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Summary

A time-harmonic plane electromagnetic wave is incident upon an obstacle
of finite dimensions. The properties of the obstacle are such that electro-
magnetic power is both absorbed and scattered. A close relation exists
between the extinction cross-section of the obstacle and the amplitude
and phase of the scattered wave in the direction of propagation of the
incident wave. The exact form of this relation, the ‘“‘cross-section theorem’’,
is proved by making use of an explicit representation of the scattered field.
The result is valid for a plane wave with arbitrary elliptic polarization.
Finally, a similar relation for the scattering of sound waves is given.

§ 1. Imtroduction. In the study of the scattering and diffraction
of a time-harmonic plane electromagnetic wave by an obstacle
of finite dimensions, one of the major problems is the evaluation
of the average power absorbed and the average power scattered
by the obstacle. It has been argued by Van de Hulst 1) 2) that,
on physical grounds, the sum of absorbed and scattered power is
expected to be closely related to the amplitude and phase of the
scattered wave in the direction in which the incident wave prop-
agates. When expressed in terms of the extinction cross-section
(for its definition, see § 3), the indicated relation is called the
“‘cross-section theorem”.

The special case of perfectly conducting obstacles has been
investigated by Levine and Schwinger 3) (scattering by plane
obstacles of vanishing thickness) and by Storer and Sevick 4)
(scattering by obstacles of arbitrary shape). The proof given by
these authors is based on the integral equation to be satisfied by
the surface-current density at the boundary of the obstacle. The
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generalization to the case of an obstacle with arbitrary electro-
magnetic properties is due to Jones 3) who, in order to prove the
theorem, employed the method of stationary phase for two-
dimensional integrals. However, in studying Jones’ paper, the
present author observéd that this complicated method can be
avoided by using an explicit representation of the far-zone scattered
field. The latter method leads to the proof given in § 3, where the
general case of an elliptically polarized incident plane wave is
considered.

At this point *) it may be remarked that cross-section theorems
similar to the ones given in § 3 and § 4 hold in any type of scattering
problem ). In the field of scattering by atomic systems a relation
of this kind has been known at least since 1932 7). For details
the reader is referred to the literature on the subject 6) 7) 8).

§ 2. The far-zone scattered field. A time-harmonic, elliptically
polarized, plane electromagnetic wave is incident upon an obstacle
of finite dimensions. The boundary of the obstacle is a sufficiently
regular closed surface S. The electric and magnetic properties
of the obstacle are assumed to be such that electromagnetic power
is both absorbed and scattered. The medium in the domain outside
S is assumed to be homogeneous, isotropic and non-conducting
(which includes the case of free space), with inductive capacities
g0 and pp. In the exterior domain, the electric field vector E and
the magnetic field vector H are written as the sum of the incident
field E;, H; and the scattered field Eg, H;:

E =E; + E;, (2.1)
H = H; + H;. (2.2
Both the incident and the scattered field satisfy Maxwell’s

equations
curl H = — ‘fwgE, (2.3)

curl E = joucH, (2.4)

where w is the angular frequency of the exponential time dependence
of the form exp(— iwt). This factor, which has been omitted
throughout, is common to all field components.

*) For this remark the author is indebted to Professor R. Kronig, Technische Hoge-
school, Delft, Netherlands.
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Let r be the radius vector drawn from a fixed origin located
somewhere in the domain occupied by the obstacle. The incident
field is then given by

Ei(r) = A exp(— tka-T), (2.5)
H;(r) = (eo/po)}(A X &) exp(— tkerr), (2.6)

where A specifies the polarization of the incident wave (in general,
elliptic) and « is the unit vector pointing foward the source at
infinity. Further,

k = w(eopo)t = 2n/A, (2.7)

A being the wave length.

The next problem is to obtain an expression for the scattered
field. It has been stated already that E; and H; satisfy Maxwell’s
equations (2.3) and (2.4). In addition, the field vectors shall satisfy
the radiation condition 9) *)

/By — (uofeo(Hs X iR)2dS = of1) (R~ o), (28)

where Sg is a sphere of radius R around some point of observation
and ig is the unit vector in the direction of the outward normal
to Sg. Under these conditions the following representation holds 19)

efkR
4nEs(r) = curlf[n X Es(p)] = ds —
8
1 elkR
— - curl curlf[n X Hs(p)] ds, (2.9)
1QEQ
s
elkR
47H(r) = curlf[n X Hi(p)] 7 ds +
8
1 elkR
+ = curl curlf[n X Eg(p)] ds. (2.10)
1o R
s

In (2.9) and (2.10) n is the unit vector in the direction of the
outward normal to S and R = |r — p| is the distance from the

point of observation r = (x,y,2) to the point of integration
= (&, 7, ). Although S in (2.9) and (2.10) could be any suffi-

*) For a vector A whose components are complex numbers, we have |A]2 = A-A¥*
where A* denotes the complex conjugate to A.
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ciently regular bounded closed surface completely surrounding
the obstacle, we take, for the sake of simplicity, S to be the surface
of the obstacle.

Let B denote the unit vector in the direction of observation;
then, r = 7B. At large distances from the obstacle we have

R-1exp(tkR) = r~1 exp(thr — tkB-p) + O(r~2) (r—> o0). (2.11)
Using this type of expansion we obtain from (2.9) and (2.10)

Eq(r) = F(@) j:: L0 (r— o0), (2.12)
ikr
(1oJeo) Hulr) = [B X F(@)] ——+ 002) (r-> oo}, (2.13)

where the (complex) factor F() is given by
4nF (@) = — AR Xsf[n X Es(p)] exp (— kB-p) dS +
+ (uofe0)R?B x {B X [0 X Hsfp)] exp (— tkB-e) ds}. (2.14)

The first term of the right-hand side of (2.12) and (2.13) is called
the ‘‘far-zone approximation”. The special case of forward
scattering is obtained by taking B = — a.

In obtaining (2.12), (2.13) and (2.14) we have used the fact
that each Cartesian component of the integrals on the right-hand
side of (2.9) and (2.10) admits a representation of the form

eibr = g,(@)

w(r) = — §0 g (2.15)

where #(r) denotes any of these Cartesian components. This
expansion converges absolutely and uniformly in the domain
¥ =7y + 6 > 7o, Where 7 = 7g is the smallest sphere around the
origin, completely surrounding the obstacle. The series (2.15) can
be differentiated term by term with respect to the coordinates any
number of times and the resulting series is absolutely and uniform-
ly convergent in # =79+ & > ro. Performing the necessary
differentiations we then obtain for each Cartesian component of
Es(r) and Hy(r) a representation of the form (2.15). In fact, the
first term of the right-hand side of (2.12) and (2.13) is the first
term of the relevant series expansion. Further, it can be shown
that all coefficients of this expansion are determined by F(B8).
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Finally, the result satisfies the radiation condition (2.8). For a
proof of these statements we refer to a paper by Wilcox 9).

§ 3. Proof of the cross-section theorem. From the complex form
of Poynting’s theorem 11) it follows that the average power
absorbed by the obstacle is given by

P, = — }Re/(E x H*nds. (3.1)
S

The average scattered power is defined as
P; = { Re [ (Es X Hg*)-n dS. (3.2)
S

Substituting (2.1) and (2.2) in the right-hand side of (3.1) and
taking into account that

1 Re/(E; x H*)'ndS =0, (3.3)
S
we get
Py + Py = — 1 Re[f(E¥ X Hs 4 Es X Hy*)'n dS. (3.4)
8

When (2.5) and (2.6) are used in the integral on the right-hand
side of (3.4), the result is closely related to the expression for
F(— a) following from (2.14). By inspection we have

S (E#* X Hs + E; X Hy*)-n dS = 4nk~2(eo/uo)!A* F(— a). (3.5)

8
Substitution of (3.5) in (3.4) yields an expression that relates
P, 4+ Ps to the far-zone scattered field in the forward direction.

Finally, the absorption cross-section ¢, and the scattering
cross-section os of the obstacle are introduced. These quantities
are defined as follows: the absorption (scattering) cross-section
is the ratio of the mean power absorbed (scattered) by the obstacle
to the mean intensity of power flow in the incident field. The
latter quantity is given by

Pt = — 1 Re [(E; X Hi*)-a],
which reduces to
Pyt = §(eofuo)t [A[%, (3:6)

Equations (3.4), (3.5) and (3.6} lead to the result
47 Re [A*F(— a)]
k2 |A|2 )

Og + 05 = —
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Equation (3.7) is known as the ‘“cross-section theorem’. The sum
of the absorption cross-section and the scattering cross-section
is often called the extinction cross-section 12).

§ 4. The extinction cross-section for scattering of sound waves. In
concluding this paper we want to remark that a similar cross-
section theorem holds for the scattering of a plane sound wave
by an obstacle of finite dimensions. The corresponding problem
can be formulated in terms of a scalar function, viz. the velocity
potential. Since the proof of the theorem is analogous to the
one outlined in the preceding sections, we confine ourselves to
stating the result. Again, the complex time factor exp(— rwt)
is omitted.

If v is the (irrotational) particle velocity, a velocity potential @
is introduced such that

v = — grad &. (4.1)
The excess pressure p is related to the velocity potential through
b = — iwpe®, (4.2)

where pg is the density of the medium.

Let @4(r) and D(r) be the velocity potential of the incident
and the scattered sound field, respectively; then, @ = @; 4 @s.
Further, let @;(r) be given by

D;(r) = A exp(— tkar), (4.3)
in which 2 = w/c, ¢ being the velocity of sound. At large distances
from the obstacle, @4(r) is written in the form 13)

eikr

1kry

Dy(r) = F(B) + 02 (r-—> o0). (4.4)

The average power absorbed by the obstacle is given by
P, = —41Refpnv*dS, (4.5)
s

or, expressed in terms of the velocity potential,

Py = — 4 Re {iwpo/ @ (m:grad ¢¥) dS}, (4.6)
S

where n is the unit vector in the direction of the outward normal
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to the boundary S of the obstacle. The average scattered power

1s defined as
Ps = % Re {iwpg / Ps(n-grad Ds*) dS}. (4.7)
s

The mean intensity of power flow in the incident wave is
P11 = Lopok [4]2. (4.8)

When the expression for P, + P, is compared with the repre-
sentation of F{f} it follows by inspection that P, 4+ P; can be
expressed in terms of F(— a). Introduction of the absorption
cross-section ¢4 = Py/P;1) and the scattering cross-section
0s = Ps/P;1 then yields

4n Re[A*F(— a)] 47 Re [ F(= o) :I (4.9)

Y 1412 T 2

Og + 05 = = 1

Equation (4.9) is known as the cross-section theorem for sound

waves. The special case of scattering by a plane obstacle of vanishing
thickness has been investigated by Levine and Schwinger 14).
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