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A time-domain energy theorem for the scattering of plane acoustic waves in fluids by an obstacle
of bounded extent is derived. It is the counterpart in the time domain of the “optical theorem” or
the “extinction cross section theorem” in the frequency domain. No assumptions as to the
acoustic behavior of the obstacle need to be made; so, the obstacle may be fluid or solid,
acoustically nonlinear, and/or time variant (a kind of behavior that is excluded in the frequency-
domain result). As to the wave motion, three different kinds of time behavior are distinguished: (a)
transient, (b) periodic, and (c) perpetuating, but with finite mean power flow density. For all three
cases the total energy [case (a)] or the time-averaged power [cases (b) and (c]] that is both absorbed
and scattered by the obstacle is related to a certain time interaction integral of the incident plane-
wave and the spherical-wave amplitude of the scattered wave in the farfield region, when observed

in the direction of propagation of the incident wave.

PACS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION

In the theory of the scattering of acoustic waves in
fluids by an obstacle of bounded extent there are several
theorems that interrelate the different quantities associated
with this scattering. In the frequency-domain analysis of the
problem, it must be assumed that the scattering obstacle is
linear and time invariant in its acoustic behavior. A time-
domain analysis of the scattering problem reveals the more
general conditions under which the relevant theorems may
also hold in the time domain. In the present paper, the ener-
gy theorem for plane-wave scattering is investigated. Its fre-
quency-domain counterpart is known as the “optical
theorem” or “extinction cross-section theorem.”'~ The
time-domain derivation shows that the energy theorem
holds for fluid or solid obstacles that may be nonlinear and/
or time variant in their acoustic behavior. The theorem im-
plies that the total amount of energy that is both absorbed
and scattered by the obstacle can, in principle, be determined
from a measurement at a single position in the farfield re-
gion, provided that the incident plane wave at the position of
the obstacle is known from a separate measurement.

|. FORMULATION OF THE SCATTERING PROBLEM

In three-dimensional space R® a scattering object is
present. It occupies the bounded domain &. The boundary
surface of & is denoted by % and the complement of the
union of & and 4% in R? by &’. The unit vector along the
normal to 8, pointing away from &, is denoted by n (Fig.
1). It is assumed that 9. is piecewise smooth. The acoustic
properties of the scattering object remain unspecified; the
object may be fluid or solid, and it may show a nonlinear
and/or a time-variant behavior. The medium occupying the
domain &' is acoustically characterized by a scalar, posi-
tive, constant volume density of mass p and a scalar, positive,
constant compressibility «. The speed of acoustic waves in
this medium is ¢ = (px) = /%
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Position in space is characterized by the position vector
r =xi, + yi, + zi,, where x, y, and z are the Cartesian co-
ordinates with respect to the orthogonal Cartesian reference
frame with origin O and the three mutually perpendicular
base vectors of unit length i, , i,, and i, . In the order indicat-
ed, the base vectors form a right-handed system. The time
coordinate is denoted by ¢. Partial differentiation is denoted
byd,andV=i,d, +i,d, +1,9,.

The acoustic field in the configuration is characterized
by the acoustic pressure p = p(r,?) and the particle velocity
v=v(r,t).In &', where the medium s linear, the total acous-
tic field is written as the sum of the incident field {p’,v' } and
the scattered field {p*,v*}. Note that, in general, the scat-
tered field is not linearly related to the incident field. The
incident field is defined everywhere in R?; the scattered field
is defined in &', The incident field and the scattered field
satisfy the linearized, source-free acoustic field equations®

incident
plane
wave

scatlering
obstacle

surrounding
fluid

FIG. 1. Scattering configuration with incident plane wave. The speed of
acoustic waves in the surrounding fluid is ¢ = ( pr) ™2
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Vp* +p3,v*=0, whenreZ’, (1)
V.vl',s + I atpils = 0, When re g'- (2)

At large distances from the scattering object the scattered
field admits the representation

pir,t)~AP(\, .t — [x|/c)/Am|r|,
vi(r,t )~ A¥i,,t — |r|/c)/4w|r|,

as [r[— o0, (3)

as |r|—>oo, (4)

wherei, =r/|r| is the unit vector in the direction of observa-

tion. The right-hand sides of Eqs. (3) and (4) are the expres-
sions for the field intensities in the farfield region. Between
the acoustic-pressure and the particle-velocity farfield am-
plitude radiation characteristics 42 and A’ the following
relatiqns exist:

AP =Zi A, (5)
A'=YA’i, (6)

where Z = (p/k)'/? is the acoustic plane-wave impedance
and Y = (k/p)*/? is the acoustic plane-wave admittance in
the medium surrounding the obstacle. Note that the time
argument of 4° and A" is delayed by the travel time from the
origin (which is Iocated in the neighborhood of the obstacle)
to the point of observation.

In the analysis we need further the instantaneous power
flow P* of the incident wave across & and towards &, i.e.,

Pi= — n( p'v') dA4, (7)
r€dZ
the instantaneous power flow P° that the scattered wave
carries away from & towards &', i.e.,

P= n-( p°v’) d4, (8)
redP

and the instantaneous flow P “ of power that is absorbed by
the obstacle, i.e.,

Pi= — n-{ pv) dA4. 9)

red?d
For the incident wave we now take the uniform plane
wave propagating in the direction of the unit vector a:

(P} = (Pt — ax/e)vi(t — ax/c)}. (10)
Between p' and v' the following relations exist:

pP'=Zav, (11)

v'=Ypla, (12)

where Z and Y are the same as in Egs. (5) and (6).

{l. SURFACE-SOURCE REPRESENTATION OF THE
SCATTERED FIELD : \

The basic tool in the derivation of the energy theorem is
the time-domain surface-source representation of the scat-
tered field. This representation is the acoustic analog of the
Kirchhoff representation for scalar wave fields. Let

fg =pn, whenredd, , (13)
and

gs =nv, whenredd, (14)

denote the scattered-field surface densities of force and cubic
dilatation rate, respectively, and let
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Drt)= f dr' f Glr—rt—t'gs't')dd  (15)
1o v edD

and

‘I’(r,t):f dt’f Glr—r,t—t"(r',t")dd,  (16)
1 r'edD

denote the corresponding scalar and vector potentials. In
Egs. (15) and (16)

G (r,t) = (4m|r])~'6(t — |x|/¢) (17)
denotes the free-space Green’s function of the three-dimen-

sional scalar wave equation. Then, the following integral re-
lation for the scattered field holds:

p3, P — V¥ = {1,1,0}pirz),

whenre {Z',09,9}, tel(tyw) (18)

— VP + k¥ +p‘1Vx(V><f ¥ dt ) = {1,1,0}v(r,2),
I .

whenr e {Z',09,9}, te(tyw). {19)

In Eqgs. (18) and (19) we have taken into account the condi-
tion of causality, i.e.,, we have assumed that the scattered
field vanishes everywhere in &' prior to t, where ¢, is the
instant at which the incident wave hits the obstacle. A con-
cise derivation of Eqs. (18) and (19) can be obtained with the
aid of a Laplace transform with respect to time and a Fourier
transform over &', From the derivation it follows that in the
right-hand sides of Egs. (13} and (14) the limiting values
upon approaching & via &’ have to be taken.

By letting |r|— oo in Egs. (15)-{19), we arrive at integral
representations for the farfield amplitude radiation charac-
teristics of the scattered wave. In the expression for
G (r —r',t —t’) [cf. Eq. (17)] we employ the relation

[r —¥'| = |r| —i,t' + vanishing terms, as |r]—o. (20)
The use of Eq. (20) in Egs. (15) and (16) leads to
{OW] ~ {4 %AV} (it — |v|/c)/4m|r], as|r[—o0,  (21)

where

A®(i )= f _astt+ix/c) dd, (22)

A¥(i, t)= J fo(r',t +i,1r'/c) dA. (23)
r'ed?d
The use of Eq. (21) in Egs. (18) and (19) leads to the asympto-
tic expressions Egs. (3) and (4) with
AP =pd, A%+ c1,d,AY, (24)
A’ =c"Y4,0,4% +xi,(i,-d,A¥). (25)

It can easily be verified that the right-hand sides of Eqgs. (24)
and (25) satisfy Egs. (5} and (6).

1. THE ENERGY THEOREM

The time-domain energy theorem takes on different
shapes, depending on the type of time behavior of the acous-
tic field. Three cases are considered: (a} transient fields, (b)
time-periodic fields, and (c) perpetuating fields with bound-
ed mean value. The three cases will be dealt with separately.
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A. Transient fieids

Transient fields vanish prior to a certain instant and go
to zero as t— oo, and these properties hold at any point in
space. In our scattering problem the instant ¢, at which the
incident wave hits the obstacle marks the onset of the scatter-
ing phenomenon. By applying Gauss’ divergence theorem to
the domain & and to the vector p'v', and using Egs. (1) and
(2), it follows that

FP" dt =0, (26)

to

where P is given by Eq. (7). This result expresses that the
fluid with constitutive coefficients p and « is lossless.
Further, the total energy W ¢ that is absorbed by the obsta-
cleis

W”=f Pedy, (27)
. I?

0

where P is given by Eq. (9), while the total energy W*
carried by the scattered wave is

Ws — f PS dt, (28)
1

o

where P* is given by Eq. (8). Let us consider now the expres-
sion for the sum of the absorbed energy and the scattered
energy. With the aid of p = p’ + p° and v=v' + v’ the rel-
evant expression can be rewritten as

Wit We= — f dtj n(p'v +pv)dd. (29)
t redDd
The substitution of Eq. (10) and the use of Egs. (13) and (14)
yield
Wet+r W= — f dtj [ Pt — ar/c) gs(rt)
[ red?

+ vt — ar/c)fg(r,t)] dA. (30)

We now introduce the instant # at which the incident wave
reaches the origin of our chosen coordinate system. Then, we
have p'(t)=0 and v'(t)=0 when — o <f<?, and the
right-hand side of Eq. (30) can, upon shifting the time inte-
gration, be rewritten as

Wt W= ~f dtf [ Pt) gs(r,t + ar/c)
t! red?d

+ Vit )f5(r,t + asr/c)] dA. (31)
Obviously, the relation between t, and # is given by
t, =t' 4+ min, 54 (@1/c). (32)

After comparing the right-hand side of Eq. (31} with the
expressions for 47 (e,t) and A”(a,¢) that result from Egs.
(22)(25), and taking into account the relations Eqs. (11) and
(12), we arrive at

) o0 t .
Wet W= —-p_IJ“ p"(t)(fAP(a,z') dt')dt (33)
et t?
and

Wet Wi= —k! f vit) - (j‘A"(a,t’)dt ) dr.
. t! t!
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Equations (33) and (34) constitute the energy theorem for
transient plane-wave scattering. In the right-hand sides the
scattered-field spherical-wave amplitudes in the farfield re-
gion occur in the direction of observation a, i.e., in the direc-
tion of propagation of the incident wave.

B. Time-periodic fields

For time-periodic fields, with period 7, we introduce
the time-averaged values, over a period, of the different pow-
er flows. Let (.}, denote the time average over a period,
ie.,

(=T " BED

Then, the sum of the (time averaged) absorbed power and the
(time averaged) scattered power can be written as [cf. Eq.
(29)]

(P + APy = —U n-(pivs+psvi)dA> .

T

(36)
The substitution of Eq. (10) and the use of Egs. (13) and (14),
followed by an interchange of the time integration with the

one over dZ and a shift of the variable in the resulting time
integration lead to

g

(P +A(P)p=— P'lt) gs(r,t + or/c)

r € 0P
+ Vit )fs(rt + aor/c)y p dA.  (37)

From this we arrive at
t
P+ (B)r = —p~(ple) [4atiar’) (39
to T
and

t
(P + (P = — K_I<Vi(t) . f A¥a,t’) dt'>
i . T
(39)
Equations (38) and (39) constitute the energy theorem for
time-periodic plane-wave scattering. Note that in the time
integration of the scattered-field spherical-wave amplitudes
the properties

(AP(et")) 7 =0 (40)
and

(A"’(a,t’))T =0 i (41)
hold in view of Eqs. (24) and (25).

Obviously, it has been assumed here that the incident
field and the scattered field are both time periodic with the
same period 7. Now, with regard to the scattering object this
implies that a possible time-varying behavior has to comply
with this assumption, i.e., the acoustic properties of the scat-
tering object must at most be time periodic with the same
peried T, too.

C. Perpetuating fields

For perpetuating fields we assume that the time-aver-
aged values of the different power flow densities exist. Let
(), denote the relevant time averages, i.e.,
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T,

() =1imT1ﬁ_w,Tm(Tz-—T1>—‘f wdt. (42)

T,
In accordance with this, the fields are assumed to have
bounded values as #—> — o« and as . Then, the sum of
the time-averaged absorbed power and the time-averaged
scattered power can be written as

.+ = ([

redy

n( pv' + p'v') dA >

(43)

The substitution of Eq. (10) and the use of Eqgs. (13) and (14),
followed by an interchange of the time integration with the
one over d% and a shift of the variable in the resulting time
integration lead to

(P, +(P),=— (Pt) gs(r,t + a/c)

reds
+ Vit ) fg(r,t + ar/c))  dA. (44)
From this we arrive at
(P%, + (P, = —p~‘<pf(t )f AP(at’) dt >
(45)
and
(P, +(P), = — K—‘<v"(t) f A¥(a,t’) dt > .
(46)

14 J. Acoust. Soc. Am., Vol. 77, No. 1, January 1985

Equations (45) and (46) constitute the energy theorem for the
scattering of perpetuating plane waves. Note that in the time
integration of the scattered-field spherical-wave amplitudes
the properties

(4¥at’), =0 (47)
and
(A%a,t’),, =0 (48)

=]

hold. In comparison with the case of time periodic fields no
restrictions are, in this case, laid upon the possible time be-
havior of the acoustic properties of the scattering object.
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