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Summary

A reciprocity theorem for impulsive disturbances in a linear, viscoelastic
medium is derived. Apart from the condition that the medium be linear
and viscoelastic of the Boltzmann type, no restrictions as to the properties
of the medium are imposed. Hence, the reciprocity theorem is applicable to
disturbances in inhomogeneous and anisotropic media.

As an illustration of its usefulness the reciprocity theorem is used to derive
an integral representation of the Kirchhoff type for the displacement vector
in a linear, viscoelastic medium.

For reference, also the Laplace transform version of the obtained results
is given.

§ 1. Introduction. In several branches of mathematical physics
reciprocity theorems are used to derive important relations be-
tween the physical quantities involved:. Restricting ourselves to
the field of elastodynamics we mention in particular a recent
paper by Paytonl). In this paper a dynamic analogue of the
Betti-Rayleigh reciprocity theorem for (static) elasticity is de-
rived and subsequently applied to some moving-point load problems.
The media considered in that paper are linear, homogeneous, iso-
tropic and perfectly elastic. In § 2 of the present paper we derive
a similar elastodynamic reciprocity theorem for a more general
class of media: the media are only supposed to be linear and
viscoelastic of the Boltzmann?) type. Hence, the case of in-
homogeneous, anisotropic and imperfectly elastic media is included.

As an illustration of its usefulness the reciprocity theorem is
employed to obtain an integral representation of the Kirchhoff 3)
type (see also Baker and Copson4)) for the displacement vector
in a linear, viscoelastic medium (§ 3).
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For reciprocity relations in seismology we refer to a paper by
Knopoff and Gangi®), in which the case of inhomogeneous and
anisotropic media is considered too, the time dependence of the
different quantities being restricted however.

§ 2. Basic equations governing the motion 1 a linear, viscoelastic
medium. We consider small-amplitude disturbances in a linear,
viscoelastic medium. The Cartesian coordinates of a point in space
are denoted by x1, ¥3 and x3; the time variable is denoted by ¢.
We follow the usual subscript notation for Cartesian vectors and
tensors and employ the summation convention; all subscripts are
successively assigned the values 1, 2and 3. Let u; = u; (%1, %2, 43, 1) =
= uy(#, £) be the displacement vector and let 74 = 74(%1, %2, %3, {) =
— 74(%, ) be the stress tensor, then the (linearized) equation of
motion is

Orijlony — p(%)(0Puef0F%) = —Fs, (2.1)

where p = p(x1, %2, ¥3) = p(#) is the mass density of the medium
and f; = fi(x1, %2, ¥3, ) = fi(%, ¢) is the body force density. The
viscoelastic properties of the medium are characterized by the
(linearized) stress-strain relation

(o=}

'rij(x, t) :()fcij;pq(x, 7‘) [aup(x, I — T) /ﬁxq] d’r, (2.2)

which is of the type considered by Boltzmann?) (see also Chao
and Achenbach®)). Since both the stress and the strain tensor
are symmetric tensors the functions ¢ij; pg = Cij; pa(¥1, %2, ¥3, 7) =
= Cyj; pg(®, 7) satisfy the symmetry relations c; pg = ¢ji; pg = Cji; qp =
= Cyj: gp Tor all values of x1, #2, ¥3 and 7. Further, cij; po(%, 7) = O
when —oo < 7 < 0. The medium is called “reciprocal” if, in ad-
dition, the symmetry relation

A Cif; pg(®, 7) = Cpg;i5(%, 7) (2.3)

holds for all values of %1, x9, ¥3 and 7.

§ 3. The reciprocity theorem. A reciprocity theorem constitutes a
relation between the quantities occurring in two physically possi-
ble, different situations; the two situations will be called situation
A and situation B. The quantities (displacement vector, stress
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tensor, body force density) characterizing situation A (B) will be
denoted by their corresponding symbol to which a superscript
“A” (“B”) is attached; a similar notation is used to distinguish
between the media which are present in the two situations. On
the assumption that the properties of the medium present in situ-
ation A are related to the properties of the medium present in situ-
ation B through the conditions p™(x) = p® (%) and cy; po' (¥, 7) =
= Cpq; w( ), 7) for all values of 1, %2, x3 and =, the following reci-
procity theorem™) can be formulated. (In view of (2.3) the medium
in situation A is identical with the medium in situation B if the
media are reciprocal.)
Let & be a bounded, closed surface with piecewise continuous
unit vector #; in the direction of its outward normal and let ¥ be
the domain inside & . Then

f dr ff{T(A)(x ) [ﬁuéB)(x, t— 7)ot — 7)) —

ﬁf”(x, T)[9M§A)(x, P — 7)[o(t — )]} ny dS =

= — ] dr T o, ¢ el — )]
B, oD, ¢ — 7)ol — 7] AV (3.1)

Equation (3.1) is proved by applying the divergence theorem to the
left-hand side and employing the equation of motion (2.1) and the
stress-strain relation (2.2). Sufficient conditions (to be imposed in
situation A as well as in situation B) under which the proof holds
are: (i) fi(», ?) is continuous, u(¥, f) and 74(#, £) are continuously
differentiable with respect to xi1, xs and xg and wg(x, ?) is twice
continuously differentiable with respect to ¢ for all # in ¥~ or on &
and all #in —oo < ¢t < oo; (i) p(%) and cy; pe(¥, 7) are continuous
forall ¥in ¥  or on & and all 7in 0 < 7 < oo; (iii) as { = —oo0 we
have

lim [ous(x, £/ — O (3.2)

f——o0

and
lim [Oup(x, f)[0xq] = O (3.3) -
{——o0

*) The corresponding reciprocity theorem for electromagnetic fields has recently been
given by Ru-Shao Cheo?). :
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for all ¥ in ¥~ or on . The continuity conditions with respect to
the spatial coordinates may be weakened to piecewise continuity
and allowance for finite jumps across a sufficiently regular surface,
provided that across such a surface the integrand in the left-hand
side of (3.1) is continuous.

It is observed that both sides of (3.1) are functions of the time ¢,
while (3.1) is valid for all values of f. Hence, other reciprocity
theorems can be derived from (3.1) by applying an arbitrary time
operator to both sides of the equation. If, for instance, (3.1) is
integrated with respect to ¢ from —oco to a certain instant which
we again call ¢, we obtain

o d’f{p S0, 7) ulBw, ¢ — 1) —
— Téf)(x, ) ui (%, ¢ — 7)) n; AS =

= = [ ALY ) Pt )

— P, 1) ulP(w, ¢ — )} dV (3.4)
on the assumption that (in situation A as well as in situation B)
lim wu(%, £) = O. (3.5)
t——o0

Equation (3.4) is a reciprocity theorem in which the velocities oc-
curring in (3.1) are replaced by their corresponding displacements.
Of course, (3.4) can also be obtained directly by applying the
divergence theorem to its left-hand side and employing the equation
of motion (2.1) and the stress-strain relation (2.2).

In view of the numerous applications of Laplace transform tech-
niques to elastodynamic problems we also give the reciprocity theo-
rem which is obtained when a Laplace transform with respect to ¢
is applied to either (3.1) or (3.4). We introduce the two-sided
Laplace transforms Uy(%; s), Ty(x; s) and Fy(«; s) of ui(#, 7), m4(%, ?)
and /;(%, ) with respect to ¢; for instance,

Uslw; s) 88 [ exp(—st) wlw, £) di. (3.6)

—0oQ

Similarly, we have, since ¢; pg(¥, 7) = 0 when —oo <7 < 0,

Cij; pg(¥; 9) 9ot [ exp(—s7) cij; pg(%, 7) dr. (3.7)
0
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The equation of motion (2.1) is then transformed into
0T /05 — p(%) s2U; = —F; (3.8)
and the stress-strain relation (2.2) into
Tig(%; s) = Cig; pg(®; 5)[0U p[0x4], (3.9)

where the conditions (3.5) and (3.2) have been used.
Both (3.1) and (3.4) are transformed into the following reciprocity
theorem for the Laplace transformed quantities:

1] {TFUP — TPUy my dS =
= — [[J{F¥OUP — FPU®Y AV, (3.10)
v

Equations (3.8), (3.9) and (3.10) are valid if all Laplace transforms
involved exist and if the necessary continuity conditions are satis-
fied. '

§ 4. An integral vepresentation fov the displacement vector. As an
application of the reciprocity theorem we now proceed to derive
from (3.4) a Kirchhoff type3.4) integral representation for the dis-
placement vector. In the case when the medium is linear, homo-
geneous, isotropic and perfectly elastic such an integral represen-
tation is known (see De Hoop8), where also applications to elasto-
dynamic diffraction problems are given).

In (3.4) the situation A is taken to be the actual state of dis-
turbance in the viscoelastic medium; henceforth, the superscript
“A” will be dropped. Further, the situation B is taken to be a
state of disturbance due to an impulsive body ferce operative at
the point & (with position vector x,) and at the instant /= 0.
Using a superscript “G” for this state of disturbance we have

(%, 8) = (% — %y, 1) ay, (4.1)

where (6 — &,,%) 1S the four-dimensional delta (generalized)
function and a; is a constant vector. On account of the proper-
ties of the delta (generalized) function, (4.1) is equivalent to

I dr [1EO®, 1) wils, t — 1) AV = aga(sp, 8),  (4.2)
- —o0 v

when & is lying inside &, whereas the left-hand side of (4.2)



44 A. T. DE HOOP

vanishes when & is lying outside &. Taking into account (4 2),
the reciprocity theorem (3.4) leads to

aiui(®p, ) = f dr {/ [ [ i(®,t — 7) (%, 7) AV +
—_00 "
+ [ [ [ray(%, ¢ — ) %éG)(x, T) — T,E?-G)(x, Ty wi(®, t — 7)] 1y dS}. (4.3)
7

In this expression %" (x,¢) and 7{{’(x, #) are to be considered as
known functions, viz. the displacement vector and the stress tensor
of a disturbance due to the body force density (4.1). (It is noted
that in the case of a homogeneous medium with special viscoelastic
properties, expressions for #{%(x,#) and 7{{’(#,f) have been ob-
tained by Chao and Achenbach®).) From (4.3) an integral repre-
sentation for u;(%,, ) itself is obtained by expressing the dependence
of u{®(w, t) and 7{(%, ) on a;. To this end we write

WP(x, 8) — s, £]%5) an (4.4
and
(%, 1) = ~§?G)k(x, t| %) ak. (4.5)

Substitution of (4.4) and (4.5) in the right-hand side of (4.3) leads
to an equation which is valid for any a. Consequently,

wslip, ) = J O /LSl 8 — ) w0155 AV

+ .‘/?if [T’l]'(x’ t— T) %i,c}lg(x’ T ‘ xﬂ) -

— Tie(®, T|8p) wi(®, ¢ — 7)] n; AS}. (4.6)
~ This integral representation holds when & is lying inside &; when
2 is lying outside & the right-hand side of (4.6) vanishes.

It is to be noted that #{%)(x, ¢| #,) is not uniquely determined by
(2.1), (2.2) and (4.1) as no boundary conditions and/or conditions
at infinity are imposed. In fact, any solution of (2.1), (2.2) and
(4.1) can be used in the integral representation. (4.6). Further, it
is observed that, with regard to the properties of the medium, the
conditions p(#) = p@(*) and cy; pe(®, 7) = ¢&) (%, ) have to be
satisfied for all w in " oron & and all T in 0 < 7 < co.

Finally, the Laplace transform version of (4.6) is found to be

Unlps s) = /1S Falss s) USYw; s|3p) AV +
2
/[ [Tag(;5) ULAw3 5 |85) — TS0, (035195) Us(w; )] mpdS. (47)
&



RECIPROCITY THEOREM FOR VISCOELASTIC MEDIA 45

This result can also be directly obtained from (3',10) by taking
U@ar and TE.ax to be a solution of (3.8) and (3.9) with

F®(x;s) = 6(x — &) ai, (4.8)

where 6(¥ — %) is the three-dimensional delta (generalized) func-
tion.
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