On the Propagation Constant in Gentle Circular Bends in Rectangular Wave Guides— Matrix Theory

A. T. DE HOOP

Technological University, Delft, Netherlands

(Received May 18, 1953)

The propagation constant γ_{mn} of the m,nth mode in a gentle circular bend in a rectangular wave guide is derived with the use of matrix theory.

INTRODUCTION

In his publication "Reflections from circular bends in rectangular wave guides—Matrix theory" Rice has obtained a general expression for the reflection coefficients due to a gentle bend in a rectangular wave guide. Special attention has been paid to the dominant mode reflection coefficients g_{10} — and d_{01} — corresponding to H-bends (magnetic intensity in plane of the bend) and E-bends (electric intensity in plane of the bend), respectively.

However, to obtain the reflection coefficients of the m,nth mode the propagation constant γ_{mn} of this mode must be known. For the latter Rice uses the results obtained by Buchholz² and Marshak³ while using the matrix theory for the aforementioned special cases.

In the present paper it will be shown that extending the work of Rice in both cases (*H*-bends and *E*-bends) the propagation constant of the m,nth mode γ_{mn} can be derived with the aid of matrix theory. The results are in accordance with those in reference 1.

1. PROPAGATION OF THE m,nTH MODE IN A GENTLE BEND. H IN PLANE OF THE BEND

In the case of H in plane of the bend we deal with the following form of the vector potential A (see Eq. (1.3-1), reference 1) being $B=0^4$

$$A = \cos(\pi n y/b) \sum_{l=1}^{\infty} \alpha_{ln}(z) \sin(\pi l x/a), \qquad (1.1)$$

where n has a fixed value and l runs through the values 1, 2, 3, \cdots (Fig. 1). The notations of reference 1 will be followed closely.

In order to determine the propagation constant γ_{mn} we have to find the *m*th characteristic root of the matrix Γ_{α}^{2} defined by Eq. (1.3-5) of reference 1,

$$\Gamma_{\alpha}^{2} = P^{-1}(\Gamma_{0}^{2} + S), \qquad (1.2)$$

¹ S. O. Rice, Bell System Tech. J. 27, 305–349 (1948).

² H. Buchholz, Elek. Nachr. Tech. **16**, 73–85 (1939). ³ R. E. Marshak, "Theory of circular bends in rectangular waveguides," Radiation Laboratory Report (June 24, 1943), pp. 43–45.

pp. 43-45.

4 S. A. Schelkunoff, *Electromagnetic Waves* (D. Van Nostrand and Company, Inc., New York, 1943), p. 127.

where

$$P_{rs} = (2/a) \int_{0}^{a} (\rho_1^2/\rho^2) \sin(\pi rx/a) \sin(\pi sx/a) dx, \quad (1.3)$$

$$S_{rs} = -2\pi s a^{-2} \int_0^a \sin(\pi r x/a) \cos(\pi s x/a) dx/\rho,$$
 (1.4)

and the elements of the diagonal matrix Γ_0^2 are

$$\delta_l^2 = \Gamma_{ln}^2 = \sigma^2 + (\pi l/a)^2 + (\pi n/b)^2, \quad \sigma = i2\pi/\lambda_0, \quad (1.5)$$

 $\lambda_0 =$ wavelength in free space.

With

$$F = \Gamma_{\alpha}^2 - \Gamma_0^2 \tag{1.6}$$

Eq. (1.2) becomes

$$F = (P^{-1} - I)\Gamma_0^2 + P^{-1}S, \tag{1.7}$$

where I denotes the unit matrix.

The *m*th characteristic root of Γ_{α}^{2} is (see Eq. (3.2-2), reference 1)

$$\gamma_m^2 = \delta_m^2 + F_{mm} + \sum_{s=1}^{\infty} F_{ms} F_{sm} / (\delta_m^2 - \delta_s^2), \quad s \neq m.$$
 (1.8)

Substituting (1.5) in (1.8) gives

$$\gamma_m^2 = \delta_m^2 + F_{mm} - \sum_{s=1}^{\infty} {'F_{ms}F_{sm}a^2/\pi^2(s^2 - m^2)}.$$
 (1.9)

Fig. 1. Coordinate system used in circular bend in a rectangular wave guide.

Our first task is to determine the elements of the matrix F by means of the matrix Eq. (1.7). In the case of a gentle bend we have

$$P = I + R, \tag{1.10}$$

where R is a square matrix whose elements are small compared to unity. As the nondiagonal elements must be accurate to within $0(\xi)$, $\xi = a/\rho_1$, and the elements of the principal diagonal to within $0(\xi^2)$, we make use of the asymptotic expansions of R_{ij} and S_{ij} as mentioned in Appendix I, reference 1. When the matrix multiplication is carried out, we find (see Eq. (4.1-4), reference 1)

$$F_{ij} = -R_{ij}\Gamma_{jn}^{2} + S_{ij},$$

$$F_{ii} = \left(-R_{ii} + \sum_{s=1}^{\infty} R_{is}R_{si}\right)\Gamma_{in}^{2} + S_{ii} - \sum_{s=1}^{\infty} R_{is}S_{si}.$$
(1.11)

In our case we need the elements

$$F_{ms} = -R_{ms}\Gamma_{sn}^2 + S_{ms},$$

$$F_{sm} = -R_{sm}\Gamma_{mn}^2 + S_{sm}, \tag{1.12}$$

$$F_{mm} = \left(-R_{mm} + \sum_{s=1}^{\infty} R_{ms} R_{sm}\right) \Gamma_{mn}^{2} + S_{mm} - \sum_{s=1}^{\infty} R_{ms} S_{sm}.$$

Because the nondiagonal elements must be accurate to within $0(\xi)$ we have to take the odd values of s-m. The value of m is fixed, hence, when m is odd s has one of the values 2, 4, 6, \cdots when m is even s has one of the values 1, 3, 5, \cdots . The result is

$$R_{ms} \sim 16 \xi ms / \pi^2 (s^2 - m^2)^2,$$
 (1.13)

$$S_{ms} \sim 4 \xi m s / a^2 (s^2 - m^2),$$
 (1.14)

$$R_{sm} \sim 16 \xi m s / \pi^2 (s^2 - m^2)^2,$$
 (1.15)

$$S_{sm} \sim -4\xi m s/a^2 (s^2 - m^2).$$
 (1.16)

The elements of the principal diagonal must be accurate to within $O(\xi^2)$. Hence

$$R_{mm} \sim (\xi^2/4)(1-6/\pi^2m^2),$$
 (1.17)

$$S_{mm} \sim -\xi^2/2a^2$$
. (1.18)

With the values of (1.13)–(1.18) the elements of the matrix F turn out to be

$$\begin{split} F_{ms} &= -4\xi ms \left[4\Gamma_{mn}^2 \pi^{-2} (s^2 - m^2)^{-2} + 3a^{-2} (s^2 - m^2)^{-1} \right], \\ F_{sm} &= -4\xi ms \left[4\Gamma_{mn}^2 \pi^{-2} (s^2 - m^2)^{-2} + a^{-2} (s^2 - m^2)^{-1} \right], \\ F_{mm} &= (\xi^2/12) \left[\Gamma_{mn}^2 (1 - 6\pi^{-2} m^{-2}) + 6a^{-2} \right], \end{split} \tag{1.19}$$

where in the expressions for F_{ms} and F_{sm} the value of s-m is supposed to be odd.

The summations which arise in the evaluation of F_{mm} are of the type

$$\sum_{n} s^2 (s^2 - m^2)^{-p}, \qquad (1.20)$$

where the value of s-m must be odd. These summations will be discussed in the appendix. Substitution of

the values of (1.19) in (1.9) and use of the sums (1.20) gives the propagation constant γ_{mn} in the bend

$$\begin{split} \gamma_{m^{2}} &= \gamma_{mn^{2}} = \Gamma_{mn^{2}} - (\xi^{2}/4a^{2}) \left[1 + \Gamma_{mn^{2}} a^{2} (1 - 6\pi^{-2}m^{-2}) \right. \\ &+ (\Gamma_{mn} a/\pi m)^{4} (5 - \pi^{2}m^{2}/3) \right], \end{split} \tag{1.21}$$

which is in accordance with Eq. (4.1-10), reference 1.

2. PROPAGATION OF THE m,nTH MODE IN A GENTLE BEND. E IN PLANE OF THE BEND

In the case of E in plane of the bend we deal with the following form of the vector potential B (see Eq. (1.3-11), reference 1), being A=0

$$B = \sin(\pi n y/b) \sum_{l=0}^{\infty} \beta_{ln}(z) \cos(\pi l x/a), \qquad (2.1)$$

where n has a fixed value and l runs through the values $0, 1, 2, \cdots$.

In order to determine the propagation constant γ_{mn} we have to find the *m*th characteristic root of the matrix Γ_{β}^2 defined by Eq. (1.3–13), reference 1,

$$\Gamma_{\beta}^2 = Q^{-1}(\Gamma_0^2 + U),$$
 (2.2)

where

$$Q_{rs} = (\epsilon_r/a) \int_0^a (\rho_1^2/\rho^2) \cos(\pi rx/a) \cos(\pi sx/a) dx, \quad (2.3)$$

$$U_{rs} = \pi s \epsilon_r a^{-2} \int_0^a \cos(\pi r x/a) \sin(\pi s x/a) dx/\rho, \qquad (2.4)$$

where $\epsilon_0=1$ and $\epsilon_r=2$ for r>0. The elements of the diagonal matrix Γ_0^2 are

$$\delta_l^2 = \Gamma_{ln}^2 = \sigma^2 + (\pi l/a)^2 + (\pi n/b)^2. \tag{2.5}$$

With

$$F = \Gamma_{\beta}^2 - \Gamma_0^2, \tag{2.6}$$

Eq. (2.2) becomes

$$F = (O^{-1} - I)\Gamma_0^2 + O^{-1}U. \tag{2.7}$$

The *m*th characteristic root of Γ_{β}^2 is (see Eq. (3.2–2), reference 1)

$$\gamma_m^2 = \delta_m^2 + F_{mm} + \sum_{s=0}^{\infty} F_{ms} F_{sm} / (\delta_m^2 - \delta_s^2), \quad s \neq m.$$
 (2.8)

Substituting (2.5) in (2.8) gives

$$\gamma_m^2 = \delta_m^2 + F_{mm} - \sum_{s=0}^{\infty} F_{ms} F_{sm} a^2 / \pi^2 (s^2 - m^2).$$
 (2.9)

With the restrictions under consideration and substituting Q = I + T where T is a square matrix whose elements are small compared to unity the elements of the matrix F turn out to be

$$F_{ms} = -T_{ms}\Gamma_{sn}^{2} + U_{ms},$$

$$F_{sm} = -T_{sm}\Gamma_{mn}^{2} + U_{m},$$
(2.10)

$$F_{mm} = \left(-T_{mm} + \sum_{s=0}^{\infty} T_{ms} T_{sm}\right) \Gamma_{mn}^{2} + U_{mm} - \sum_{s=0}^{\infty} T_{ms} U_{sm}.$$

Using the asymptotic expansions of Appendix I, reference 1, one obtains

$$T_{ms} \sim (\epsilon_m/2)8\xi(m^2+s^2)/\pi^2(s^2-m^2)^2$$
, (2.11)

$$U_{ms} \sim (\epsilon_m/2) 4\xi s^2/a^2(s^2-m^2),$$
 (2.12)

$$T_{sm} \sim (\epsilon_s/2)8\xi(m^2+s^2)/\pi^2(s^2-m^2)^2,$$
 (2.13)

$$U_{sm} \sim -(\epsilon_s/2)4\xi m^2/a^2(s^2-m^2),$$
 (2.14)

with m > 0.

The elements of the principal diagonal must be accurate to within $O(\xi^2)$, they turn out to be

$$T_{mm} \sim (\epsilon_m/2)(\xi^2/4)(1+6\pi^{-2}m^{-2}),$$
 (2.15)

$$U_{mm} \sim (\epsilon_m/2)(\xi^2/2a^2). \tag{2.16}$$

With the values of (2.11)–(2.16) we obtain the elements of the matrix F

$$\begin{split} F_{ms} &= -4\xi \left[2\left(m^2 + s^2\right) \pi^{-2} (s^2 - m^2)^{-2} \Gamma_{mn}^2 \right. \\ & + \left. \left(2m^2 + s^2\right) a^{-2} (s^2 - m^2)^{-1} \right], \\ F_{sm} &= -4\xi \left[2\left(m^2 + s^2\right) \pi^{-2} (s^2 - m^2)^{-2} \Gamma_{mn}^2 \right. \\ & + a^{-2} m^2 (s^2 - m^2)^{-1} \right], \end{split} \tag{2.17}$$

$$F_{mm} = (\xi^2/12) \lceil \Gamma_{mn}^2 (1 + 6\pi^{-2}m^{-2}) - 6a^{-2} \rceil$$

with m > 0.

The two series arising in the evaluation of F_{mm} reduce to

$$\sum_{s} (\epsilon_{s}/2) (m^{2} + s^{2})^{2} (s^{2} - m^{2})^{-4}$$

and

$$\sum_{s} (\epsilon_{s}/2) m^{2} (m^{2}+s^{2}) (s^{2}-m^{2})^{-3},$$

where the value of s-m must be odd. These series will be discussed in the appendix. Substituting the values of (2.17) in (2.9) and using the results of the appendix gives the propagation constant γ_{mn} in the bend

$$\gamma_{m}^{2} = \gamma_{mn}^{2} = \Gamma_{mn}^{2} + (\xi^{2}/4a^{2}) [3 - (\Gamma_{mn}a/\pi m)^{2}(10 + \pi^{2}m^{2}) + (\Gamma_{mn})^{4}(7 + \pi^{2}m^{2}/3)] m > 0 \quad (2.18)$$

which is in accordance with Eq. (4.3-7), reference 1.

Finally, we have to consider the case that m=0 and n is arbitrary. However, the value of n has no influence on the determination of the propagation constant γ_{on} , hence we only have to replace Γ_{01} in Eq. (4.3-6), reference 1, by Γ_{on} . The result is

$$\gamma_{on}^2 = \Gamma_{on}^2 - (\xi^2 \Gamma_{on}^2 / 60) (5 + 2a^2 \Gamma_{on}^2).$$
 (2.19)

Equations (1.21), (2.18), and (2.19) give the propagation constants for an arbitrary mode generated in a gentle circular bend (either *H*-bend or *E*-bend) in a rectangular wave guide. They are correct to within $O(\xi^2)$, where $\xi = a/\rho_1$ and ρ_1 is the radius of curvature of the bend.

APPENDIX

The summations of Sec. 1 reduce to

$$\sigma_p = \sum_s s^2 (s^2 - m^2)^{-p},$$
 (A.1)

where m has a fixed value and s-m must be odd.

At first we consider the case that m is odd, $s=2, 4, 6, \cdots$. As the typical term of σ_p can be expanded in partial fractions,

$$\sigma_p = \sum_s (s^2 - m^2)^{-p+1} + m^2 \sum_s (s^2 - m^2)^{-p},$$
 (A.2)

the determination of the summations

$$\tau_p = \sum_{s} (s^2 - m^2)^{-p}$$
 (A.3)

will be sufficient. Now τ_p can be expanded in the following way:

$$\tau_p = (2m)^{-p} \sum_{s} [(s - m)^{-1} - (s + m)^{-1}]^p.$$
 (A.4)

By use of (A.4) we obtain

$$\tau_{1} = (2m)^{-1} \{ [1/(2-m)+1/(4-m)+\cdots+1/(m-4) + 1/(m-2)+1/m+1/(m+2)+\cdots] - [1/(m+2)+1/(m+4)+\cdots] \},$$

or

$$\tau_1 = 1/2m^2. \tag{A.5}$$

In the same way we obtain τ_2 up to and including τ_5 .

$$\tau_2 = \pi^2 / 16m^2 - 1/2m^4,$$
 (A.6)

$$\tau_3 = -3\pi^2/64m^4 + 1/2m^6, \tag{A.7}$$

$$\tau_4 = \pi^4 / 768m^4 + 5\pi^2 / 128m^6 - 1/2m^8,$$
 (A.8)

$$\tau_5 = -5\pi^4/3072m^6 - 35\pi^2/1024m^8 + 1/2m^{10}, \quad (A.9)$$

By making use of these results we obtain

$$\sigma_3 = \pi^2 / 64m^2,$$

$$\sigma_4 = \pi^4 / 768m^2 - \pi^2 / 128m^4,$$

$$\sigma_5 = -\pi^4 / 3072m^4 + 5\pi^2 / 1024m^6.$$
(A.10)

When m is even, we obtain for the summations τ_p

$$\tau_1 = 0, \tag{A.11}$$

$$\tau_2 = \pi^2 / 16m^2, \tag{A.12}$$

$$\tau_3 = -3\pi^2/64m^4,\tag{A.13}$$

$$\tau_4 = \pi^4 / 768 m^4 + 5\pi^2 / 128 m^6, \tag{A.14}$$

$$\tau_5 = -35\pi^2/1024m^8 - 5\pi^4/3072m^6. \tag{A.15}$$

By making use of these results we obtain for σ_3 , σ_4 , and σ_5 the same values as given by (A.10), where m was odd.

The summations arising from Sec. 2 are somewhat more difficult than those of Sec. 1 because of the factor ϵ_s ($\epsilon_s = 2$ when s > 0 and $\epsilon_0 = 1$). However, carrying out the procedure outlined here, one is led to the same values of σ_3 , σ_4 and σ_5 as given in (A.10).

ACKNOWLEDGMENT

The author is indebted to Professor J. P. Schouten of the Technological University Delft for many helpful discussions.