Generation of acoustic waves by an impulsive line source
in a fluid/solid configuration with a plane boundary
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The space~time acoustic wave motion generated by a two-dimensional, impulsive, monopole line
source in a fluid/solid configuration with a plane boundary is calculated with the aid of the
modified Cagniard technique. The source is located in the fluid, and numerical results are
presented for the reflected-wave acoustic pressure, especially in those regions of space where head
wave contributions occur. There is a marked difference in time response in the different regimes
that exist for the wave speed in the fluid in relation to the different wave speeds (compressional,
shear, Rayleigh) in the solid. These differences are of importance to the situation where the
reflected wave in the fluid is used to determine experimentally the elastic properties of the solid.

PACS numbers: 43.20.Px, 43.20.Rz, 43.25.Vt, 43.20.Fn, 43.20.Bi

INTRODUCTION

Acoustic waves as a diagnostic tool in determining the
mechanical parameters (volume density of mass, compress-
ibility, elastic stiffness) of fluids and solids have a widespread
use. The applications range from geophysics (seismic explo-
ration techniques, borehole soundings) to quantitative non-
destructive evaluation of mechanical structures and acoustic
tomography for medical purposes. In many cases, the theo-
retically obtained results for certain model configurations
serve as a guidance when interpreting experimentally ac-
quired data in the more complicated situations met in prac-
tice. To serve this purpose, the relative importance of the
different parameters that govern the behavior of a certain
configuration should show up as clearly as possible in the
results that apply to the model configuration. Now, in any
acoustic wave problem where fluid/solid interfaces play a
role, the case of a plane boundary between the two serves as a
canonical problem whose features should be thoroughly un-
derstood before analyzing more complicated geometries.

In the present paper, we investigate the acoustic wave
motion in a fluid/solid configuration with a plane boundary.
The source is taken to be a iwo-dimensional line source that
emits an impulsive wave. In accordance with the situations
met in borehole applications as well as in marine seismics, we
locate the source in the fluid and compute the values of the
acoustic pressure in the fluid.

The configuration considered here has been investigat-
ed before by Roever et g/.' They investigate the three-dimen-
sional point-source problem, but apply a two-dimensional
type of approximation to evaluate the acoustic pressure in
the fluid at large distances from the source. The latter two-
dimensional problem is then solved with the aid of the origi-
nal Cagniard technique. In the present paper, the problem is
solved by applying the first author’s modification of Cag-
niard’s technique (de Hoop,”™ see also Achenbach,” Aki and
Richards,® and Miklowitz’). The answer has a simple shape:
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just a convolution of the input signal of the source and the
explicitly obtained space~time Green’s function of the con-
figuration. The space-time Green’s function (or “system’s
response”) clearly shows each feature of the time behavior of
the acoustic pressure at different locations in dependence of
the mechanical parameters involved. Also, the result can
serve as a check on the accuracy of the numerical procedures
that are used to evaluate the Fourier integrals in the standard
spectral analysis of the problem, which seems to be the only
available procedure in case the materials are lossy.

. DESCRIPTION OF THE CONFIGURATION

We investigate theoretically the pulsed acoustic wave
motion in a two-media configuration with a plane interface.
One of the media is a homogeneous, ideal fluid; the other is a
homogeneous, isotropic, perfectly elastic solid. The source is
located in the fluid. It generates an impulsive wave motion
that is reflected at the interface and, in this way, interacts
with the solid. We determine expressions for the acoustic
pressure of the reflected wave at any point in the fluid and at
any time with the aid of the modified Cagniard technique. In
the present paper, the two-dimensional case is considered.

To specify position in the configuration, we employ
Cartesian coordinates {x; = x, x, =y, x, = z} with respect

M Receiver Position

Transmitter ?

FIG. 1. Fluid/solid configuration with transmitter and receiver in fluid.
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to a Cartesian reference frame with origin O and three mutu-
ally perpendicular base vectors of unit length
{i, =i,,i,=1,1;=1,}. In the indicated order, the base
vectors form a right-handed system. The z axis is chosen
normal to the interface of the two media and the y axis is
chosen parallel to the line source. The source strength of the
latter is taken to be independent of y. The source, a transmit-
ting transducer, is located at x = 0, z = h. The receiver, a
receiving transducer, is located at x =d, z=hg. The
further properties of the configuration are listed in Table I
(see also Fig. 1).

The time coordinate is denoted by ¢. It is assumed that
the source starts to act at the instant £ = 0 and that prior to
this instant the entire configuration is at rest.

Since the strength of the source and the properties of the
configuration are both independent of p, the total acoustic
wave motion will be independent of y and hence all deriva-
tives with respect to y vanish in the partial differential equa-
tions that govern the wave motion.

Ii. DESCRIPTION OF THE WAVE MOTION IN THE
CONFIGURATION

In the fluid, the acoustic wave motion consists of the
superposition of the incident wave and the reflected wave.
The incident wave is the wave that would be generated by the
transmitting transducer if the fluid were of infinite extent; it
will be denoted by the superscript “i.” The reflected wave is
the difference between the actual wave motion in the fluid
and the incident wave; it will be denoted by the superscript
“r.” In the fluid we consider the acoustic pressure p as the
fundamental unknown quantity and hence we have

p=p +p in the domain D,. (1)
The transmitted wave in the solid consists of a P wave that
travels with speed ¢, and whose particle displacement u” is
curlfree, and an S wave that travels with speed cg and whose
particle displacement is divergencefree. In the solid we con-
sider the particle displacement u as the fundamental un-
known quantity and hence we have

u=u’+u’ in the domain D,. (2)

In the modified Cagniard technique we first calculate
the wave constituents in the transformed domain, i.e., after
having carried out a one-sided Laplace transform with re-
spect to time, with real, positive transform parameter s, and
a two-sided Laplace transform with respect to the coordi-
nate x parallel to the interface, with purely imaginary trans-
form parameter sp. (In subsequent calculations, the expres-
sions will be continued analytically into the complex p plane,

. s ion - .

pzs)= () [ esl—spxppzsdp 03
27 J— i

In Eq. (5) we have taken into account, that in Eq. (4) the

transform parameter is sp.

A. Incident wave

We now consider, more specifically, the case where the
line source is a monopole source. Accordingly, we have

p'=A"exp(—sy;lz — hzrl), (6)
where

v, =(1/¢2 —p?)'/* with Re(y)>0, (7)
and

A’ =5, /25y, (8)
where ¢, is given by

By = [ exp(—stigtn, )

the monopole source being characterized by a volume den-
sity of injected fluid volume of the type

Dy, = @y (t)blx, z — h7). (10)
Hence, ¢ (¢ ) represents the pulse shape of the source signal.
In the calculations we further need the z component of the

particle displacement. This follows from the equation of mo-
tion and the expression Eq. (6) as

i, = 4 (v,/sp;) A exp( —sy;|lz—hy|) when z2 hy.

(11)
B. Reflected wave
For the reflected wave we write
pr=A"exp[ —sysz+hy)] in the domain Dy (12)

To express the linear relationship between 4" and 4’ we
introduce the reflection coefficient R, for the reflected wave
in the fluid through

A"=R A" (13)

The z component of the particle displacement associat-
ed with the reflected wave then follows as

B = (yy/sp,) A" exp[ — sy lz + hy)]
in the domain D,. (14)

TABLE 1. Properties of the fluid/solid configuration.

. A . . Fluid ) Solid
away from the imaginary axis.) To show the notation, we
write down the relevant transforms for the acoustic pressure: Domain D, D,
z coordinate O<z< — w0 <z<0
Blx, z, 5) = J‘ exp( — st)p(x, z, £)dt, (3) Volume density of mass p, Ps
0 Constitutive K (bulk modulus A, (Lamé
- : parameter(s) of compression) coefficients)
b(p,z )= f exp(sp x)p(x, z, s)dx, Wave speed(s) ¢ =(K/p)"" cp =4 +2u)/p.]'"
— ) ’ es = (u/p;)'?
with Re(p) =0, (4)
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C. Transmitted P wave

The transform-domain representation of the transmit-
ted P wave is written as

(a5, 87) = {p,—yp} A" exp[slyp z — 7, hy)]

in the domain D, (15)

where

ve = (1/¢5 — p?)/? with Re(y;)>0. (16)

Equation (15) expresses that the P wave travels with
speed ¢, and that its particle displacement is curlfree. To
express the linear relationship that exists between 4 “and 4 /)

we introduce the P-wave particle displacement transmission
coefficient T, through

AT =(cp/sprc)Tp A" (17)
In the calculations we further need the x, zand z, z com-
ponents of the stress in the solid. They follow upon substitut-
ing the expression for the particle displacement in the consti-
tutive relation. For the P wave they follow as
{’7— )Ic), z? % i z }
= 2us{ pyp, P> — 1/2c5} AT exp[s(yp z — 7, h7)]
in the domain D,. (18)

D. Transmitted S wave

The transform-domain representation of the transmit-
ted .S wave is written as

(a3, ) ={ —vs,—p} 4 Sexp[s(ys z—yrhr)]
* in the domain D,, (19)
where ,
ys = (1/¢3 — p})"'? with Re(yg)>O0. (20)

Equation (19) takes into account that the S wave travels

with speed ¢g and that its particle displacement is diver-
gencefree. To express the linear relationship that exists
between A ° and 4, we introduce the S-wave particle dis-
placement transmission coefficient 75 through

A% =(cs/spre)Ts A" (21)

For the S wave, the x, zand z, zcomponents of the stress
follow as

(720 722)
=2us{ p* — 1/2c5, —pys} A  exp[slys z — v, hy)]
in the domain D,. (22)

With this, the transform-domain description of the
wave motion in the configuration has been completed. In the
next section, we determine the as yet unknown reflection and
transmission coefficients R;, Tp, and T by applying the
boundary conditions at the fluid/solid interface.

lil. DETERMINATION OF THE REFLECTION AND
TRANSMISSION COEFFICIENTS

The boundary conditions at the fluid/solid interface re-
quire the continuity of the normal component of the particle
displacement, the equality of the normal component of the
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traction in the solid and the opposite of the acoustic pressure
in the fluid, and the vanishing of the tangential component(s)
of the traction in the solid. In the transform domain, these
conditions lead to the equations

Hm (] + &7) = lim (] + @), (23)
z10 zl0

lim (7, + 73 ,) =lim (— p' — p"), (24)
z10 zl0

lim (72 , + 75 ,)=0. (25)
z10

Substitution of the relevant expressions in these equa-
tions leads to

Ry =(—p,ve/4p,7sCs + Ar)/Ascu> (26)

Te = —(ppef/ps cp) P — 1/2¢5)/¢5 Agcn, (27)

Ts =(psc/p, cslpye/cs Ascu, (28)
where

Ag =(p* = 12657 + P*7p¥s (29)

is the “Rayleigh-wave denominator” and

Ascu = py Yo/ 405 Ys cs +4x (30).

is the “Scholte-wave denominator.” The Rayleigh-wave de-
nominator is associated with surface waves along a traction-
free boundary of a solid (Rayleigh,? see also Achenbach?).
The Scholte-wave denominator is associated with surface
waves along a fluid/solid interface (Scholte,'®!! see also
Cagniard,'? and Miklowitz'?).

With this, the transform-domain expressions for the
wave motion in the configuration have been fully deter-
mined. The transformation of these expressions to the
space-time domain is carried out in subsequent sections. Ex-
plicit results will be given for the acoustic pressure of the
reflected wave in the fluid, since in all practical applications
this quantity is directly accessible to measurement.

IV. SPACE-TIME DOMAIN EXPRESSION FOR THE
ACOUSTIC PRESSURE OF THE REFLECTED WAVE

Considering the fluid/solid configuration as a linear
system in which, through the reflected wave, signals upon
their way from the transmitting transducer to the receiving
transducer gather information about the solid to be “sound-
ed,” we would like to write the time Laplace transform
expression p” for the acoustic pressure of the reflected wave
as [cf. Eqs. (6) and (8)]

P=5p; ¢y G}, (31)

where G 7 is the time Laplace transform of the space-time
Green’s function for the reflected wave in the fluid. Once the
corresponding space-time Green’s function G ; has been de-
termined, we can write the space~time expression p” for the
acoustic pressure of the reflected wave as

Plot)=p & f bolt — 7)G (- 7)dr,

when 0 <t < oc. (32)
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In Eq. (32), the dot in the argument stands for the spa-
tial variables. Now, the space and time Laplace transformed
equivalent of Eq. (31) would be

7 =598,Gr. (33)

Comparing Eq. (33) with Egs. (12), (13), and (8), we ar-
rive at .

Gl = (R./2sy,)exp[ — sy,iz + hz)], (34)
in which R/ is given by Eq. (26). Starting from Eq. (34), the
expression for G} is obtained with the aid of the modified

Cagniard technique. This technique accomplishes the trans-
formation of the p-plane integration [cf. Eq. (5)]

@;z(i> fiw (Rf )exP{ —s[ px + vz + hr)]}dp

2m7i) J— i \ 257,
(35)
into the real integration
Gl s)= f exp( — st)(7)dr, (36)
T

where I (-,7) is an expression that does not depend on s, and
where the dot stands for the spatial variables. The unique-
ness theorem of the Laplace transform with real, positive
transform parameter s then ensures that (Lerch’s theorem,
see Widder')

Gt = [(} when oo <7<T, (37)

(»7) when T<7< 0.

Here, T apparently is the arrival time of the reflected
wave. The actual transformation follows the pattern of the
modified Cagniard technique for two-dimensional wave mo-
tion. The final result is obtained as

0 when — o <7< Tp,
Gr={Im[R(p")]/20(T} — 7)"/* when Tp <7< Ty,
Re[R/(p7)]/2m(r* — T})'> when Ty <7< oo,

(38)

where
Tp=d/cp + (1/c2 — 1/2) by + hyg) (39)

is the arrival time of the head wave or lateral wave (if pres-
ent),

Ty = [d* + (hr + hg )] /e, (40)
is the arrival time of the reflected body wave in the fluid,
_dr— (b + )Ty — )2+ 10
7= d?+ (hy + he ) i

with T <7< T ‘ (41)
is the mapping from 7 onto p for the head-wave contribution,
_dr+ilhy + k) — T3)'"?
C (bt he)

with Ty <7 < o0 (42)

pﬁ"

is the mapping from 7 onto p for the fluid body-wave contri-
bution, ‘
d = transmitter-to-receiver spacing measured along
the interface,
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original path of integration A p /(;d’
p=p -~
7T k/ ~ _ff

modified
Cagniard
contour

FIG. 2. Complex p plane with singularities of R, and y, and modified Cag-
niard contours; the case ¢, < ¢, is shown, while cg < ¢,

h = distance from transmitter to interface,
hy = distance from receiver to interface.

The head-wave contribution is only present in those re-
gions in space where d/[d”+ (hy + hg)*]"*>c//cp. In
arriving at Eq. (38), we have assumed the case most often met
in practice where ¢, < c,. Note, that for any solid we have
¢s < ¢p. The results hold for the two cases that remain as far
as ¢, is compared with cs, viz., ¢, <cg, and ¢, > c5 (“fast
formation” and “slow formation,” respectively, for geo-
science applications). In case ¢, < ¢, the head-wave contri-
bution in Eq. (38} is absent.

Numerical results based upon Eq. (38) will be presented
in the next section. The typical features of the thus obtained
“computer seismogram” can all be attributed to the singu-
larities of R, in the complex p plane, cut in accordance with
the conditions put on the square-root expressions in Egs. (7),

- (16), and (20). These are: the two branch points p = + 1/¢,

due to ¥4, the two branch points p = -+ 1/c¢, due to ¥,, the
twobranch points p = + 1/c¢g due to ¥, and the two simple
poles on the real axis (Scholte poles) p = + 1/¢gey, where

Ascu(p)=0atp= =+ 1/cgen. (43)

It can be proved that csey <min(cy, cp, cs), while for
solids with positive Poisson ratio we always have
¢s <cp/2'2, Further, in order to keep R, and y, single val-
ued, we introduce, in accordance with the conditions put on
the square-root expressions in Egs. (7), (16), and (20), branch
cuts along 1/¢,<|Re(p)|<w, Im(p)=0; 1/cp
<|Re(p)l <o, Im(p)=0; and 1/cs<|Re(p)|< oo,
Im{ p) = 0. For the case most often met in practice, where
¢ < ¢p, the situation is shown in Fig. 2.

In this situation, the branch point p = 1/¢, is the first
singularity we meet upon deforming the path of integration
from the imaginary p axis to the modified Cagniard contour.

With the aid of the principle of the argument it can
further, by an elaborate calculation, be shown that in the cut
complex p plane R, has two simple poles and four simple
zeros (see the Appendix). If p,/p, = (2¢3/c} — 1)'/?, the ze-
ros are located on the branch cut at p = + 1/¢4/2 4+ i0.
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V. NUMERICAL RESULTS

In this section, we present some curves showing com-
puted space-time Green’s functions. Five different regimes
are distinguished. We make a choice as to the parameters of
the solid. Then, four characteristic points on the real p axis
(Fig. 2) are already fixed: 1/cp, 1/cs\2, 1/¢cs, and 1/cg,
where A (p) =0 at p= + 1/c,. Next, we subsequently
choose 1/¢; in the five regions that are generated by these
four points. The parameters that are kept fixed are listed in
Table II. The subsequent choices for the remaining param-
eter are listed in Table ITI.

In Figs. 37, the space-time Green’s function is plotted
as a function of time for three different transmitter/receiver
distances, viz., d = 0.2, 0.4, and 0.6 m, while in all cases
hy=hgz =001 m.

A, Interval 0 < ¢, <cq

In Fig. 3 results are presented for a fast formation. The
arrival times of the different wave types are marked by ar-
rows. At t = T, the arrival time of the compressional head
wave, the Green’s function has a discontinuity in slope. For
the limiting values we have

limd, G;=0and limdJ, G} = .

11Ty HTyp

{44)

Att = T}y, the arrival time of the shear head wave, which is
defined by Eq. (39), if we replace ¢, by cg, the Green’s func-
tion again has a vertical tangent. At r = T, the reflected
fluid wave arrival time, the Green’s function becomes nega-
tive infinite because of the square root singularity occurring
in the wave emitted by a two-dimensional line source [see
Eq. (38)]. Finally, at the Scholte wave arrival time ¢ = Tgcy,
defined by Tgcy = d /¢scn, the Green’s function has the
polelike behavior with a rapid change in sign. Apart from the
behavior around these arrival times, there are some other
features that we want to mention. In the interval between T,
and 7' the Green’s function has a zero with zero slope at the
time [cf. Egs. (39) and (A26)]

t=d N2 + (1/c; — 1/2¢2)*hy + hy). (45)

Further, in the interval between Ty and T there is a zero
crossing exactly at the time defined by

T =d/cg + (1/c; — 1/c3)*hr + hg)- (46)
This follows from Eqgs. (38) and (26), observing the fact that

TABLE II. Numerical values of the parameters that are kept fixed (param-
eters of the solid and volume density of mass of the fluid).

. Ps

Parameter Value
cp 3500 m/s
cs 2000 m/s
csV2 2828 m/s
cr 1841 m/s
2500 kg/m*
Pr 1000 kg/m’*
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TABLE I1I. Numerical values of the remaining parameter (fluid speed) in
the different regimes.

Interval of ¢, cp(m/s) Cscp (M/s)

O<cp<ep 1500 1436

Cr <Cr<Cs 1920 1613

cs <€y <esV2 2400 1669

csvV2<er<cp 3150 1695

Cp<Cr< o 4000 1706

Ay vanishes at ¢ = Tz, and hence, R, = — 1, a real value.

The bump in the signal in the interval between T and 7, is
due to the pseudo-Rayleigh phenomenon and will be dis-
cussed extensively in a separate paper.

B. Interval c; <c;<Cs

The results for this regime are presented in Fig. 4. The
major difference with the previous regime is that the zero
crossing at 7 is not present anymore. Further, at Ty, the
Green’s function still has a vertical tangent but now there
also is a discontinuity in slope. Finally, there is a tendency
(that will continue in the subsequent intervals) for the
Scholte wave to become less pronounced and more separated
in time from the reflected fluid wave arrival.

C. Interval c; <, <c5/2

In Fig. 5, the Green’s function for a slow formation is
shown. It is clear that the shear head wave arrival is not
present anymore.

D. Interval c;/2 < ¢, <Cp

In this case, shown in Fig. 6, also the double zero in the
interval between T and 7 has disappeared.

E. Interval ¢, <¢; <

Figure 7 shows that in this case the fluid arrival and
weak Scholte wave are the only features left in the space-
time Green’s function.

The time required to compute the Green’s functions for
one of the previous figures on a VAX 11/780 computer
amounts to about 5 s.

In Fig. 8, we present a synthetic seismogram for the
received acoustic pressure, in case the space-time Green’s
function has been convolved with a certain source pressure
pulse. For the pulse shape of the source, we have used a four-
point optimum Blackman window function, i.e.,

0 when — w0 <2<0,
3 75
Prdvit)= z b, COS(LI;?E) when O<t< T,
n=0
0 when T<t< 0,
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FIG. 3. Space-time Green'’s function
G} for the reflected acoustic pres-
sure in a fluid from a fluid/solid in-
terface as a function of time for three
transmitter/receiver distances: (1)
d=02m,(2)d=04m,(3)d=06
m. Further, ¢, =3500 m/s, ¢
= 2000 m/s, ¢, = 1500 m/s, p,/p,
=12.5,and hy = hp =0.01 m.

FIG. 4. Space~time Green’s function
G for the reflected acoustic pres-
sure in a fluid from a fluid/solid in-
terface as a function of time for three
transmitter/receiver distances: (I}
d=02m,(2)d=04m,(3)d=0.6
m. Further, ¢, =3500 m/s, cg
= 2000 m/s, ¢, = 1920 m/s, p,/p,
=2.5,and h; = hp = 0.0l m. )
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FIG. 5. Space—time Green’s function
G ; for the reflected pressure in a flu-
id from a fluid/solid interface as a
function of time for three transmit-
ter/recciver distances: (1)d = 0.2 m,
{2)d = 9.4 m, (3)d = 0.6 m. Further,
cp = 3500 m/s, c¢g = 2000 m/s, cp
=2400 wm/s, p,/p,=2.5, and
hy=hg =0.01 m.
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FIG. 6. Space~time Green’s function
G | for the reflected pressure in a flu-
id from a fluid/solid interface as a
function of time for three transmit-
ter/receiver distances: (1) d = 0.2 m,
(2)d = 0.4 m, (3)d = 0.6 m. Further,
cp = 3500 m/s, cg = 2000 m/s, ¢
=3150 m/s, ps/pr=12.5, and
hT = /ZR =0.01 m.
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FIG. 7. Space-time Green’s function
G for the reflected acoustic pres-
sure in a fluid from a fluid/solid in-
terface as a function of time for three
transmitter/receiver distances: (1)
d=02m,(2)d=04m,{(3)d=0.6
m. Further, ¢, =3500 m/s, c¢s
= 2000 m/s, ¢, = 4000 m/s, p./p,
=2.5,and hy = hy =001 m.
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FIG. 8. Reflected acoustic pressure
p"in a fluid from a fluid/solid inter-
face as a function of time for three
transmitter/receiver distances: (1)
d=02m,(2)d=04m,(3)d=0.6
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m. The pressure source pulse is also
shown. Further, ¢, = 3500 m/s, cg
= 2000 m/s, ¢, = 1500 m/s, p,/p,
=2.5, and h; = hx = 0.01 m. The
vertical scales for the signal prior to
T4 are ten times the vertical scales
after 7. The source pulse duration
T=20pus.
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t{us) ~——se

in which the constants b, are given by b, = + 0.35869,
b, = —0.48829, b,= +0.14128, and b;= — 0.01168.
The corresponding pressure source pulse, which is the sec-
ond derivative of p, ¢, (¢ ) [see Eq. (32)] shows great similar-
ity with the classical Ricker wavelet often used in seismol-

ogy.

VI. CONCLUSION

With the aid of the modified Cagniard technique, a sim-
ple closed-form expression has been derived for the acoustic
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pressure in space-time of the wave that is reflected and re-
fracted into the fluid when an impulsive, two-dimensional
monopole line source is present near the plane interface
between a fluid and a solid. Numerical results illustrate the
different features that show up in the different regimes that
exist for the wave speed in the fluid in rélation to the wave
speeds (compressional, shear, Rayleigh) in the solid. The nu-
merical evaluation of the expressions requires much less
time than would be the case for the analysis through the
evaluation of the standard time—space Fourier inversion in-
tegrals.
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APPENDIX: POLES AND ZEROS OF THE REFLECTION
COEFFICIENT

In this Appendix we show, with the aid of the principle
of the argument from complex function theory, that the flu-
id/solid reflection coefficient R, has two poles and four ze-
ros in the cut p plane as used to evaluate the space-time
response in the configuration. Let

Rf‘=NSCH/ASCH’ (Al)

where [cf. Eq. (26)]

Nsey = _prP/4Ps7’f ct + (P2 - 1/20;)2 +P27/P Vs
(A2)

and

Ascu = psye/4p. v €& + (P° — 1/2¢5F + p*¥e¥s.
(A3)

In accordance with our choice of the branches of the
square-root expressions, both Ny and Agy; are single val-
ued in the cut p plane as shown in Fig. Al.

Let NPOLES denote the number of poles of R, in the
cut p plane and NZEROS the number of zeros, then the
principle of the argument states that

d, 4
NPOLES = (2m‘)—IU +f + K » “IsCH )dp
Ce LY L= Ascn A

and

NZEROS = (27i)~ [ f J f _](aNNSCH>dp.

(AS5)

In Eqgs. (A4) and (AS) we have used the property that
both Ngey and 4y remain bounded in the cut p plane.
First, we calculate the contribution from C_, a circle with
center at the origin and arbitrarily large radius. Since

FIG. Al. The cut p plane and the contours used to determine the number of
poles and zeros of the reflection coefficient.
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Asen ~ —pH1/2¢5 — 1/2¢3) as |p| — (A6)
and
Nscy ~ — pH(1/2¢2 — 1/2¢%) as || = oo, (A7)
we have
a, 4
(27mi)~! f (P—Sﬁ‘i)dpz(zm)—l f 2p Vdp=2
c, \ Ascu Co
(A8)
and
ad, N,
(2ari) ! f (-P—ﬂ>dp = (27ri)"lf 2p dp=2.
C, NSCH Co
(A9)

Further, upon substituting p — — p, it easily follows
that the contributions from the two loop integrals L * and
L ~ around the branch cuts are equal. Hence, it suffices to
calculate the contribution from L * only. The contribution
to L * consists of the contributions from the circular arcs
C* C% and C’ around the branch points p = 1/c,,
p = 1/cg, and p = 1/c;, respectively, and the contribution
from the remaining principal-value integrals. By using the
local expansions

ap Ascn/Adscn = 0(7’;1) as p— 1/cp, (A10)
3, Ascu/Ascu =O0(ys ') as p— 1/cg, (A11)
8, Ascri/Ascu ~p/72 as p— 1/c;, (A12)
it follows that
(3, A
(27ri)‘lf ( 4 SCH)dp—»O, (A13)
c?\ Ascu
d,4
(2m’)~1f ( 4 SCH)dp——»O, (A14)
e\ dscn
a,4
(2mi) ! J ( 2 SCH)dp:(Zm’)_‘ f (ﬁ)dp= 1/2.
c/\ dscn c/ 7/}
(A15)

The principal-value integrals can be evaluated by ob-
serving that d, Ascy/Asen = 3, [In(Agcy)]. Their contri-
butions all cancel except for the ones that arise from the end
points near p = 1/c;, for which we obtain

(27i)~ " lim {In[Agcy(1/c, — 8 — i0)]

510

— In[Asexs (1/c; — 8 +i0)]}

= (2m) " — wi/2 — (mi/2)} = — 1/2. (A16)
Collecting the results, we arrive at

NPOLES = 2. (A17)

Now, checking the sign of Agcyy in the interval
1/c, <Re(p) < o0, Im{ p) =0, we . see that
limg o Agep(1/¢c, +8) = + o, while Ageyy — — 0 as

p — . Hence, one of the poles is located in the interval
1/¢; <Re(p) < o, Im(p) =0, the other in the interval
— oo <Re(p)< — 1/cs, Im(p) = 0. They are denoted by

p= + 1/cscy, respectively, where cyoy is the speed of

Scholte waves.
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A similar analysis is carried out for Ny . By using the
local expansions

3, Nscu/Nseu = O (vp ') as p— 1/cp, (A18)
ap NSCH/NSCH =0(7/§ 1) as p—»l/cs, (Alg)
ap Nscn/Nscu "P/V,% as p— I/Cf’ (A20)
it follows that,
ad, N,
(27i) ! f ("—Sc“)dp -0, (A21)
c? NSCH
a3, N, ’
(2mi) ! J (F—SCH)dp — 0, (A22)
e\ Ngcu
ad, N,
(277'1')“[ (p—sg}i>dp = (277'1')_1f (£>dp =1/2.
cf NSCH c/ 7/}
(A23)

The principal-value integrals are again evaluated by us-
ing the property d, Ngcu/Nscu =9, [In(Nscn)]. Their
contributions all cancel except for the ones that arise from
the end points near p = 1/c,, for which we obtain

(2i)~ lim {In [Nscx(1/¢, — 8 = i0)]
10
—In[Nscu(1/¢, — 8+ i0)] )

= 2m) " Hin/2 — (= in/2)] = 1/2. (A24)
Collecting the results, we arrive at
NZEROS = 4. (A25)

The location of the zeros depends upon the parameter
values of the two media.

The above analysis is correct, as long as there are no
zeros on the branch cuts. It is easily verified that, on the
branch cuts, the real and imaginary parts of 454 never van-
ish simultaneously. With Ny, the situation is different. The
real and imaginary parts of Ny vanish simultaneously if
the condition “y ¥, is real and positive” is satisfied, and

pP— 1724 =1, (A26)
—ps/ps + 4S vs¥r =0, (A27)

simultaneously. These conditions can only be met if
1/2¢% < 1/¢; and

p/ps = (2c5/c; —1)'7% (A28)

The zero is then located at p = 1/2"/% c;.
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The zeros p = 4+ 1/2'/% ¢; can be regarded as double
zeros in the sense that if Eq. (A28} is satisfied, nowhere else in
the cut p plane zeros occur. This can, again, be verified by
applying the principle of the argument. By observing that in
the neighborhood of p= + 1/2'2¢, we have Ny
= (imaginary constant) * ( p* — 1/2 ¢2), it follows that

d, Nscn _ 2p »
Nscn (p? — 1/2¢3)

Consequentlv, each of the four semicircular arcs
aroundp = + 1/2"2 ¢ contributes — 1/2 to the argument
integral. Finally, the remaining principal-value integrals
around p= + 1/2'2¢¢ contribute together 4% (— 1/
2)= — 2. Collecting all results, it follows that no zeros are
present in the cut p plane.

In general, the same type of proof leads to
Cscu <min(cy, cg).

2

—0. (A29)
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