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The surface line source problem in elastodynamlcs

by prof. dt. ir. A. T. de Hoop, Delft University of Technology,

Department of Electrical Engineering

Summary: At the plane boundary of a semi-infinite, homogenebus, isotropic, perfectly elastic solid a pulsed line
source of normal pressure generates a two-dimensional elastic wave motion in the solid. The displacement vector of

this elastic wave motion is calculated at any point inside the solid.

1. Introduction

The surface line source problem in elastodynamics involves the
calculation of the displacement vector of the elastic wave motion
in a semi-infinite, elastic solid, generated by a pulsed line source
of force applied at its plane boundary. Lamb [1], who has been
the first to investigate this problem, calculated the displacement

vector at the boundary. In the present paper the displacement.

vector at any point inside the solid is determined by employing
the author’s modification (de Hoop [2]) of Cagniard’s technique
for solving seismic pulse problems.

2. Formulation of the problem

The elastic waves under consideration are small-amplitude
disturbances travelling in a semi-infinite, homogeneous, isotro-
pic, perfectly elastic solid. The physical properties of the solid
are characterized by its mass density p and its Lamé constants
A and p. A right-handed Cartesian co-ordinate systeth x, J, z
is introduced such that the elastic medium occupies the half-
space —o0 < X < 00, —0 < < 0, 0<z< . A point inside
the solid or at its boundary z = 0 is located by either its Cartesian
co-ordinates or its cylindrical co-ordinates defined through

z = rcos(f) 2.1

< /2. The time co-ordinate is

x = rsin (6); y=¥;

with0 < r < 0, —1/2 £ 0
denoted t by t.

Along the line x=0, —co<y<o, z=0 a pulsed force is
applied to the free surface of the solid. It starts to act at the
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instant ¢ =0; prior to this instant the medium is assumed to
be at rest (Fig. 1). "

Let 7 = #(x, y, z, t) be the displacement vector of the elastic .
wave. At any interior point of the solid the stress tersor,
with components 7, T.,..., T, is related to the displace-
ment vector through the (linearized) constitutive relations

1. = Adivi + 2p(0u,/0x), etc. (22

T, = W0u,/dy + Bu,/ox), ete. ' (2.3)

From the (linearized) equation of motion and the constitutive
relations it follows that, in the absence of body forces, the
displacement vector satisfies the elastodynamic wave equation

Txy =

vp? grad div & — vg? rot rot il — 8*ufort = 0 (2.9
in which
p = [ + 20)/p]* 2.5

is the velocity of propagation of compressional or P-waves
(for which rot ¥ = 0) and

= (u/p)? : (2.6)
is the velocity of propagatlon of shear or S-waves (for which
div 7 = 0).

Now we investigate the case where the amplitude of the
applied force is independent of y; then the boundary conditions
as z|0 are independent of y. Since the elastodynamic wave
equation admits y-independent solutions the generated elastic
wave motion is independent of y. Hence, & = #(x, z, f). The
y-independent solutions of (2.4) separate 1nto two classes: in
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Fig. 1. The configuration to be investigated.

one of them 7 has only a y-coniponent, in the other & has only
an x- and a z-component. Let the plane of the boundary be
‘horizontal’, then the former displacement vector corresponds
to an SH-wave (horizontally polarized shear wave) while the
latter displacement vector corresponds to a superposition of a
P-wave and an SV-wave (vertically polarized shear wave)
(Bullen [3]). The calculation of the SH-wave is a simple problem
in scalar wave propagation and is not considered here. The
calculation of the combined P- and SV-wave motion is the
subject of our further investigation.

Let 7" be the compressional part and %5V the shear part
of the relevant displacement vector, then # = #P + 7SV,
From (2.4) it follows that #® satisfies the two-dimensional

- wave equation -

@/0x* + 8*/02> — v~ 20PN = O .7
together with the auxiliary relation 7, * rot =0, ie.

Ou B0z — ou,Pjox = 0, (2.8)
while %5V satisfies the two-dimenéional wave equation -
(2/0x> + 0%0z> — vy~ /oS =T (2.9)
together with the auxiliary relation divatsY! = 0, i.e. _

A Vox + ou,SVoz =0 (2.10)

The calculation is further restricted to the case where the force
at the boundary is applied normally, then we have

lim,,,7,, =0andlim, o7, = —f(1)8(x) @.11)

z40 "xz z]0 “zz

where f(f) denotes the amplitude of the applied pressure
(f(f) = 0 when —c0 < t<0) and §(x) denotes the one-dimen-
sional delta distribution. In view of the symmetry of the con-
figuration with respect to the plane x = 0, #_ is an odd function
of x, while u, is an even function of x, i.e.

ux(x> Zs t) = —ux(——x, 2, t) and uz(x: Z, t) = uz(—x, 2, t) (2]2)

As a consequence, u, and u, need only be determined in the
quarter-space 0<x<o0, —w<y<c, 0<z<oo. Finally, it
has to be taken into account that the waves generated by the
source travel away from it.

3. Method of solution

We follow the steps as indicated in [2] and subject all time-
dependent quantities to a one-sided laplace transform with
respect to time. For example:

F(s) = % exp(—s)f(r)dt ERY)

in which s is a real, positive number large enough to ensure
the convergence of integrals of the type (3.1). (It is assumed
that the behaviour of f(¢) and A(x, z, ) as t— oo is such that
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an appropriate value of s can be found.) Let U= Upy; z 5)
denote the one-sided laplace transform of 7 = 7(x, z, t) and let,
similarly, T, etc. be the one-sided laplace transforms of 7,

etc. Then U satisfies the differential equation

@ /ox> + foz* = /0,0 = § (3.2)
together with the auxiliary condition

oU )0z — 8U,Pfox = 0 , (3.3)
while TSV satisfies the differential equation

(@/ox? + 8/02% — sHoHUSY =0 (3.4)

together with the auxiliary condition
U SVox + oU SV/oz = 0 (3.5)

Further the constitutive relations (2.2) and (2.3) are replaced
by corresponding relations involving the laplace-transformed
quantities, whereas the boundary conditions (2.11) are re-
placed by

lim, T  =0andlim,, ,7T,, = —F()d(x)’ 3.6)

z40 " xz 20 *zz

Next we introduce the integral representations
ico

0 — (F(s)2ri) J (B, + ¥ol JA(P) x
X exp[—s(l;l;—*r yp 2Idp 3.7
and

TSV — (F(s)/2ni) j (y:ix - p?z)B(P) X

x exp[—s(px + y2)ldp ' (3.8)
in which

Tps = (I/DP,SZ - PZ)i with Re(Vp,s)é(.) (3.9).

The right-hand side of (3.7) satisfies (3.2) and (3.3), the right-
hand side of (3.8). satisfies (3.4) and (3.5); the choice of the
square root in (3.9) will lead to waves travelling away from the
origin. Substituting (3.7) and (3.8) in the boundary conditions
(3.6) and using the representation

3(x) = (s/2xi) J exp(— spx)dp (3.10)

we obtain two linear, algebraic equations for A(p) and B(p).
The solution of these equations is obtained as

A(p) = (1/2v3 — p?)/2uR(p); B(p) = pyp/21R(p) (3-11)
in which
R(p) = (1)2v8> — p*)* + P*7e¥s (3.12)

At this point we observe that 4(p) and B(p) have the following
singularities in the complex p-plane: (a) branch points at
p = * 1/v,, (b) branch points at p = £ 1/vg, (c) simple poles
atp = + l/vg wherep = lfvgand p = —1/v, (v, = Rayleigh
wave velocity) are the simple zeros of the right-hand side of
(3.12).

- - SV .
Now that U™ and USY) have been determined, the trans-

. formation back to the time domain follows by changing the

path of integration in (3.7) and (3.8) to a curve along which
Re(px + yps2) =1 >0 and Im(px + yp52) =9 (3.13)

Since this process requires the integrands to be single-valued,
branch cuts are introduced in accordance with (3.9), i.e. along
Re(yps) = 0. Further, neither singularities nor branch cuts
may be passed. The modified path of integration in (3.7) is
then obtained as p = w(¥, z, 1), together with its imagep = wp*
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with respect to the real axis, where w,, is given by
wp = (t/r) sin(f) + i(z2/r? — 1/v,?) % cos ()
withTp <7< o0 and T, =rfvp

The modified path of integration in (3.8) in general consists of
the two parts p = wps(x, 2, 7)and p = wy(x, z, 1), together with
their imagesp = wyg* and p = w* with respect to the real axis,
where wpg is given by

wps = (t/r) sin(B) — (1/vg* — 12/r¥)* cos(6) + i0 (3.15)
with Tps <7< Ty and '
Ty = Tpsin(®) + Tyl — v2/0,2)* cos(),
Ty = rfvg
and wg by
wg = (t/r)sin(d) + i(fcz/rz‘ — 1/v¢®)?* cos(8) (3.16)

with Tg <1< 0

The part p = wpg, together with its image p = wp* with
respect to the real axis, is only present for points of observation
in the domain vg/v, < |sin(f)| £ 1 and is due to the presence of
the branch points p = + 1/v, (Fig. 2). Introducing in (3.7) and
(3.8) t as variable of integration and taking into account the
symmetry of the paths of integration with respect to the real
axis, we obtain expressions for U™ and USY of the form

TP = F(5)GP (x, z; 5) and TSV = F(s) GV (x, z; 5) (3.17)

where

a® = Jw exp(— s7) 2% (x, z, 7) dv (3.18)
e
and . ) :
Ts
gV j exp (- s ™ (x,2,7) dr +
Tps
+ Jm exp (- s1) 89 (x,z,7) dr (3.19)
Ty .
with
9P = (1/m) Im (4, + Yp (0p) ) A (@) (B0 /07)] (3.20)
9* = (1/m) I [(15 (@ pg) 1o~ s T,) B (@pg) (pg/0D)] - (3.21)

Imip)

Fig. 3. Wave fronts of the P-wave, the PS-wave and the S-wave,
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99 = (mIm (5 (@9) T, - 05 7) B(wg) (Bog/én)]
(3.14) .

(3.22)

Expressions for 4P (x, z,:t) and # SV (x, z, 1) are now obtained
by applying the convolution theorem to (3.17) and using the
uniqueness of the inverse laplace transform. The results are
presented in Table 1 and Table 2.

Table 1. P-wave as a function of time.

t WP (x,z, 0 -

-

-0 <t<Tp 0

T, <t<o |.[ift=0g® (x z17)de
P

Table 2. SV-wave as a function of time (the term 79 is only
present in the domain vg/v, < |sin(f) | < 1).

t CE (x, 7, 1)
G
—0 <t < Thy 0

Tps <t < T It fE=0d® (x,z 1) de
. - PS i .

T, <t
s <® [T f—1F " (x,z,1) do +

+ L ft-DFO(x, 2, 1) dr
S

4. Discussion of the results

The total elastodyhamic wave motion # generated by the line
source is given by # = #® + OV, where u'P follows from
Table 1 and 7V follows from Table 2 (see Fig. 3). The P-wave
is 4 cylindrical wave arriving at 1 = T, where T}, is the travel
time for P-waves travelling along a straight line from the line
source to the point of observation, The SV-wave consists of a
PS-conversion wave arriving at ¥ = T',g and a cylindrical SV-
wave arriving at ¢ = T. The PS-conversion wave is only present
in the domain vg/v;, < | sin(f) | < 1 and precedes the cylindrical
SV-wave. Ty is the travel time for SV-waves travelling from
the line source a distance x —z (vg/vp) (1 —v¢2/v,?)~ * along the
boundary with P-wave velocity and then along a straight line
to the point of observation with S-wave velocity; T is the travel
time for S-waves travelling along a straight line from the line
source to the point of observation. At the boundary of the
solid there is a singularity in the displacement vector travelling
with velocity vy ; this singularity is due to the presence of the
poleatp = + 1/vg. ]

The features that are characteristic for the configuration
occur in g®, g® and g®. The numerical computation of
these quantities involves only algebraic operations of the type
complex. '
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