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Summary

At a height %4 above a plane, non-conducting, earth a vertical electric
dipole emits an impulsive electromagnetic wave. The resulting electro-
magnetic field in the air is determined; it consists of a reflected wave which
is superimposed upon the given incident wave. The Hertzian vector corre-
sponding to the reflected wave is expressed in terms of a single integral over
a finite interval; this integral is written in such a form that its numerical
evaluation can easily be performed.

§ 1. Introduction. In the problem of the electromagnetic radiation
from a vertical electric dipole situated at a certain height % above
a plane earth all field quantities are usually assumed to vary
harmonically in time. One of the two well-known methods for
solving this steady-state problem is due to Sommerfeld 1), the
other to Weyl 2). In several recent publications, however, the case
is considered where the time dependence of the current in the dipole
is impulsive rather than harmonic. We mention the papers by
Poritsky3), Van der Pol4), Pekeris and Alterman 9),
Bremmer$) and a report by Levelt7). The techniques employed
by these authors differ in several respects. Poritsky uses a generali-
zation of Weyl's method to the effect that the total field is written
as the superposition of a continuous system of plane pulses. Van der
Pol, Pekeris and Alterman, Bremmer and Levelt make use
of integral transforms or operational calculus. In this way Van der
Pol obtained an elementary result when both the transmitter and
the point of observation are located at the ground. Pekeris and
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Alterman obtain numerical results for the field above and inside
the earth in the case # = 0. Their technique originates from
Pekeris’ studies on impulsive wave propagation in elastic media.
It is closely related to a similar method developed by Cagniard 8)
who, too, was concerned with the generation of seismic waves by
impulsive sources.

One of the present authors developed a simplified version 9) of
the methods employed by Cagniard and by Pekeris and subse-
quently applied the simplified procedure to the determination of
the surface displacement generated by an interior source in an
elastic half-space19). In the present paper the latter technique is
used to determine the electromagnetic field radiated by a vertical
electric dipole located above a plane, non-conducting, earth. The
electric moment of the dipole varies in time as a given function f{#),
with f({) = O when ¢ < 0. The attention is confined to the field in
the air; unless £ = O (see 5)), the determination of the field inside
the earth is much more difficult. Our result is given in the form
of a definite integral over a finite interval; this integral can easily
be computed numerically.

§ 2. Statement of the problem and method of solution. We consider
the electromagnetic field in either of two homogeneous, isotropic,
semi-infinite media with different electromagnetic properties. A
Cartesian coordinate system is introduced such that the upper
medium (the air) occupies the half-space 0 < 2z << co, while the
lower medium (the earth) occupies the half-space — co << 2 << 0.
Their common boundary is the plane z = 0. A point in space will
be located by either its Cartesian coordinates or its cylindrical
coordinates 7, ¢, z defined through

X=rcosgp, y=rsing, 2=z, (2.1)

with0 <7 << 00,0 = ¢ < 27, — 00 << 2 <€ 00, The electromagnetic
properties of the media are characterized by their permittivity e
and their permeability u; their conductivity is assumed to be zero.
For the upper medium we have ¢ = ¢; and u = u3, for the lower
medium we have ¢ = g3 and g = ua.

At x=0, y=0, z=h (h>0) a vertical electric dipole starts toradiate
at the instant ¢ = 0; it is assumed that prior to this instant all field

quantities vanish identically. It is well-known (see, e.g., Stratton1l))
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that the electromagnetic field generated by this vertical dipole can
be derived from a Hertzian vector IT of which only the z-component
is different from zero. The electric field vector E and the magnetic
field vector H are expressed in terms of II through the relations

, o2
E=graddivll — ey ——, (2.2)
of2
oIl
H = e curl —. (2.3)
ot

In the region z > 0 we write
' = (uo+u)i, (0<z<oo), (24)

where ug yields the incident wave, i.e. the field that would exist if
the upper medium were unbounded, while #%; accounts for the
reflection of the incident wave against the interface and is defined
as the difference between the actual Hertzian vector and wui,.
Similarly, in the region z < O we write

I = wuqi, (—oo<z<<0), (2.9

where ug yields the refracted field. At any interior point of the
appropriate half-spaces #1 = u1(x, v, 2, t) and #g = us(x, y, 2, f) are
assumed to be continuous together with their first and second
order partial derivatives. In the region z > O the function u;
satisfies the homogeneous wave equation
1 32141
Auy — P 0; (2.6)

in the region z < O the function wy satisfies the differential equation

Aug — —- =0. (2.7)
2

In these equations 4 = 02/0x2 + 02/0y? + 92/922 denotes the three-
dimensional Laplacian; further,

vy = (e1p1) 7 (2.8)
and

vg = (egue)™ (2.9)
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are the velocities of propagation in the upper and lower medium,
respectively. The function ug is given by 12)

. — 1 f(t — Ri/v1)
0 4meq R,

, (2.10)

where

Ry = [x2 4+ y2 4 (z — B)2)%, (2.11)
The function f(#) determines the electric moment of the dipole as
a function of time as can be seen from the equation

= — —1—6(x, v,z — h) {{£), (2.12)

where 6(x, v, 2 — &) denotes, in a usual notation, the three-di-
mensional delta function. According to our assumptions, f(f) = 0
when — co <t < 0. The continuity of E,, E,, H, and Hy at the
interface is guaranteed if the following boundary conditions are
satisfied:

ou ou ou
lim (J + _1> = lim —2, (2.13)
z—+0 oz 0z z—>—0 0z
€1 Lim (Mo + ’l/tl) == &9 lim Ua. (2.14)
z—>+0 z2——0

All field quantities occurring in the problem are now subjected
to a one-sided Laplace transform with respect to time; e.g.,

F(s) = Ofwexp(— o) () . (2.15)

Similarly, Uy, Uy and Uj denote the Laplace transforms of #g, 1y
and ug, respectively. Following Cagniard 8), s is restricted to
real positive values large enough to ensure the convergence of the
integrals of the type (2.15) (it is tacitly assumed that the behaviour
of the relevant functions as ¢ —> oo is such that such a number s can
be found). Since, in particular, u;, 0u1/0f, us and Oug/d¢ are con-
tinuous, Uy = Ui(x,y,2;s) and Uy = Us(x,y, 2;s) satisfy the
differential equations

sz
and

S
AUy — — Uy =0, (2.17)
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respectively. The next step is to introduce the two-dimensional
Fourier transforms of Ui(x, y, z; s} and Usz(w, v, z; s) with respect
to ¥ and y. Let

U1,2(e, B; 2; 5) =/ dy [explis(ax + py)]Ur2(x, v, 2; s) dx, (2.18)

in which the (real) factor s in the argument of the exponential
function has been included for convenience. If %; and %o were
known, Uy and Ug could be determined from the inversion integral

Ui,2(x,v,2;9) fdﬂfexp[— 1s(ox+py) % 1,2(x, 8;2;8)de. (2.19)

The corresponding representation of Ug(x, y, z; s) is known to be 9)

Uolx, v, z; s)

fdﬂfexp[— s(tax + 1y + yilz — h|)] — doc, (2.20)

—o0 — o0

47'5281
in which
y1=7y1(a ) = (@2 + 2+ 1/n1)} (Reyr 20).  (2.21)

Since the boundary conditions are independent of time, they reduce

to
oU oU oU
lim ( LR 1): lim — >, (2.22)
zsi0 N OZ oz s 02
€1 lim (U() —I— Ul) = &9 lim Uz. (223)
z—>+0 2——0

In order to determine %1 and %2 we substitute the corresponding
representations of Uy and Ug (compare (2.19)) in the differential
equations (2.16) and (2.17). This procedure leads to two ordinary
differential equations for %; and %, respectively, with z as in-
dependent variable. The solutions that remain bounded as |z| — co
can be written as

U = iif)—&ll exp[— syi(z + A)], (2.24)
%2 = @Mz exp[s(ygz — '}/lh):ly (225)

where y1 is given by (2.21) and ys by
ve = ya(o, f) = (a® + 2 + 1fo?)} (Reyy 20).  (2.26)
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The functions &1 =1(e, ) and &2 =.o2(x, §) follow from the
boundary conditions at the interface. It is found that

— & 1
oy = LT R , (2.27)
eay1 + e1y2 2e1y1

1
R A — (2.28)
g2y1 + €1y2

From these results the Hertzian vector in the upper medium will
be determined. Since the incident wave #g is already known, we
are left with the problem of determining the reflected wave u;.
Equations (2.19) and (2.24) show that U; = Uy(x, y, 2; s) is of the
form

Ui(x, y, z; 5) = sF(s) Gi{x, v, z; s), (2.29)
where

Gi(x, v, 2; 8) ==

= z:z—z fdﬂ fexp{— sl + 1By + y1(z + B} 1(x, B) dox. (2.30)

—00 —o00

From now on we restrict the discussion to the case vs << v;. In
§ 3 it will be shown that then the integral at the right-hand side
of (2.30) can be transformed into

Gi(x, v, z; s) = fexp(— s7) g1(x, ¥, z, 7) dr, (2.31)
Ra/v1
where only 7eal values of 7 occur in the integration and where R,
is given by
Ry = [#2 4+ y2 + (2 + h)2}} (2.32)

(Rg = distance from the image of the source to the point of ob-
servation). Now we observe that sF(s) exp(— s7) is the Laplace
transform of a function of time that vanishes when ¢ < 7 and equals
df(t — 7)/dt when = < ¢. Using the notation df/d¢ = f* we finally
obtain for the z-component of the Hertzian vector corresponding
to the reflected wave

0 (O <t < Rz/?)l),
wmx, v, 5t = !,
Rz/’Ufl (

t—1)gi(x, v, 2, 7)dr (Rafvr < t < o). (2.33)
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From the foregoing analysis it is clear that #1(x, v, 2, f) reduces to
gi(x, v, z,t) in case f(¢) is given by f(f) = 1 (¢t > 0), i.e. f(¢) is the
Heaviside unit step function.

The electromagnetic field vectors in the air are obtained by using
(2.4), (2.10) and (2.33) in the right-hand sides of (2.2) and (2.3).

§ 3. Determination of the fumction gi(x,y, z, 7). In the present
section it will be shown that the transformations outlined in § 3 of
reference 9) lead to an expression for gi(x, v, 2z, 7) in the form of
a single integral over a finite interval. In the integral on the right-
hand side of (2.30) we introduce new variables of integration w and
g through

o = wCcos ¢ — g sin ¢, (3.1
f = wsin ¢ + g cos ¢. (3.2)
Since da df = dw dg, we obtain
1 .
Gi(x,y,2;8) = ey qu {exp {— sliwr + yi(z + B)]}~1 do, (3.3)
in which, as «2 4 2 = w? 4 g2,
Y12 = (0% 4 g2 + 1122} (Reyiz 2 0). (3.4)

Next we introduce the variable $ = ¢ and regard $ as a complex
variable, while ¢ is kept real. The result is

1
42

[ g [ expt—stpr i+ mpns v, @3)

—o0 —joo

Gi(x,v,2;8) =

in which (compare (2.27))
£9y1 — E1V2 1

A = ,
eay1 + e1ys 2e1y1

(3.6)
with
yr2 = (% + 1v1,2 — p?)F (Reyiz 2 0). (3.7)
In the complex p-plane the integrand in (3.5) has branch points at
p = + £i(g) and at p = 4- 22(g), where
Q1,0(9) = (¢ + Yot (212> 0). (3-8)

In view of subsequent deformations of the path of integration we
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take Re y1 = 0 and Re y3 = 0 not only on the imaginary p-axis
but everywhere in the p-plane. This implies that branch cuts are
introduced along Imp =0, £2:(9) <|Rep| < oo and along
Im p =0, 2:(9) < |Re p| << co. It can easily be verified that, by
virtue of Cauchy’s theorem and Jordan’s lemma 13), the integral
along the imaginary p-axis in (3.5) can be replaced by an integral
along the branch I'i of a hyperbola, where I'; is given through

p = (r/Re®)m £ i(h/R2?)[7% — RP21%(@))  (Refi1(9) <7 <o), (3.9)

in which the square root is taken positive or zero. The upper and
lower sign in (3.9) refer to the part of I'1 located in the upper and
lower half of the p-plane, respectively. Along I} we have

y1 = (B/Ro?)7 F i(r|Re?)[7% — R2221%(q)]} (3.10)
and
op iy1
PR X 10

In (3.9), (3.10) and (3.11) the upper and lower signs belong together.
Taking into account the symmetry of the path of integration with
respect to the real axis and introducing + as variable of integration
we obtain, since ¢, s and 7 are real,

Gi(x,v,2;8) =

1 1

= ﬁqufexp(— s7) Re {11} [2 — Ra20:2(g) dr. (3.12)

0 Ref:1(q)

Interchanging the order of integration we have

Gi{x,y,2;8) =
0 (12/Ro2—1/012)}
1 I
= —s7) d f—R R4 dg. (3.13
fexp( s7) dr — e {11} [72 — R2Q:2(g)! g- (3.13)

Rajv1 0

The integral on the right-hand side of (3.13) has the form announced
in § 2, eq. (2.31). Consequently, gi(x, v, 2, 7) is given by

1

in

VY, 2, T) = Re {#1y1} dy, -

(31 2,7) = —p [ Re oy dy (3.14)
0
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where a new variable of integration y has been introduced through
g = (123/Ro2 — 1jv1®)tsiny (0 <y < In). (3.15)

In the right-hand side of (3.14) we have to substitute for  and y;
the values (compare (3.9) and (3.10))

p = (r|Rs2) 7 + i(h|R?)(r2 — RZvD)t cosy,  (3.16)
y1= (h/Rs%) 7 — i(r/Rs?)(r — Re2jvi®tcosy,  (3.17)

while ¢ is given by (3.15). In all these expressions Rafv; < 7 < oo
and Ry = [72 4 (z + h)2]%.

§ 4. Concluding vemarks. The problem of determining the Hertzian
vector corresponding to the reflected wave generated by a vertical
electric dipole located at a height %4 above a non-conducting earth
with plane boundary has been reduced to the evaluation of the
integrals in (2.33) and (3.14). In (2.33) the function f'(¢ — 7) takes
into account how the electric moment of the dipole varies in time,
while gi(x, v, 2, 7), given by (3.14), depends on the geometry of the
boundary value problem and the physical properties of the air and
the ground. As was to be expected the function g; is independent
of ¢, i.e. the Hertzian vector is rotationally symmetrical about the
z-axis.
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