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The propagation constant vymn of the m,nth mode in a gentle circular bend in a rectangular wave guide

is derived with the use of matrix theory.

INTRODUCTION

N his publication “Reflections from circular bends in
rectangular wave guldes—Matrix theory’” Rice has
obtained a general expression for the reflection coeffi-
cients due to a gentle bend in a rectangular wave guide,
Special attention has been paid to the dominant mode
reflection coefficients g~ and do;~ corresponding to
H-bends (magnetic intensity in plane of the bend) and
E-bends (electric intensity in plane of the bend), re-
spectively.
However, to obtain the reflection coefficients of the
m,nth mode the propagation constant v, of this mode
must be known. For the latter Rice uses the results

obtained by Buchholz? and Marshak® while using thev

matrix theory for the aforementioned special cases.

In the present paper it will be shown that extending
the work of Rice in both cases (H-bends and E-bends)
the propagation constant of the m,nth mode vy, can
be derived with the aid of matrix theory. The results
are in accordance with those in reference 1.

1. PROPAGATION OF THE m,nTH MODE IN A GENTLE
BEND. H IN PLANE OF THE BEND

In the case of H in plane of the bend we deal with
the following form of the vector potential A4 (see Eq.
(1.3-1), reference 1) being B=0*

A= cos(wny/b) i o 1n(2) sin(xlx/a), (1.1)
=1

where # has a fixed value and ! runs through the
values 1, 2, 3, --- (Fig. 1). The notations of reference
1 will be followed closely.

In order to determine the propagation constant ¥ma
we have to find the mth characteristic root of the
matrix T2 defined by Eq. (1.3-5) of reference 1,

2= PA(T¢4-S),

1§, 0. Rice, Bell System Tech. J. 27, 305-349 (1948).

2 H, Buchholz, Elek. Nachr, Tech. 16, 73-85 (1939).

3R. E. Marshak, “Theory of circular bends in rectangular
waveguides,” Radiation Laboratory Report (June 24, 1943),
pp. 43-45.

48. A. Schelkunoff, Electromagnetic Waves (D. Van Nostrand
and Company, Inc., New York, 1943), p. 127.

(1.2)

where
P..=(2/a) f (p12/p%) sin(wra/a) sin(mrsa/a)dz, (1.3)
0
Sre=—2msa™? f sin(rrx/a) cos(wsx/a)dx/p,  (1.4)
0
and the elements of the diagonal matrix I'¢® are
8 =T12=0%t (xl/a)*+ (wn/b)?, o=1i2mx/Ne, (1.5)
Mo=wavelength in free space.
With \ :
P=T2—T¢ (1.6)
Eq. (1.2) becomes
F=(P-—I)T¢+P-1S,

(1.7)

where I denotes the unit matrix.
The mth characteristic root of T2 is (see Eq. (3.2-2),
reference 1)

71112= 671;2+me+2, Fmstm/ (5m2_532), SFEM. (18)

=1

Substituting (1.5) in (1.8) gives

'sz=6m2+me_Z, Fmstmaz/ﬂ'Z(SZ_m?)' (1'9)

=1

p=X+Pe
o--2/p
y=Y

T16. 1. Coordinate system used in circular bend in a rectangular
: wave guide.
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Our first task is to determine the elements of the
matrix F by means of the matrix Eq. (1.7). In the
case of a gentle bend we have

P=I+R, (1.10)

where R is a square matrix whose elements are small

. compared to unity. As the nondiagonal elements must
be accurate to within 0(%), £==a/p;, and the elements
of the principal diagonal to within 0(#?), we make use
of the asymptotic expansions of R;; and Si; as men-
tioned in Appendix I, reference 1. When the matrix
multiplication is carried out, we find (see Eq. (4.1-4),
reference 1)

Fij=—Rylin*+Sij

(1.11)
Fy= (—Riri-il Risti)I'mz—l-Su—il RisSsi
In our case we need the elements
Frno=—Ronsl'sn*+Sms,
Fon=—Ronlms’+Sem,
, (1.12)
Prum= ( — Ryt fl RmRm)rm,.2+smm— fi RueSom.

Because the nondiagonal elements must be accurate
to within 0(£) we have to take the odd values of s—m
The value of m is fixed, hence, when m is odd s has one
of the values 2, 4, 6, -++ when  is even s has one of
the values 1, 3, 5, - The result is

R, ~168ms/w (s2—m?)?, (1.13)
Smo~AEms/ @ (sP—m?), (1.14)
Rom~16Ems/ w2 (s2—m?)?, (1.15)
Sem~—4Ems/at (s2—m?). (1.16)

The elements of the principal diagonal must be accu-
rate to within 0(£2). Hence

R~ (8/4) (1—6/7m?), (1.17)
Smm~—8/2a2. (1.18)
With the values of (1.13)-(1. 18) the elements of the
matrix F turn out to be
F o= —4Ems[ AT 202 (s2— m?) 24 302 (s2— m?) 1],
F o= —4Ems[4T 202 (82— m2)2+-a 2 (s2— m?) 1],
Fom= (&/12)[T2(1— 61 2m2)+6a7%], (1.19)
where in the expressions for Fn, and F «m the value of
s—m is supposed to be odd.

The summations which arise in the evaluatlon of
F..m are of the type
> (sP—m?)P, (1.20)

where the value of s—m must be odd. These summa-
tions will be discussed in the appendix. Substitution of

the values of (1.19) in (1.9) and use of the sums (1.20)
gives the propagation constant vy, in the bend

(8/4a) [ 1+ T 2a*(1— 672 2)
+ (Cna/wm) (S—mm?/3)], (1.21)

which is in accordance with Eq. (4.1-10), reference 1.

2 — 2
Ym = "Ynnn2— Pmn -

2. PROPAGATION OF THE m,nTH MODE IN A GENTLE
BEND. E IN PLANE OF THE BEND

In the case of E in plane of the bend we deal with
the following form of the vector potential B (see Eq.
(1.3-11), reference 1), being A=0

Besin(rny/) 3- Bin(2) cos(rln/a),  (2.1)
1=0 ‘

where # has a fixed value and / runs through the values
0,1,2, -

In order to determine the propagation constant vy,
we have to find the mth characteristic root of the
matrix ['s? defined by Eq. (1.3-13), reference 1,

=0 I+ D), (2.2)

where

Qrs= e/ ) f (p12/p%) cos(rrx/a) cos(wsx/a)dx, (2.3)

U,s=wse,a? f cos{mrz/a) sin(wsx/a)dx/p, (2.4)
0

where ¢=1 and ¢,=2 for »>0. The elements of the
diagonal matrix I'¢? are

0=T1l= 0"+ (wl/a)*+ (wn/b)" (2.5)
With

F=T2—T¢, (2.6)

Eq. (2.2) becomes
F=(Q'—DI¢+Q'U. (2.7)
The mth characteristic root of I'g? is (see Eq. (3.2-2),

reference 1)

2= i Fomt 3 FiFom/ (6n2—82), ssm. (2.8)
=0
Substituting (2.5) in (2.8) gives

=0+ F Z/ Fmstmaz/ﬂ'Z(Sz—'m?). (2.9)

8=

With the restrictions under consideration and sub-
stituting Q=I7+T where 7T is a square matrix whose
elements are small compared to unity the elements of
the matrix F turn out to be

Fm‘s= - TmsI‘sn2+ Ums,
Fsm= - Tsmrmn2+U my (2-10)

me= <_ Tmm+ Z TmsTsm)Pmn2+ Umm— Z TmsUsm-
=0 s=0
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Using the asymptotic expansions of Appendix I,
reference 1, one obtains

Tms~{en/2)8E(mP+s%) /a2 (s2—m2)2,  (2.11)

U~ (&n/2)485%/ a2 (s2—m?), (2.12)

T o~ (€5/2)8 (mP+s?) /w2 (s2—m2)2, (2.13)

U g~ — (e5/2)4Em?/ a2 (s —m?), (2.14)
with m>0.

The elements of the principal diagonal must be
accurate to within 0(£?), they turn out to be

Tonme~ (em/2) (82/4) (1467 2m72), (2.15)
m>0
Uinm~ (en/2) (£/2a%). (2.16)
With the values of (2.11)-(2.16) we obtain the
elements of the matrix F

Fos=—4£ 2(m*+ s 72 (82— m2) 2T, .2
+ Qw53 a2 (s2—m?)1],
Fom=—4E 2 (m*+ ) a2 (s~ m?) T s (2.17)
+ a—2m2 (82_ ,’nZ)—lJ’
Fm= (£/12)[T s (1467272 — 6a72],

with m>0.
The two series arising in the evaluation of Fo

reduce to
5 (e/2) mth 2 (st— )

and

5 (e/ D (mi-+7) (2=,

where the value of s—sm must be odd. These series will
be discussed in the appendix. Substituting the values
of (2.17) in (2.9) and using the results of the appendix
gives the propagation constant v, in the bend

Yo=Y mun2 =2+ (£/46)[ 3— (Cpuna/7m)2 (104 72m2%)
§ + (I;Ln)4(7+772m2/3)3 m>0 (2.18)

which is in accordance with Eq. (4.3-7), reference 1.

Finally, we have to consider the case that m=0 and
n is arbitrary. However, the value of # has no influence
on the determination of the propagation constant y,n,
hence we only have to replace T'o in Eq. (4.3-6), refer-
ence 1, by I'on. The result is

Yot =Ton— (8T 0,2/60) (5+2aT,2).  (2.19)

-Equations (1.21), (2.18), and (2.19) give the propa-
gation constants for an arbitrary mode generated in a
gentle circular bend (either H-bend or E-bend) in a
rectangular wave guide. They are correct to within
0(#2), where £=a/p; and p; is the radius‘of curvature
of the bend.

APPENDIX

The summations of Sec. 1 reduce to
op= 2 s*(s2—m?)>, (A1)

where # has a fixed value and s—m must be odd.

At first we consider the case that m is odd, s=2, 4, 6,
-+ +. As the typical term of ¢}, can be expanded in partial
fractions,

op= 2, (S2—mA) Pt m? 3 (s—md)~?,  (A.2)

the determination of the summations -

Tp= 2. (s2—m2)~? (A.3)

8

will be sufficient. Now 7, can be expanded in the
following way:

= Qm)7? 2 [(s—m) " = (s+m)7 ], (A4)

By use of (A.4) we obtain

= C2m)™{[1/ 2—m)+1/(d—m)+ - -41/ (m—4)
+1/(m—2)+1/m4-1/(m+2)+- -]
[/ Ot 241/ Ok 4Ty,

or

r1=1/2m? (A.5)

In the same way we obtain 7, up to and including 7s.
To=n2/16m2—1/2m4, (A.6)
o= — 3u%/64mi4-1/2mS, (A7)
ra=1%/T68m*+ 57%/128m8— 1/2m?, (A.8)

6= — 5m/3072m8— 357%/1024m*+1/2m,  (A.9)
By making use of these results we obtain
o3=7%/64m?,
o= 14/ T68m2— 1%/ 128m4, (A.10)
o= —74/3072m*+ 57%/1024m°.

When m is even, we obtain for the summations 7,

71=0, (A.11)
To=72/16m2, . (A.12)
o= —3n/6dnt, (A.13)
ra=1/T68m*+ 572/ 128mS, : (A.14)

75=— 351%/1024m®— 574/3072m?. (A.15)

By making use of these results we obtain for a3, a4,
and o5 the same values as given by (A.10), where m
was odd.

The summations arising from Sec. 2 are somewhat
more difficult than those of Sec. 1 because of the factor
€ (e,=2 when s>0 and e,=1). However, carrying out
the procedure outlined here, one is led to the same
values of a3, 04 and o5 as given in (A.10).
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