4 Remote interaction between an M-port system and an N-port system

The domain interior to the closed surface S introduced in Section 30.1 where the low-frequency
approximation applies, need not be connected, i.e. the low-frequency approximation may in
several disjoint domains locally apply, and local as well as remote interaction between the
different ports is included in the description. As an example, we consider the remote interaction
between an M-port system that is accessible via the closed surface S1 and an N-port system that
is accessible via the closed surface ,52. The intersection of the domain interior to ,51 and the
domain interior to ,52 is empty (Figure 30.4-1).

The maximum diameter of the domain interior to ,51 and the maximum diameter of the
domain interior to $2 are both so small that on ‘51 as well as on 52 the field description in terms
of equivalent voltages and electric currents locally applies, be it that for the electric scalar
potential on ‘51 a reference point in the interior of $1 (needed to define the voltages at the ports
in ‘51) has to be chosen and for the electric scalar potential on ‘52 a reference point in the interior
of ,52 (needed to define the voltages at the ports in ,52). In view of the linearity and the time
invariance of the system, still the (M + N)-port impedance matrix [ZT] and the (M + N)-port
admittance matrix [yT] can be introduced. To distinguish the local interactions from the remote
ones, these matrices will be partitioned. We shall analyse the electromagnetic interference
between the M-port system and the N-port system by first considering the case where the M-port
system is in its transmitting state (i.e. its ports are activated by either given values of the voltages
or given values of the electric currents), while the N-port system is in its receiving state (i.e. its
ports are terminated into a passive load), and secondly the case where the N-port system is in
its transmitting state (i.e. its ports are activated by either given values of the voltages or given
values of the electric currents), while the M-port system is in its receiving state (i.e. its ports
are terminated into a passive load). To avoid the confusion that could arise from one part of the

\
",,,     M-port system

Figtlre 30.4-1 Remote interaction between an M-port system accessible via the closed surface S1 and
an N-port system accessible via the closed surface S2.



960 Electromagnetic waves

total system to be in a transmitting state and the other part to be in a receiving state, the
superscripts on the voltages and the electric currents as well as the superscripts on the impedance
and admittance matrices will be omitted and all impedance and admittance matrices will be
taken to refer to the transmitting situation of the total system. Since, further, the partitioning
will be based on the impedance matrix or the admittance matrix of the total system, the unit
vectors along the normals to $1 and $2 are both oriented into the ports (see Figure 30.4-1) and
the results of Section 30.2 apply.

Starting from the impedance matrix as given in Equation (30.2-1), the partitioning is effected
as follows:

M M+N

fl=l         fl~+l
and

M M+N

~=~ ~+~

for a= 1 ....,M, (30.4-1)

for a=M+l .....M+N. (30.4-2)

The partial impedance matrix with elements {~a,~;a = 1,...,M;fl = 1,...,M} describes the local
interaction of the M-port system. Similarly, the partial impedance matrix with elements
{~a,/~;a = M + 1 ..... M + N;fl = M + 1,...,M + N} describes the local interaction of the N-port
system. The partial impedance matrices with dements {2a,~;a = 1,...,M;fl = M + 1,...,M + N}
and {~a,~;a = M + 1 ..... M + N;fl = 1 ..... M} describe the remote interactions from the N-por~ to
the M-port and from the M-port to the N-port, respectively.

To analyse the electromagnetic interference between the two systems we first consider the
M-port system as the transmitting one and the N-port system as the receiving one. Elimination
of the electric currents {]/~;fl = 1,...,M} pertaining to the transmitting M-port from Equations
(30.4-1) and (30.4-2) by expressing them, by way of solving Equation (30.4-1), in terms of
{Va;a = 1,...,M} and { ;fl = M + 1,...,M + N}, leads to the Thevenin or voltage source
representation of the receiving N-port system.

The same procedure applies to the case where the N-port system is the transmitting one and
the M-port system the receiving one. In that case, elimination of the electric currents {]�/;fl =
M + 1,...,M + N} pertaining to the transmitting N-port system from Equations (30.4-~1) and
(30.4-2) by expressing them, by way of solving Equation (30.4-2), in terms of {Va;a =
M+I .... ,M+N} and {~/~;fl = 1,...,M} leads to the Thevenin or voltage source representation of
the receiving M-port system.

The same kind of analysis can be carried out by partitioning the admittance matrix as given
in Equation (30.2-2) according to

M M+N

a=l a=M+l
and

M M+N

a= l a=M+l

for r= 1 ....,M, (30.4-3)

for fl = M + 1 .....M + N. (30.4-4)

The partial admittance matrix with elements { ~’~,a;fl = 1,...,M;a = 1 .... ,M} describes the local

interaction of the M-port system. Similarly, the partial admittance matrix with elements
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{ ~’B,a;fl = M + 1,...,M + N;a = M + 1,...,M + N} describes the local interaction of the N-port
system~. The partial admittance matrices with elements { ~’~,a;fl = 1 ..... M;a = M + 1 ..... M + N}
and { Y~,a;fl = M + 1,...,M + N;a = 1 .... ,M} describe the remote interactions from the N-port to
the M-port and from the M-port to the N-port, respectively.

To analyse the electromagnetic interference between the two systems we first consider the
M-port system as the transmitting one and the N-port system as the receiving one. Elimination
of the voltages {Qa;a = 1 .... ,M} pertaining to the transmitting M-port from Equations (3p.4-3)
and (30.4-4) by~ expressing them, by way of solving Equation (30.4-3), in terms of {IB;fl =
1,...,M} and {Va;a = M + 1 .... ,M + N}, leads to the Norton or electric current source
representation of the receiving N-port system.

The same procedure applies to the case where the N-port system is the transmitting one and
the M-port system the receiving one. In that case, elimination of the voltages {Va;a = M +
1,...,M + N} pertaining to the transmitting N-port system from Equations (30.4-3) and (30.4-4)
by exl~ressing them, by way of solving Equation (30.4-4), in terms of {]//;/3 = M + 1 .... ,M + N}
and {Va;a = 1,...,M} leads to the Norton or electric current source representation of the receiving
M-port system.

Note that in the analysis of the present section it is, for reasons of symmetry, advantageous
to keep the orientation of the unit vectors along the normals to S1 and $2 towards the exterior
of both surfaces. In the Thevenin and Norton representations this leads to some changes in sign
as compared with Equations (30.3-8) and (30.3-11).

The case M = 1, N = 1 (Thevenin representation)

By way of illustration, the case of the (remote) interaction between two one-ports is further
discussed. We assume that the two-port system is embedded in a self-adjoint or reciprocal
medium. In the Thevenin representation we then have

~rl(S) : ~I,I(S)~I(S) + 21,2(S)I~2(S),

V2(s) = ~2,1(s)i~l(S) + ~2,2(s)1~(s),

(30.4-5)

(30.4-6)

in which, in view of the self-adjointness of the medium,

~1,2(s) = ;~2,1(s). (30.4-7)

Under this latter condition, Equations (30.4-5) and (30.4-6) can be envisaged as to apply to the
equivalent T-circuit shown in Figure 30.4-2. Both, from Equations (30.4-5)~ and (~30.4-6) and
from Figure 30.4-2 it is clear that the two interactin~g one~-po~s decouple if Z1,2 = Z2,1 = 0, for
under this condition Equation (30.4-5) reduces to V1 = ZI,II1 for the local one-port 1, which
one-port then yields zero contribution to the~ voltage at one-port 2 (see also Exercise 30.4-1,
case (b)), while Equation (30.4-6) reduces to V2 = 22,2~2 for the local one-port 2, which one-port
then yields zero contribution to the voltage at one-portal (see also Exercise 30.4-1, case (a)).

For non-zero coupling between the two one-ports (Z1,2 = ~2,1 ;a 0) it can happen that^these
c~oupling~ imped~ances are p~dominantly of the resistive/inductive type. Then, Z1,2=
R1,2 + sLy,2 and Z2,1 =/}2,1 + sL2,1, where R~,2 = R2,1 is the coupling resistance and L1,2 = L2,1
is the coupling inductance. In this case, the Thevenin description is the more appropriate one
to describe the remote interaction.
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A     A     A          A     A      A
11 Z1,1 "Z1,2 Z2,2 -Z2,1 12

+ ~:~*.~~ /

Vl Zl,21 Z2,1
V~

Figure 30.4-2 Equivalent T-circuit for two (remotely) interacting one-ports embedded in a self-adjoint
(reciprocal) medium.

The case M = 1, N = 1 (Norton representation)

In the Norton representation of two interacting one-ports embedded in a self-adjoint or
reciprocal medium we have

i~1($) = I~I,I(S)QI($)+ ~’I,2(S)Q2(S), (30.4-8)

~:z(S) = I)2,1(S)IT"l(S)+ ~’Z,~.(S)Qz(S), (30.4-9)

in which, in view of the self-adjointness of the medium,

Y1,2(s) = Y2,1(s). (30.4-10)

Under this latter condition, Equations (30.4-8) and (30.4-9) can be envisaged as to apply to the
equivalent H-circuit shown in Figure 30.4-3. Both, from Equations (30.4-8.)) and (~30.4-9) and
from Figure 30.4-3, it is clear that the two interacting one-ports decouple if Y1,2 = Y2,1 = 0, for
under this condition Equation (30.4-8) reduces to "fl = YI,IV1 for the local one-port 1, which
one-port then yields zero contribution to the electric current at one-port 2 (see also Exercise
30.4-2, case (b)), while Equation (30.4-9) reduces to ~2 = 132,2Q2 for the local one-port 2, which
one-port then yields zero contribution to the electric current at one-port 1 (see also Exercise
30.4-2, case (a)).

For non-zero coupling between the two one-ports (1~’1,2 = 1~2,1 � 0) it can happen that these
c~oupling^admitta~nces are predo~minantly of the conductive/capacitive type. Then, I~1,2 =
G1,2 + sC1,2 and Y2,1 = ~2,1 + sC2,1, where G1,2 = G2,1 is the coupling conductance and C1,2 =
C2,1 is the coupling capacitance. In this case, the Norton description is the more appropriate
one to describe the remote interaction.

,1+ Y1,2 Y2,1+ ~2,2

o 0

Figure 30.4-3 Equivalent H-circuit for two (remotely) interacting one-ports embedded in a self-
adjoint (reciprocal) medium.
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Exercise 30.4-1

Consider the remote interaction between two one-port systems, to be denoted as System I and
System 2, respectively. Give the equations pertaining to the Thevenin representation of the
receiving port (a) if System 1 is transmitting and System 2 is receiving; (b) if System 2 is
transmitting and System 1 is receiving.

Answer:

(a) ~’2 - (22,2 - Z2,1Z1,2]Zl,1)I2 = (22,1/21,1)Q1,

(b) ~’1 - (21,1 - ~1,222,1/22,2)[1 = (21,2/22,2)Q2’

(Note that in case (a) the interference is small if 22,1/21,1 << 1, while in case (b) the interference
is small if 21,2122,2 << 1 .)

Exercise 30,4-2

Consider the remote interaction between two one-port systems, to be denoted as System i and
System 2, respectively. Give the equations pertaining to the Norton representation of the
receiving port (a) if System 1 is transmitting and System 2 is receiving; (b) if System 2 is
transmitting and System 1 is receiving.

Answer:

(a) ~2-- (132,2-- 132,1131,2/131,1)~’2 = (t2,11131,1)~1 ’

(b) ~1 - (I31,1 - Yl,zY2,1]Yz,2)V1 = (Y1,2]Y2,2)I2"

(Note that in case (a) the interference is small if Y2,1/Y1,1 << 1, while in case (b) the interference
is small if 131,2/132,2 << 1.)

Exercise 30,4-3

The passive, single-channel transmission line section of finite length is an example of a system
of two non-locally reacting one-ports. Let the section extend along the interval 0 < z < L of the
z axis of an orthogonal Cartesian reference frame. Let 2L = 2L(S) be the longitudinal impedance
per length o,f the section and 137" = 13T(s) its transverse adrp. ittance per length and denote by
~0= (2L13;,I,)V2 its~propagation coefficient, by 20= (2L/iT)1/2 its characterisic impedance and
by 130 = (YT/2L)f2 it,s characteristic admittance. The voltage Q =~’(z,s) across the line and~ the
electric current I = I(z,s) along the line, where the polarity of V and the orientation of I are
chosen such that the transfer of electromagnetic power is in the direction of increasing z, satisfy
the system of differential equations (see Exercise 24.4-1)

3 +ZLI=0 for 0<z<L, (30.4-11)

for 0 < z < L. (30.4-12)
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A A

I1 12 "
+o-~ ~--~ +

A A A A
V1 ZL, YT V2

- 0 0 -

z=-O z= L

Figure 30.4-4 Passive section of a single-channel transmission line as an example of two remotely
interacting one-ports.

Carry out the following steps that lead to the impedance matrix description of the remote
interaction of the on~e-port ~ z = 0 and the one-port at z = L, where the polaritie~s of the voltages
17"l(S) = !7"(0,s) and V2(s) = V(L,s), and the orientation of the electric currents Ii(s) = ~(0,s) and
^

I2(s) = -I(L,s), are chosen as shown in Figure 30.4-4.
(a) Write I(z,s) = A+(s) exp(-~30z) + A-(s) exp[-?30(L - z)] for 0 < z < L and give the corre-

s, ponding expre~ssion ~r V(z,s). (b) Express A+ and A- in terms of ~1 and ~2. (c) Express I~1 and
V2 in terms of l1 and 12 through

(30.4-13)

l~"2 = Z2,1I1 + ~2,2~2 , (30.4-14)

and determine the elements of the impedance matrix [~]. The equivalent T-circuit of [@] is
shown in Fi~gure 30.4-5. (d) Determine the leading term in the expansions for ~1,1- Z1,2,
;~2,2 - ~2,1, Z1,2 and ;~2,1 as 230L---~0 (i.e. for a short section of the transmission line) and show
that Figure 30.4-6 is the corresponding equivalent T-circuit. (Observe that the equivalent
T-circuit of Figure 30.4-6 agrees with the physical picture on which the construction of the
differential equations (30.4-13) and (30.4-14) (see Exercise 24.4-1) was based.)

Answers:

(a) Q(z,s)= A+(s)~o exp(-?30z) -A-(s)~0 exp[-?30(L- z)]

(b) a+=[~l + 1~2 exp(-?)0L)]/[1 - exp(-2?30L)],

for 0<z<L;

A     A     A          A     A      A
/1 Z1,1 -Z1,2    Z2,2 "Z2,1 12

+ o--~E~ /
A A    ILl A A
V1 Z~,~I Za,1 V2

Figure 30A-5 Equivalent T-circuit for the impedance matrix describing the remote interaction of the
one-port at z = 0 and the one-port at z = L of the transmission line section shown in Figure 30.4-4.
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A A A A

I~ ZLL/2 ZLL/2 /2+ o--=----~        ~-~=-o +/
A ~’I A A

Vl

I              YTL

V2

Figure 30.4-6 Equivalent T-circuit for the impedance matrix describing the remote interaction of the
one-port at z = 0 and the one-port at z = L for a short section of the transmission line shown in Figure
30.4-4 030L~0).

A- =-[i1 exp(-~0L) + i2]/[1 - exp(-2~0L)] ;

(c) 1~1,1 = 22,2= ~0 [1 + exp(-2~0L)]/[1 - exp(-2~0L)],

21,2 = 2:,~ = 220 exp(-~0L)/[1 - exp(-2~oL)] ;

(d) ~1,1 = ~1,2 = 22,2 - ~2,1 = ~LL/2 + 0 [(~oL)2] as
^-1 ^-l

I ] as );oL ----) 0 .Z1,2 = Z2,1 = YTL + 0 0;0L)2

Exercise 30,4-4

The passive, single-channel transmission line section of finite length is an example of a system
of two non-locally reacting one-ports. Let the section extend along the interval 0 < z < L of the
z axis of an orthogonal Cartesian reference frame. Let ~L = ;~L(s) be the longitudinal impedance
per length o,f the section and 1)T = 1)T(S) its transverse ad.mittance per length and denote by

70 = (ZLYT)V2 lts~ropagatlon coefficient, by Z0 = (ZL/YT) ~ltS c~haractenslc Impedance and
by 1)0 = (1)T/;~L)~/2 i~ characteristic admittance. The voltage V =~V(z,s) across the line an~ the
electric current I = I(z,s) along the line, where the polarity of V and the orientation of I are
chosen such that the transfer of electromagnetic power is in the direction of increasing z, satisfy
the system of differential equations (see Exercise 24.4-1)

o~z~’+ ~Li = 0 for 0<z<L, (30.4-15)

Oz]+YTV=O for 0<z<L. (30.4-16)

Carry out the following steps that lead to the admittance matrix description of the remote
interaction of the on~e-port a~t z = 0 and the one-port at z = L, where the polarities of the voltages
~l(S) = ~0,s) and V2(s) = V(L,s), and the orientation of the electric currents ]l(S) = ](0,s) and
I2(s) = -I(L,s)~are chosen as shown in Figure 30.4-7.

(a) Write V(z,s)= B+(s)ex~p(-?)0z)+B-(s)exp[-)30(L-z)] for 0 < z < L and give the
c^orresp^onding expres~sion for~ I(z,s). (b) Express B+ and B- in terms of I)1 and 92. (c) Express
I1 and 12 in terms of V1 and V2 through

~1 = 1)I,IQ1 + 1)1,2Q2’ (30.4-17)

I)2,1!,)1 + I72,292, (30.4-18)
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Figure 30.4-7 Passive section of a single-channel transmission line as an example of two remotely
interacting one-ports.

A A

i1
V2 "~

~ + I----1 ~

, + Y~,~ Y~,~ + ,~

o                             o.

Figure 30.4-8 Equivalent H-circuit for the admittance matrix describing the remote interaction of the
one-port at z = 0 and the one-port at z = L of the transmission line section shown in Figure 30.4-7.

A

I1 +

YT L/2

0 .

A
ZLL
r---i

A

+ 12~-0

YT L/2

o

Figure 30.4-9 Equivalent H-circuit for the admittance matrix describing the remote interaction of the
one-port at z = 0 and the one-port at z = L for a short section of the transmission line shown in Figure
30.4-7 030L--~0).

and determine the elements of the admittance matrix [12]. The equivalent H-circuit of [12] is
shown in Figure 30.4-8. (d) Determine the leading term in the expansions for I21,1 + 121,2,
I)2,2 + 122,1, -I21,2 and -122,1 as )30L---~0 (i.e. for a short section of the transmission line) and
show that Figure 30.4-9 is the corresponding equivalent H-circuit. (Observe that the equivalent
H-circuit of Figure 30.4-9 agrees with the physical picture on which the construction of the
differential equations (30.4-17) and (30.4-18) (see Exercise 24.4-1) was based.)

Answers:

(a) ~(Z,S) = B+(s)120 exp(-ff0z) - B-(s)120 exp[-~0(L- z)] for 0 < z < L ;
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(b) B+ = [1~’1 - 92 exp(-))0L)]/[1 - exp(-2))0L)],

B-= -[r~1 exp(-~0L) - !7"2]/[1 - exp(-2~30L)] ;

(c) l~l,1 = I72,2= l)O[1 +exp(-2~oL)]/[1- exp(-2)3oL)],

-I~’l,2 =-I32,1 = 2~0 exp(-~)on)/[1 -exp(-2~oL)] ;

(d) I~1,1 + If’l,2= I)2,2 + I32,1 = ~’TL/2 + 0 [(~oL)2] as

-Y1,2^ -1 = _It’2,1-1 = ZLL + 0 [(:PoL)2] as :poL --~ 0                                    .
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30.5 Electromagnetic interference

Owing to the omniperviousness of the electromagnetic field, each electromagnetic device,
equipment or system can, in principle, influence any other electromagnetic device, equipment
or system and thereby possibly degrade the latter’s performance through electromagnetic
interference. The basic ingredients of an ElectroMagnetic Interference problem are therefore:
a source emitting electromagnetic energy (emitter), a susceptible device (susceptor), and a
coupling path (either conductive or radiative or both) in between them (Figure 30.5-1).

The ever-increasing number of applications of electric and electronic systems (that often
have been designed to function properly on their own, but often find themselves in each other’s
immediate neighbourhood) has led to the necessity of legislature through which the electro-
magnetic compatiblility (EMC) of such systems can be legally enforced. In view of the legal
aspects of this domain of electromagnetics, a strict terminology has intemationally been set up;
the main items of this terminology are given below.

EMC--terminology

ElectroMagnetic Compafiblity (EMC)

The ability of an equipment or system to function satisfactorily in its electromagnetic
environment without introducing intolerable electromagnetic disturbances to anything in that
environment. (Note:"Anything" includes both living and inert matter.)

Electromagnetic environment

The totality of electromagnetic phenomena existing at a given location. (Note: In general, this
totality is time dependent and its description may need a statistical approach.)

ElectroMagnetic Interference (EMI)

The degradation of the performance of a device, equipment or system caused by an
electromagnetic disturbance.
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coupling

path

Figure 30.5- I Basic ingredients in an ElectroMagnetic Interference problem.

Electromagnetic disturbance

Any electromagnetic phenomenon which may degrade the performance of a device, equipment
or system, or adversely affect living or inert matter. (Note: Disturbance and Interference are,
respectively, cause and effect.)

Degradation

An undesired departure in the operational performance of any device, equipment or system
from its intended performance.

Electromagnetic emission

The phenomenon by which electromagnetic energy emanates from a source.

Emitters

Devices, equipment or systems which emit potentially disturbing voltages, currents or fields.

Susceptors

Devices, equipment or systems
emissions.

whose operation maybe degraded by electromagnetic

Susceptibility

The inability of a device, equipment or system to perform without degradation in the presence
of an electromagnetic disturbance.

Immunity

The ability of a device, equipment or system to perform without degradation in the presence of
an electromagnetic disturbance.
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Level (of a quantity)

The magnitude of a quantity in a specified manner.

969

Electromagnetic emission level

Emission level at the emitter’s site.

Electromagnetic emission limit

The specified maximum emission level of a source of electromagnetic disturbance.

Electromagnetic disturbance level

Disturbance level at the susceptor’s site.

Electromagnetic immunity level

The maximum level of a given electromagnetic disturbance incident on a particular device,
equipment or system for which it remains capable of operation at a required degree of
performance.

Electromagnetic immunity limit

The specified minimum immunity level.

Level of a quantity

The level of a quantity is often expressed in the ratio, on a logarithmic scale (for example, in
decibel (dB)) with respect to a reference value. For its specification, the notational rule applies
that the symbol for the unit of the level of that quantity consists of the unit of the pertaining
reference value, concatenated with the symbol dB. Furthermore, the logarithmic scale is
standardly taken at the base of the number 10 and, in order to arrive at the decibel, multiplied
by a factor of 10 in case electromagnetic power flow or energy quantities are involved, whereas
the multiplying factor is taken to be 20 in case amplitude values of voltages, electric currents,
electric field strengths or magnetic field strengths are involved. So, for the level of the
electromagnetic power flow P with respect to the reference value Pref we have

P dBPref = 10 loglO(P/Pref), (30.5-1)

where Pref is the symbol for the reference value Pref of the level of P. For example, for Pref =

1 lxW, the level of P is expressed as

P dBI.tW = 10 lOgl0(P/lt.tW). (30.5-2)
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Inversely, the actual value of the electromagnetic power flow P can be reconstructed from its
level P dBPref and its reference value Pref by the expression

p = Prefl0P dBPref]10.                                        (30.5-3)

Note: By convention, due to its frequent occurrence, the symbol for the level unit dBmW is
abbreviated to dBm.

For the level of an electric field strength E with respect to the reference value Eref we have

E dBEref = 20 lOglO(E/Eref), (30.5-4)

where Eref is the symbol for the reference value Eref of the level of E. For example, for Eref -
1 mV/m the level of E is expressed as

E dBmV/m = 20 lOgl0(E/1 mV/m). (30.5-5)

Inversely, the actual value of the electric field strength E can be reconstructed from its level
E dBEref and its reference value Eref by the expression

E = Erefl0E dBEref/20.                                            (30.5-6)

Similarly, for the level of a voltage V with respect to the reference value Vref we have

V dBVref = 20 loglO(V/Vref), (30.5-7)

where Vref is the symbol for the reference value Vref of the level of V. For example, for Vref --
1 mV the level of V is expressed as

VdBmV = 20 lOgl0(V/1 mV). (30.5-8)

Inversely, the actual value of the voltage V can be reconstructed from its level V dB Vref and its
reference value Vref by the expression

V = Vrefl 0V dB Vref/20. (30.5 -9)

Standard test pulse shapes

For the characterisation of electromagnetic emission and susceptibility levels of systems and
devices several standard test pulse shapes are in use. So, for the testing of the immunity against
lightning surges, the standard test pulse shape of the electric current is the double exponential
pulse (Figure 30.5-2).

I(t) =A[exp(-at) - exp(-bt)] with A > 0, 0 < a < b. (30.5-10)

By applying some elementary rules of the time Laplace transformation its complex frequency-
domain representation follows as

,(s)=AI.sl 1 )=AI.( b-a 1+ a s + b s + a)(s + b)    for Re(s) >-a.
(30.5-11)

For real frequencies (i.e. for s = jco with touR) Equation (30.5-11) yields

/~(jco)=A(i 1 1 )=AI b-a I         (30.5-12)
co + a j~o + b     (jco + a)(jco + b) ’
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Figure 30.5-2 The double exponential electric current pulse as the standard pulse shape for the testing
of the immunity of a system against a lightning surge.

The corresponding amplitude spectrum I~f(j~o) l follows as

(30.5-13)
[(092 + a2)(o)2 + b2)]~/2

Furthermore,

The graphical representation where lOgl0 Ii(j~o) l is plotted against lOgl0(f), where m = 2~f, is
denoted as the spectral plot. Figure 30.5-3 shows the spectral plot of the standard pulse given
by Equation (30.5-10).

The straight lines that bound the spectral plot are denoted as spectral bounds. They play an
important role because of the circumstance that electromagnetic emission limits and electro-
magnetic compatibility limits are standardly specified in terms of such straight lines. From
Equation (30.5-13) it follows that spectral bounds for the doubly exponential pulse are given
by

,~f(j~o)l < A (~- ~/,                        (30.5-15)

which bound is in the spectral plot a horizontal straight line through the value of I~f(0)l and
which bound is useful at low frequencies, and by

II(jw)l < A     , (30.5-16)
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Figure 30.5-3 Spectral plot of the double exponential electric current pulse that is the standard pulse
of tesdng the immunity of a system against a lightning surge.

which bound is in the spectral plot a line at a slope of-2 that intersects the horizontal spectral
bound at co = (ab)1A and which bound is useful at high frequencies. Note that the spectral bound
given in Equation (30.5-15) also follows from the application of the result of Exercise 30.5-7
and Equation (30.5-14).

A standard pulse shape for the characterisation of the emission levels of digital electronic
equipment (in particular, electronic computers) is the trapezoidal electric current pulse (Figure
30.5-4):

I(t) =

0 for t<to,

Inaxi
for to < t < t1 ,

for t1 < t < t2, (30.5-17)

for t2 < t < t3 ,

0 for t3<t,

where/max = pulse height, tO = starting time of the pulse, tI -tO = tr = pulse rise time,
t3 - t2 = tf= pulse fall time and (t2 + t3 - tO - tl)/2 = tw = pulse width (taken at half of the pulse
height).

With the aid of the Heaviside unit step function this electric current pulse can also be written
as
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Figure 30.5-4 Trapezoidal electric current pulse for the determination of the emission level of digital
electronic equipment. Imax = pulse height, to = pulse starting time, tr = tI -to = pulse rise time, tw =
(t2 + t3 - to - tl)/2 = pulse width (at half the pulse height), tf = t3 - t2 = pulse fall time.

1(0 =/max It-to H(t- to) - H(t- to - tr)
~ tr tr

t- to - tw - (tr-
H[t- to - tw - (tr - tf)/2]tf

t- to- tw - (tr + tf)/2
+ H[t- to - tw - (tr + tf)/2].tf

Both expressions lead to the complex frequency-domain representation

/max

[ -exp(-Str)

1
,f(s) = ~ exp(-st0) .1

- exp(-stf) exp{-S[tw - (tr - tf)/2]

s            tr         tf

(30.5-18)

for Re(s) > 0. (30.5-19)

The spectral plot of this pulse is shown in Figure 30.5-5.
A Taylor expansion about s = 0 of the right-hand side of Equation (30.5-19) shows that

i(O) = Imaxtw.                                    (30.5-20)

which, in view of the result of Exercise 30.5-7 leads to the spectral bound useful at low
frequencies

I,f(jo))l < Ilmaxltw, (30.5-21)

while for all frequencies

1(~r ~f/’
I,?(jro)l < Imax ~ + (30.5-22)

which yields a spectral bound at high frequencies. Note that the results for the trapezoidal pulse
are in accordance with the results of Exercise 30.5-8 for the more general piecewise linear pulse.

For an electromagnetically compatible design of electric or electronic devices, equipment
or systems it is almost a necessity to incorporate in the design procedures an analysis of the
pertaining emission and susceptiblity levels. Now, the complete calculation of the electromag-
netic performance of a configurtation where all field interactions governed by Maxwell’s
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Figure 30.5-5 Normalised spectral plot of the trapezoidal electric current pulse of Figure 30.5-4.
(a) tr = tf= 10~s, tw = 100 #s; (b) tr = 10~s, tf= 20/zs, tw = 100/zs.

equations are exactly taken into account requires high-level software and an enormous amount
of computational facilities. Therefore, a first impression as to the EMC of the configuration is
usually arrived at by the application of an iterative procedure, whereby the configuration is
initially designed on the basis of Kirchhoff’s voltage and electric current laws that govern the
behaviour of low-frequency electric or electronic circuits, i.e. without taking into account the
interaction of the different branches, meshes and components of the circuit other than those
subject to these laws (i.e. neglecting the interaction due to electromagnetic radiation). This
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procedure results into a configuration of electric current carrying wire segments and loops.
Next, the electromagnetic field emission of these wire segments and loops is evaluated with
the aid of the expressions derived in Sections 26.9 and 26.10. These emitted fields couple, in
their turn, back into the wire segments and the loops of the configuration, and the susceptibility
of these constituents can quantitatively be determined with the aid of the expressions derived
in Section 30.3. In case the procedure results into an electromagnetic compatibility level that
meets the specifications, the circuit configuration is acceptable for manufacturing. If this is not
the case, either the circuit configuration has to be redesigned or shielding measures have to be
taken. Two simple examples of the latter are analysed in Sections 30.6 and 30.7. To characterise
the performance of a shielding configuration the shielding effectiveness is introduced as:

Shielding effectiveness (SE,tI)

For a given external source, the ratio of the electric or the magnetic field strength at a point
before and after placement of the shield.

Customarily, the shielding effectiveness is expressed on a logarithmic scale in decibel (dB),
i.e. the value of SE, H dB= 20 lOgloISE,HI is taken (and usually expressed as a function of
frequency).

A useful introduction to the further aspects of electromagnetic compatibility is Paul (1992).

Exercises

Exercise 30,5-1

(a) Give the formula for the level of the electromagnetic power flow density (Poynting vector)
S with respect to the reference value Sref of S. (b) Give the formula for the level of the
electromagnetic power flow density (Poynting vector) S with respect to the reference value
Sref = 1 mW/m2 of S.

Answer: (a) S dBSref = 10 loglO(S/Sref); (b) S dBmW/m2 = 10 loglo(S/1 mW/m2).

Exercise 30.5-2

(a) Give the formula for the level of the magnetic field strength H with respect to the reference
value Href of n. (b) Give the formula for the level of the magnetic field strength H with respect
to the reference value nref = 1 A/m of H.

Answer: (a) H dBHref = 20 loglO(H/Href); (b) H dBA/m = 20 logl0(H/1 A/m).

Exercise 30,5-3

(a) Give the formula for the level of the electric current I with respect to the reference value Iref
of L (b) Give the formula for the level of the electric current I with respect to the reference
value Iref = 1 gA of L

Answer: (a) I dBIref = 20 lOgl0(I/Iref); (b) I dB~tA = 20 lOgl0(H 1 l, tA).
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Exercise 30.5-4

Give the formula that expresses the actual value of the electromagnetic power flow density
(Poynting vector) S in terms of its level S dBSref with respect to the reference value Sref.
Answer: S = Srefl0S dBSref/10

Exercise 30,5-5

Give the formula that expresses the actual value of the magnetic field strength H in terms of its
level H dBHref with respect to the reference value Href.
Answer: H = Hrefl0H dBHref/20.

Exercise 30,5-6

Give the formula that expresses the actual value of the electric current I in terms of its level I
dBlref with respect to the reference value Iref’

Answer: I = Irefl0/dBIref/20.

Exercise 30.5-7

Let I = I(t) be an electric current pulse with the property I(t) > 0 for all t~T.. Assume that
~.¢~I(t) dt exists. Show that I](jco)l ~< ~(0), i.e. in the doubly logarithmic spectral plot the
horizontal line through joe = 0 is a spectral bound for any pulse of the indicated type. (Hint:
Employ the inequality

and observe that

f t /(t) dt= ’(O) ")~

Exercise 30,5-8

Consider the piecewise linear, continuous electric current pulse (Figure 30.5-6)

0 for t<~to,

(t _tnL1 1+ In-a ( tn- t for tn_a <~t<~ tn and n = 1,...~r,I(t)= In
~.tn - tn-l J~tn - tn-1

0 for tN<~t.

(30.5-23)

with~=0 andlN= 0.
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Figure 30.5-6

0 t--~to t~ t2 tN

Piecewise linear, continuous electric current pulse of Equation (30.5-23).

(a) Show, by using the definition integral of the Laplace transform and integrating by parts
two times, i.e.

](S) = S-2 f exp(-st)Ot21(t) dr, (30.5-24)

and observing that

O-)t2i(t) _. E In-I"-!

n=l     tn-1

1
~ d(t- tn-a) °’-~" d(t- t,)|, (30.5-25)

tn - in_1

that

1
~ exp(-Stn_l) exp(-Stn)[. (30.5-26)

tn - tn_1 1

(b) Show, by observing that [exp(-jWtn) l = 1, that from this result the following spectral bound,
useful at high frequencies in the doubly logarithmic spectral plot, is obtained.’

^       2 & II,-I,-11II(jco)l ~< co- ~ 2 ---- with I0 = 0 and IN= 0.          (30.5-27)

(c) Show, by using the Taylor expansion about s = O, that from Equation (30.5-26) it follows
that

N
fl (O) =- -~ E (In - In-1)(tn-1 + tn) "

n=l
(30.5-28)

and that in view of the relation
N

E (Intn--In-ltn-1)=O
n=l

Equation (30.5-28) can be rewritten as
N

1
[~(0) = -~ ~ (In + In_l)(tn - tn_~) = I(t) dt ,

n=l a t~R

(30.5-29)

(30.5-30)
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where the latter equality results from the application of the repeated trapezoidal integration rule
which is exact for piecewise linear functions. (Note that if In >~ 0 for all n = 0,...,N, the result of
Exercise 30.5-7 provides a spectral bound in the doubly logarithmic spectral plot which is useful
at low frequencies.)

Exercise 30.5-9

Consider the triangular electric current pulse (Figure 30.5-7)

for t <~ to,

t-to~ for
~,t l - tO

for
~tz- t~ )

for tz <~ t .

to <~ t <~ t1 ,

tl <~t<~t2,

(30.5-31)

(a) Show, by using the definition integral of the Laplace transform and integrating by parts
two times, i.e.

~(S) = S-2J tf~Rexp(-st)~t2I(t) dt , (30.5-32)

and observing that

I____2~1O~’I(t) = 6(t- to) - 6(t- tl) -~
tI - to tl - to t2 - t1

that

~?(s) = s-21 I1 exp(-st0) ---
~t1 - to

I1
- ~ exp(-stl) + ~

t2- t1

I1 exp(-stl)
q-to

I1 exp(-st2)t2- t1

6(t- tl) + I1 6(t- t2), (30.5-33)
t2 - t1

(30.5-34)

Figure 30.5-7

I

o    to    t1 t2 t---.~

Triangular electric current pulse of Equation (30.5-31).
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(b) Show, by observing that lexp(-jogtn) l = 1, that from this result the following spectral bound,
useful at high frequencies in the doubly logarithmic spectral plot, is obtained:

I~(j0))1~<0)-22[ I/I-------LI-t-I’I"-----LI ]. (30.5-35)
Ltl- t0 t2-tl.]

(c) Show, by using the Taylor expansion about s = 0, that from Equation (30.5-34) it follows
that

1 _~(0) =-~ Ii(t0 t2) (30.5-36)

and that this result can be rewritten as

-~ Ii(t2- to) = (t) dr, (30.5-37)

where the latter equality results from the application of the repeated trapezoidal integration rule
which is exact for piecewise linear functions. (Note that if I1 >~ 0, the result of Exercise 30.5-7
provides a spectral bound in the doubly logarithmic spectral plot which is useful at low
frequencies.)

Exercise 30.5-10

Verify Equations (30.5-11), (30.5-13), (30.5-14), (30.5-15) and (30.5-16).

30.6 The shielding effectiveness of a spherical shield for a radiating electric
dipole placed at its centre (complex frequency-domain analysis)

In case the interference level between two electromagnetic systems is too high, shielding
measures have to be taken. Now, one of the shielding problems that can be solved by rather
elementary means is the determination of the shielding effectiveness of a spherical shield for
either an electric dipole (short segment of electric current carrying wire) or a magnetic dipole
(small electric current carrying loop) placed at its centre. In the present section we analyse the
case of an electric dipole (Figure 30.6-1); the case of a magnetic dipole is investigated in Section
30.7.

A Cartesian reference frame is chosen, the origin of which coincides with the centre of the
spherical shield. As a consequence of the fact that the emitting electric dipole is placed at the
centre of the spherical shield, its electromagnetic field in the absence of the shield is fully
specified by an electric source current vector potential (see Section 26.9) that is oriented along
the vectorial length Lr of the wire segment, depends on the spatial coordinates only via Ixl, i.e.
the distance from the origin t,,o the point of observation (see Equation (26.9-4)), while the scalar
wave function multiplying ILr satisfies the modified Helmholtz equation, Equation (26.2-4),
and is bounded as Ixl~oo. It will be shown that under these circumstances the total
electromagnetic field in the presence of the shield can be constructed by superimposing on the
already existing electric current source vector potential appropriate terms that are also oriented
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I:iouro 30.6-1 Electric dipole place at the centre of a spherical shield.

along Lr, also, depend on the spatial coordinates only via Ix I, while the scalar wave functions
that multiply ILr satisfy the source-free modified Helmholtz equation in the pertaining domain.

To prove this, we first observe that for any electric-current source vector potential of the
type

~9/ = ~Lr~] , (30.6-1)

where ~ = ~(Ixl), we have

Om(~/ = ~mOlxl~/ (30.6-2)

and

Ok~r ~)/ = ~k, rlxl-l ~lxlC~/ - ~k~rlxl-l Oixl~rJ + ~l~r~lxl ~lxl~rJ, (30.6-3)

where

~m = Xm/Ixl (30.6-4)

is the unit vector in the radial direction. Using Equations (30.6-1)-(30.6-4) in the expressions
for the electric and the magnetic field strengths (see Equations (26.9-2) and (26.9-3)), we obtain

!~k = (@t) + O-llxl-lolxl0)~Lk + ~-1 (_]xl-l~lxlO + ~lxl~lxl~J)~k~r~Zr (30.6-5)
and

(30.6-6)

respectively. Next, we observe that the second term on the right-hand side of Equation (30.6-5)
points along ~/~; i.e. it has no component tangential to a sphere Ixl -- r. Furthermore, the
right-hand side of Equation (30.6-6) has only components tangential to a sphere Ixl -- r. At a
spherical interface between two adjacent domains with different homogeneous, isotropic media
(note that our analysis only applies to media of this kind) the tangential components of the
electric and the magnetic field strengths are therefore continuous across the interface if we make

1 1-~t) + ~- Ixl- ~lxl~ and ~lxl~ continuous across this interface. These considerations will
further be used in the analysis of the shielding problem.

To put the analysis in a rather general setting, we consider a configuration consisting of an
arbitrary number of different domains { DM}, bounded by concentric, spherical shells. In each
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subdomain DM = {X~.3 ;rM_1 < Ixl < rM} bounded internally by a sphere of radius rM_1 and
externally by a sphere of radius rM, a homogeneous, isotropic medium is present with scalar
transverse admittance per length OM = 6M + SgM and scalar longitudinal impedance per length
~M = S~M (~M is the conductivity, gM the permittivity and tiM the permeability of the medium
in DM, s is the time Laplace2tran..sform parameter or complex frequency). The representation
of the scalar wave function U = U(Ixl) in the domain ~M is written as

OM : O~t expt-~M(lXl- rM-,)] + 0~4 expt’-’fiM(rM- Ixl)]
4z~lxl 4z~lxl

for rM_1 < Ixl < rM, (30.6-7)

inwhich

~M = ( ~M~M) 1/2                                     (30.6-8)
with Re(~M) > 0 for Re(s) > 0. In Equation (30.6-7), ~t and ~ are arbitrary constant
coefficients. Each term on the right-hand side of Equation (30.6-7) satisfies the source-free
modified Helmholtz equation as long as Ixl ~ 0. The reference values of Ixl (viz. rM_1 and rM)
in the arguments of the exponential functions have been included to ensure that all exponential
functions have arguments with non-positive real parts which avoids the loss of significant
figures in the nu^rneri^cal evaluation of the expressions. Similarly, the representation of the scalar
wave function U = U(Ixl) in the domain ~M+I is written as

~M+I= 0M+ + 1 exp[’-~M+l(IXl- rM)]                      + ~-M+I exp[-~M+l(rM+l -Ixl)]4~xl 4z~lxl

(30.6-9)for rM < Ixl < rM+1 .

In view of Equations (30.6-5) and (30.6-6) the continuity of the tangential components of the
electric and the magnetic field strengths across the common interface Ixl -- rM of ~DM and
~DM+1 is now guaranteed if

limlxl+rM(--~*~.~ + t~ -I ixl-131x10) = limlxl~rM (-~0 + ~ -1 ixl-~ DIxlO)
(30.6-10)

and

(30.6-11)

Using Equations (30.6-7) and (30.6-9) in Equations (30.6-10) and (30.6-11) and noting that

~lxlt~M= (-~M-Ixl-1)~t exp[-~M(Ixl- rM-~)] + (~M- Ixl-1)~ exp[~M(rM- Ixl)]
4z~lxl

(30.6-12)

(30.6-13)

for rM_1 < Ixl < r~,
with a similar expression for OixlOM+~, we arrive at the conditions

(--~M+I ..-1 ..
^-1 , 2 ,�’, +- rlM+lYM+l/rM - r]M+llrM)UM+1

+ (-~M+I + rlM+lYM+I/rM- rlM+l/rM) M+I exp(-~M+ldM+l)

(-~M ^-1^
2 "+=    - riM YM/rM- ~I1/rM)U~I exp(-QMdM)

.-1 : ^-~?’M/rM- qM /r~)U~t

and
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- _(--~M+I -1 ^+          -1 ^-- rM)U~I+I + @M+I - rM)UM+I exp(-~M+ldM+I)

-1 ^ + ^ -1 ^ -
= (--~’M-- rM)U~,lexp(-~MdM) + (~tM- rM)U~I,

where

Electromagnetic waves

(30.6-14)

dM = rM - rM_1 (30.6-15)

is the thickness of the shell that occupies the domain ff)M"
We now return to our shielding problem. Here, we distinguish the domain ~D1 = {x~.3 ;0 ~<

Ixl <r_l } interior to the shield (where the emitting dipole is placed), the shielding domain ~D2 =
{x~Y(.3 ;rl < Ixl < r2}, and the domain ~D3 = {X~P~3 ;r2 < Ixl < oo} exterior to the shield (Figure
30.6-1). In ~9~, the wave function that must be superimposed on the one of the transmitting
dipole to account for the presence of the shield must be bounded at Ix l -- 0. This is accomplished
by taking

t_)~ = exp(@~(lx[) + 2R exp(-~lrl) sinh(-~lxl)
4~lxl

= [1 - R exp(-~lrl)]exp(-~l(IXl) exp[-~l(rl -Ixl)]+R
4~xl 4z~lxl

In if)2, we take (see Equation (30.6-7))

for 0 ~< Ixl < rl. (30.6-16)

02=~2+ exp[-~2(lxl- r~)] +02- exp[-)32(r2-1xl)] for r1 <lxl<r2.    (30.6-17)
4z~lxl               4z~lxl

In ~D3, the wave function must, because of causality, remain bounded as Ixl~oo, and hence the
term containing exp(~3ixl)/4z~lxI must be absent. Accordingly, we take

~3 = Texp[-~3(Ixl- r2)] for r2 < Ixl < oo (30.6-18)
4 xl

The boundary conditions at the interface Ix l --- rl lead to the conditions (see Equations (30.6-13)
and (30.6-14))

..-1, 2,,3+ ..-1 2 "-(-~2- ~’l)~2/rl - r/2 lrl)u2 + (-~2 + ~2-1~2/r1 - r/2 /rl)U2 exp(-~’2d2)

= (-~1 - ~-1~1 [rl - O?l[r~) [1 - R exp(-~)ldl)] exp(-~)lrl)

+ (-~1 + o~l~)l/rl -- ~1-1/r~)R (30.6-19)

and

(--#2- r~-m)o~ + @2- r~l)~-~- exp(-}32d2)

= (-~91 - r]-1) [1 - R exp(-#lrl)] exp(-#lrl) + (~31 - r~l)R. (30.6-20)

The boundary conditions at the interface Ix l = r2 lead to the conditions

(-~3 - ~3-1~3/r2- ~3-1/r~)T

^ ^-1. 2.~--- (-~2- ~2"1#2/r2- Of1/rZ2) U~ exp(-#zd2) + (-~2 + ~2-1#2/r2 - r/2 ’r2)u2 (30.6-21)

and
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Figure 30.6-2 Shielding effectiveness of a copper spherical shield present in vacuum for an electric
dipole placed at its centre. Shieldparameters values: conductivity 5.65x107 S/m, permittivity %,
permeability/-~0, inner radius 5.0 x115"2m, thickness 1.0 x 10.6 m (lower curve)/3.0 x 10.6 m (middle
curve)/5.0 x 10.6 m (upper curve).

(--~3 -- r~1) T= (-@2- r~’l)0~- exp(-~2d2) + (h- r~l)O~-. (30.6-22)

Equations (30.6-19)-(30.6-22) constitute an inhomogeneous system of four linear, algebraic
equations from which the four unknown coefficients R, 02+, ~2- andTare tobe solved. For each
par ticular casethisisdonenumerically.

To char acter ise the per for mance of the shield, its shielding effectiveness SE, nis~calcu~lated
(this quantity is defined in Section 30.5). To apply the definition, we take r)3 = ~1, ~3 = ~ 1, and
hence ~3 = ~1. Then, for any point x~D3 in the exterior of the shield we have

SE,H= Z-1 (30.6-23)

andhence

SE,H dB = -20 lOgl0lT[. (30,6-24)

Figure 30.6-2 shows SE,H dB as a function of normalised frequency for a sinusoidally in time,
with angular frequency co, oscillating dipole (hence, s = jco) for a copper shield placed in air
(vacuum). The dips in the shielding effectiveness occur at frequencies that correspond to a
resonant frequency of the innermost spherical cavity.
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30.7 The shielding effectiveness of a spherical shield for a radiating
magnetic dipole placed at its centre (complex frequency-domain analysis)

In this section we investigate the shielding properties of a spherical shield for a magnetic dipole
(small electric current-carrying loop) placed at its centre (Figure 30.7-1). The analysis runs
parallel to the one for the electric dipole considered in Section 30.6. Therefore, we confine
ourselves to presenting the major steps.

With the origin of the Cartesian reference frame at the centre of the shield, the electromag-
netic field of the magnetic dipole in the absence of the shield is fully specified by a
magnetic-current source vector potential (see Section 26.10) that is oriented along the vectorial
areaAp of the magnetic dipole, depends on the spatial coordinates only via Ixl, i.e. the distance
from the origin to the~point of observation (see Equation (26.10-13)), while the scalar wave
function multiplying ~IAp satisfies the modified Helmholtz equation, Equation (26.2-4). As in
Section 30.6, the total electromagnetic field in the presence of the shield can be constructed by
superimposing on the already existing magnetic current source vector potential appropriate
terms that are also oriented along Ap, ~o depend on the spatial coordinates only via Ixl, while
the scalar wave functions multiplying ~IAp satisfy the source-free modified Helmholtz equation
in the pertaining domain.

Let

~: = ~ApQ ,
^

where V = V(Ixl), then we have

(30.7-1)

(30.7-2)

and

where

(30.7-3)

~tn "- Xm/Ixl (30.7-4)

is the unit vector in the radial direction. Using Equations (30.7-1)-(30.7-4) in the expressions
for the electric and the magnetic field strengths (see Equations (26.10-14) and (26.10-15)), we
obtain

(30.7-5)

and

(30.7-6)

respectively. The right-hand side of Equation (30.7-5) has only components tangential to a
sphere Ixl - r. The second term on the right-hand side of Equation (30.7-6) points along ~j, i.e.
it has no component tangential to a sphere Ix l - r. At a spherical interface between two adjacent
domains with different homogeneous, isotropic media the tangential components of the electric
and the magnetic field strengths are therefore continuous if we make ~Olxl~ and
~(-#~’ + ~-llxl-13lxl~" continuous across this interface. These considerations will be further
used in the analysis of our shielding problem.



Interference and shielding of electromagnetic systems 985

Figure 30.7-1 Magnetic dipole place at the centre of a spherical shield,

Again, we put the analysis in the setting of a configuration consisting of an arbitrary number
of different domains { DM}, bounded by concentric, spherical shells. In each subdomain DM =

{X~.3 ;rM_l < Ixl < rM} bounded internally by a sphere of radius rM_1 and externally by a sphere
of radius rM, a homogeneous, isotropic medium is present with scalar transverse admittance
per length OM = dM + S£M and scalar longitudinal impedance per length ~M = SfiM (dM is the
conductivity, gM the permittivity and tiM the permeability of the medium in ~DM, s is the time
Laplace-~ans~form parameter or complex frequency). The representation of the scalar wave
function V = V(Ixl) in the domain ~M is written as

~M: ~’~ exp[’-~M(IXl- rM-1)] + Q~ exp[-~M(rM-Ixl)]4~xl
for rM_1 < Ixl < rM, (30.7-7)

inwhich

(30.7-8)

with Re(~M) > 0 if Re(s) > 0. In Equation (30.7-7), ~’~ and ~’.~ are arbitrary constant coefficients.
Each term on the right-hand side of Equation (30.7-7) satisfies the source-free modified
Helmholtz equation as long as Ixl ~ 0. The reference values of Ixl (viz. rM_1 and rM) in the
arguments of the exponential functions have been included to ensure that all exponential
functions have arguments with non-positive real parts which avoids the loss of significant
figures in the nu^rnen~cal evaluation of the expressions. Similarly, the representation of the scalar
wave function V = V(Ixl) in the domain ~DM+1 is written as

~’M+I ~’+ exp[’-~M+I(IX[- rM)] ^ exp[-~M+l(rM+I -[x[)]= M+I + V~+l
4=lxl 4~lxl

for rM < Ixl < rM+1 . (30.7-9)

In view of Equations (30.7-5) and (30.7-6) the continuity of the tangential components of the
electric and the magnetic field strengths across the common interface Ixl -- rMis now guaranteed
if

(30.7-10)
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and

limlxlZru ~(-~l~ + ~-llx1-101xll)) = limlxltru ~(-~1,t" + ~-llx1-101xll)). (30.7-11)

Using Equations (30.7-7) and (30.7-9) in Equations (30.7-10) and (30.7-11) and noting that

Olxll~’M= ("@M- Ixl-1)I)~ exp[-~g(Ixl- rM-1)] + 0~M- Ixl-1)!)’,~ exp[-#M(rM-Ixl)]
4~lxl                           4~rlxl

for rM_1 < Ixl < rg, (30.7-12)

with a similar expression for ~lxl~’M+l, we arrive at the conditions

~M+I[(-~M+I -1 ^+
-1 ^-- rM)V~t+I + 03M+1 -- rM)VM+1 exp(-~M+ldM+I)]

~M[(’-’~M-- -1^ += rM)V~’I exp(--~MdM)+ @M- r~)I)/~], (30.%13)

and

~M+I [(-0M+I ^-1 ,,
^-1 2 "+- ~M+WM+a/rM -- ~I/rM)V~+I

^-1 ^ ^-1 2 ^-+ (-~M+I + ~I~-ITM+I/rM- ~M+I/rM)VM+I exp(--C/M+ldM+l)]

~M[(-~M- ~I~M/rM- ^-1 2 ^ +
= ~M [rM)VI~ exp(-~MdM)

+ ^-1^
~M 7M/rM -- ~1/r~t)r~], (30.7-14)

where

dM= rM- rM-1 (30.6-15)

is the thickness of the shell occupying the domain ~DM.
We now return to our shielding problem. Here, we distinguish the domain D1 = {x~3 ;0 ~<

Ixl < r1 } interior to the shield (where the emitting dipole is placed), the shielding domain a92 =
{x~3 ;rl < Ixl < r2}, and the domain ~D3 = {X~P~.3 ;r2 < Ixl < ~} exterior to the shield (Figure
30.7-1). In ~D1, the wave function that must be superimposed on the one of the transmitting
dipole to account for the presence of the shield must be bounded at Ixl - 0. This is accomplished
by taking

l~"1 = exp(-~l(Ixl) + 2R exp(-~lrl) sinh(-~llXl)
4zlxl                    4zdxl

= [1 - R exp(---~lrl)] exp(-)31(Ixl) + R exp[-~l(rl -Ixl)]
4zdxl           4zdxl

In ~D2, we take (see Equation (30.7-7))

for 0 ~< Ixl < r1¯ (30.7-16)

^ + exP[--~2(lxl - rl)]-
4z~lxl

exp[-)32(r2- Ixl)]+ V2 for r1 < Ixl < r2.     (30.7-17)
4z~lxl

In ~D3, the wave function must, because of causality, remain bounded as Ixl---~oo, and hence the
term containing exp(~31xl)/4:rlxI must be absent. Accordingly, we take
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123 = Texp[-))3(Ixl - r2)] for r9. < Ixl < oo. (30.7-18)
4~xl

The boundary conditions at the interface Ix l = rl lead to the conditions (see Equations (30.7-13)
and (30.7-14))

~2 [(-~2- r;1)r~2+ + (~2- r~’l)~- exp(-~2d2)]

= ~1 [(-91 - r~1) [1 - R exp(-~lrl)] exp(-~ffl) + (~1 - r~l)R], (30.7-19)

and

~2 [(-~2 - ~2-1)32/rl- ~2-’/r12)Q~ + (--~2 + ~2-1232/rl- ~111r~)121 exp(--~2d2)]

= ~1 [(-01 - ~l-1)31/rl- ~-1/rl2) [1 - R exp(-~32r,)] exp(-~lrl)

+ (-~1 + ~l~)l/rl- ~l/r~)R]¯ (30.7-20)

The boundary conditions at the interface Ix[ = r2 lead to the conditions

r- ÷       (30.7- 1 
and

+ (~2 + ~2~1/r2 -- ~1/r~)~]. (30.7-22)

~uations (30.7-19)-(30.7-22) constitute an inhomogeneous system of four line~, algebraic
equations from which the four unsown coefficients R, ~, Q{ andT~e to be solved. For each
p~icul~ case this is done numefcally.

To ch~actefse the ~fformance of the shield, its sNelding effectiveness SE,H i~ cNc~lated
(~is quantity is defined in Section 30.5). To apply ~is definition, we take ~3 = ~, ~3 = ~1, and
hence ~3 = ~1. ~en, for any point x~3 in the exterior of ~e sNeld we have

s ,n= r-x (30.7- 3 

and hence

SE,H dB= -20 lOgl0lTI. (30.7-24)

Figure 30.7-2 shows SE,n dB as a function of normalised frequency for a sinusoidally in time,
with angular frequency o9, oscillating dipole (hence, s = ja0 for a copper shield placed in air
(vacuum). The dips in the shielding effectiveness occur at frequencies that correspond to a
resonant frequency of the innermost spherical cavity.

Note that the resonant frequencies for magnetic-dipole excitation differ from the ones for
electric-dipole excitation. Also, the low-frequency behaviour is different for the two cases. For
further discussion, see Quak and De Hoop (1989).
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Figure 30.7 o2 Shielding effectiveness of a copper spherical shield present in vacuum for a magnetic
dipole placed at its centre. Shieldparameters values: conductivity 5.65x107 S/m, perrnittivity e0,
permeability P0, inner radius 5.0 x115-2m, thickness 1.0 x 10.6 m (lower curve)/3.0 x 10.6 m (middle
curve)/5.0 x 10-6 m (upper curve).
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