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A time-domain energy theorem for the scattering of plane elastic waves by an obstacle of bounded extent is derived. The
obstacle is embedded in a homogeneous, isotropic, perfectly elastic medium. As to the elastodynamic behavior of the obstacle
no assumptions have to be made; so, lossy, non-linear and time-variant behavior is included. As to the wave motion, three
different kinds of time behavior are distinguished: (a) transient, (b) periodic, and (c) perpetuating, but with finite mean
power flow density. For these cases, the total energy (case (a)) or the time-averaged power (cases (b) and (c)) that is both
absorbed and scattered by the obstacle is related to a certain time interaction integral of the incident plane wave (P or S) and
the spherical-wave amplitude of the scattered wave of the same type (P or S) in the far-field region, when observed in the
direction of propagation of the incident wave.

1. Introduction

In the theory of the scattering of elastic waves by an obstacle of bounded extent embedded in a
homogeneous, isotropic, perfectly elastic medium, there are several theorems that interrelate the different
quantities associated with this scattering. In the frequency-domain analysis of the scattering problem, it
must be assumed that the scattering obstacle is linear and time invariant in its elastodynamic behavior.
A time-domain analysis may reveal whether the conditions under which the corresponding theorems in
the time domain hold, are more general. For the energy theorem in plane-wave scattering this proves to
be the case. Its frequency-domain counterpart has been discussed by Tan [1]. Our derivation of the
corresponding theorem in the time domain shows that it holds for obstacles that are non-linear and/or
time variant in their elastodynamic behavior. The theorem implies that the total amount of energy (or
time-averaged power) that is both absorbed and scattered by the obstacle can, in principle, be determined
from a measurement at a single position in the far-field region, provided that the incident plane wave is
known from a separate measurement. In the computational modeling of elastodynamic scattering problems
the theorem can serve as a check on the consistency of the computations.

2. Formulation of the scattering problem

In three-dimensional space %> a scattering object and an embedding homogeneous, isotropic, perfectly
elastic solid are present. The scatteri\ng object occupies the bounded domain . The boundary surface of
% is denoted by 99 and the complement of the union of 9 and 89 in %> by @'. Position in space is
characterized by the coordinates {x,, x,, x;} with respect to an orthogonal Cartesian reference frame with
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Fig. 1. Scattering configuration with incident plane wave. In the surrounding medium the speed of elastodynamic P-waves is
ep=[(A +2u)/p]"? and the speed of elastodynamic S-waves is cs=(p/p)"%

origin O and the three mutually perpendicular base vectors {ij, iy, i;} of unit length each. In the order
indicated, the base vectors form a right-handed system. The time coordinate is denoted by t. Partial
differentiation is denoted by 4. The suﬁscript notation for vectors and tensors is used and the summation
convention applies. Occasionally, vectors are denoted by boldface symbols; for example, x = xd, denotes
the position vector, The medium occupying the domain &' is mechanically characterized by its volume
density of mass p and its Lamé coefficients A and u. The speed of P-waves (compressional waves) in
this medium is cp=[(A +2u)/p]"/?; the speed of S-waves (shear-waves) in this medium is cs=(u/p)""?
(Fig. 1).

The elastodynamic field in the configuration is characterized by the stress 7; = 7;(x, t) and the particle
velocity v; = v;(x, t). The stress is a symmetrical tensor, i.e. 7; = 7;; and occasionally it is advantageous to
use the relationship 7; =3(7;+ 7;). In @', where the medium is linear, the total field is written as the sum
of the incident field {Ti,j, vi} and the scattered field {7}, v}. Note that, in general, the scattered field is not
linearly related to the incident field. The incident field is defined in ®° and satisfies in & the source-free
elastodynamic field equations

37y —pdv;=0 whenxed, (1)

3Cipg (3,0, +8,0,) —3,7;=0 whenxe 2, (2)
where

Cljipq = A 8,1 (Spq + M(aip qu + 6jp 5,-,1). (3)

The scattered field is defined in &' and satisfies in this domain the source-free elastodynamic field equations
375 —pov;=0 whenxe P, (@)
Cijpg 0,05 —8,15;=0 whenxe @' 5)
At large distances from te scattering object the scattered field admits the representation

{75 v} ~{TP5, VPH(& t x|/ cp)/ dmcilx|+{TSy, VS}( t x|/ cs)ames|x| as |x] - oo, (6)

ijs
where & = x/|x] is the unit vector in the direction of observation. The right-hand side of (6) is the expression
for the scattered-field values in the far-field region. In this region the field separates into a P-wave part
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for which the property
VP = (6,VP)g Q)
holds, and an S-wave part for which the property
&VS, =0 (8)

holds. Between the stress and the particle-velocity far-field radiation characteristics the following relations
exist:

TP, = —ZP,;,VPy, 9)

TSy =—2Z8S;, VS5, (10)
where ZP;, = Cy,,¢,/ cp is the plane P-wave impedance and ZS;, = Cyp,é,/ s is the plane S-wave impedance
of the medium surrounding the scattering object. Note that in the right-hand side of (6) the time argument
has been delayed by the travel time for P- and S-waves, respectively, from the origin (which is located in
the neighborhood of the obstacle) to the point of observation.

In the analysis we further need the instantaneous power flow P' of the incident wave across 9%
towards &, i.e. '

P= J v,my 05 dA, ‘ (11)
x€dD

where »; is the unit vector along the normal to 49, pointing away from &, the instantaneous power flow
P? that the scattered wave carries away from 09, towards 9, i.e.

PE= —J vTyv; dA, (12)
x€0D
and the instantaneous flow P® of power that is absorbed by the obstacle, i.e.
pP*= J vy dA. (13)
xedD

For the incident field we first take the uniform plane P-wave propagating in the direction of the unit
vector a;:

{7, i} ={TP, VPi}t—a,x,/cp). (14)

ijs ijs

Between TP} and VP; the following relation exists:

TP}, =—ZP

i VP, (15)
where ZP,, is the same as in (9). Further,
VPi=(a,VP})a, (16)

Equation (16) implies that the P-wave is longitudinal. Secondly, we shall consider the case of an incident
S-wave propagating in the direction of the unit vector «;:

{7, v} ={TS}, VSiHt —a,x,/ cs). 17)
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Between TS and VS the following relation exists:

TS = —ZS;, VS, (18)
where ZS;, is the same as in (10). Further,

a, VS, =0. (19)

Equation (19) implies that the S-wave is transverse.

3. Surface-source representation of the scattered field

The basic tool in the derivation of the energy theorem is the time-domain surface source representation
of the scattered wave field. For simplicity, we shall only use the surface-source representation of the
particle velocity; the relevant expression for the stress is more complicated [2, p. 30]. Let

J

fi=—v7y whenxed?d (20)

and ,
h‘l?j-_:—%(yiv]s.-i- v;07) when x €909 (21)

denote the scattered-field surface densities of force and strain rate, respectively, and let

(oo}

Aix, 1) =J dt’J Gy(x—x', t=t)fj(x', t') dA (22)

to
and

o0

Yipa(x, 1) =J dr’ J‘ Gy(x—x', t—t)hp,(x', ') dA (23)
x'edD

o
denote the corresponding vector and tensor potentials. In (22) and (23),

oo

[cAGp(x, t— 1) — c§Gs(x, t—1")]¢" dt”, (24)
0 .
with
Gps= (4mcpglx|)™" 8(t—|x|/cps), (25)
denotes the infinite medium Green’s function of the three-dimensional particle velocity wave equation
(c3—c3) 8 0 Gy + €3 0x 3 Gy — 07 Gy =—6;8(x, 1), (26)

where §; denotes the three-dimensional symmetrical unit tensor and 8(x, r) denotes the four-dimensional
unit pulse. Then, the following integral relation for the particle velocity of the scattered field holds
[2, p. 29; 3]

—p 7 8, A~ p " Cipg 3: Tpg = {1, 3, 0}v3(x, 1), when xe{P', 99, P} and t € {1,, oo}, (27)

In (22)-(27) we have taken into account the condition of causality, i.e. we have assumed that the scattered
wave field vanishes everywhere in @’ prior to f,, where f, is the instant at which the incident wave hits
the scattering object. A concise derivation of (27) can be obtained with the aid of a Laplace transform
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with respect to time and a Fourier transform over &'. From the derivation it follows that in the right-hand
sides of (22) and (23) the limiting values upon approaching 3% via 9’ have to be taken.

By letting |x| - oo in (22), (23) and (27), we arrive at integral representations for the far-field amplitude
radiation characteristic for the particle velocity of the scattered wave. In the expression for G;(x—x', t — ')
that results from (24) we employ the relation

|x — x| =|x| — &x) +vanishing terms  as |x]| > oo, (28)
and obtain

8(t—1'—|x|/ es+ &xic/ cs)

Gij(x ~x, t—t)~ (5ij - fzf})

4rrcgx|
S(t—1t'— + &)
+E8 ( |x|/§P &xi/ cp) as |x| > oo, (29)
4mcp|x|

Using (29) in (22) and (23) we arrive at

Ai(x, 1)~ AP(§ 1— |xI/CP)/4"TC%|xt +AS(& 1 — |x|/Cs)/4"TC§|x| as |x| > o, (30)
where the P-wave contribution is given by

AP(§ 1)=& j (X, t+ &xi/ cp) dA, (31)

x'eaD

and the S-wave contribution by

ASi(&, t)=(5q—§i§j)J Fi(x', t+ &xif cs) dA, (32)

x'€dD

and

q’iqu(x, t) -~ wpﬁpq(fy t—|x|/CP)/4wC%’|x|+ lplSiqu(fa tM[x|/CS)/41TC§lxI as |x| - (X), (33)
where the P-wave contribution is given by

Wl)iqu(f, t) = flg] J h?)q(x,a t+§kx;c/ CP) dA’ (34)

x'€dD

and the S-wave contribution by

wsiqu(f, 1= (aij - fxfj) J. h;q(x’, t+ &xi/ cs) dA. (35)

x'€d®D

The use of (30) and (33) in (27) leads to the asymptotic expression (6) with

VP_? = _P;l aIIAI’j—+_,Dﬁl(jikpq(é:i/ CP) atqll)jkpq’ ‘ (36)
and

VS;=—p ' 3.AS; +pﬁlCik~pq(§i/ ¢s) 8 ¥Sjipq. 7

It can easily be verified that VP} has the same direction as &, and that VS; is perpendicular to &
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4. The energy theorem

The time-domain energy theorem takes on somewhat different shapes, depending on the time behavior
of the elastodynamic wave field. Three cases are considered: (a) transient fields, (b) periodic fields, and
(c) perpetuating fields with bounded mean power flows. The three cases will be discussed separately.
1. Transient fields

Transient fields vanish prior to a certain instant and go to zero as -0, and these properties hold at
any point in space. In our scattering problem the instant #, at wich the incident wave hits the obstacle
marks the onset of the scattering phenomenon. By applying Gauss’ divergence theorem to the domain &
and to the vector %(Ti,-j‘f‘ T}i)v}, and using (1) and (2), it follows that

J Pidt=0, . (38)
fo

where P'is given by (11). This result expresses that the medium with volume density of mass p and
stiffness Cj,, is lossless. Further, the total energy that is absorbed by the obstacle is

Wazj P*dt, (39)
to .
where P* is given by (13), while the total energy W* that is carried by the scatterted wave is
W= J P dy, (40)
fo

where P* is given by (12). Let us consider now the expression for the sum of the absorbed energy and
the scattered energy. With the aid of 7, = 7};+ 7} and v; = v+ v} the relevant expression can be written as

Wa+WS=I dtJ v(Thvi+130)) dA, (41)
1 xcaD

where, again, it is understood that T‘,J and 7} are symmetrical tensors.
For an incident P-wave we substitute in (41) the expressions (14) and use (20) and (21). The result is

Wit W= —I dt J [TPi(t — apxp/ cp)hi(x, 1)+ VPi(t — apxp/ cp)fi(x, 1)] dA. (42)
1y x€3D .

We now intoduce the instant tP* at which the incident P-wave reaches the origin of our chosen coordinate
system. Then, we have TP(t) =0 and VP'(¢)=0 when —co< ¢ < tP', and the right-hand side of (42) can,
upon shifting the time integration, be rewritten as

W+ We= J dt J [TPL(6)hi(x, t+ apxp/ cp) + VPI(1)fi(x, 1+ apxp/ cp)] dA. (43)
tP} xeID
Obviously, the relation between t, and tP' is given by

to=1tP'+ mig (apxp/cp). (44)
xead

After comparing the integral over 3% in (43) with the expression for VPj that results from (36) with
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& = a;, and taking into account that (16) holds, we arrive at

oo t

Wi+ We=—p J _ VP}(t)[J VPi(a, t') dt’} dt (incident P-wave). (45)
tP! tP'

Equation (45) constitutes the energy theorem for transient plane P-wave scattering. In the right-hand side

the P-wave scattered-field spherical-wave amplitude in the far-field region occurs in the direction of

observation e, i.e. in the direction of propagation of the incident P-wave.

For an incident S-wave we substitute in (41) the expression (17). Next, we introduce the instant 1St at
which the incident S-wave reaches the origin and again shift the time integration. After using in the
resulting right-hand side the expression for VS; that results from (37) with & = a; and taking into account
that (19) holds, we arrive at

Wi+ We=—p J ' VS}(r)[J’ VSi(a, t) dt’:l dt (incident S-wave). (46)
S St

2

Equation (46) constitutes the energy theorem for an incident S-wave.

2. Time-periodic fields

For time-periodic fields, with period T, we introduce the time-averaged values, over a period, of the
different acoustic power flows. Let (- - -); denote the time average over a period, i.e.

I0+T
(...T=T—1J' ... dt : (47)
o
Then the counterparts of (38), (39) and (40) are
(P)r =0, (48)
1,+T
(PYp=T" J - PAdy, (49)
and
t,+T
(PYp=T"" I Pt dy, (50)
o

respectively. We now consider the expression for the sum of the time-averaged absorbed power and the
time-averaged scattered power. This expression can be written as (cf. (41))
(51)

(PHr+(PHr= <J vf(Tiijv;-F Tfjv}) dA>

x€dD T

For an incident P-wave we substitute in (51) the expressions (14) and use (20) and (21). The result is
(52)

(PHr+(P*)r= _<J [TPiij(t_ apxp/ cp)h(x, 1)+ VP}(I‘_ apxp/ cp)fi(x, 1)] dA>

oD T
After interchanging the time integration with the one over 9% and shifting the variable in the resulting

time integration, we obtain A

(P + (P = —f (TPL(t)hi(x, t+ apxp/ cp) + VP(1)f5(x, t+ apXp/ cp))r dA. (53)

x€aD
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After comparing the integral over 39 in (53) with the expression for VPj that results from (36) with ¢ = «;
and taking into account that (16) holds, we arrive at

t

VPi(a, t') dt’> (incident P-wave). (54)

T

(PHr+(P)r= —p<VP}(t) J

Io
For an incident S-wave we arrive along similar lines at

t

VSi(e, t') dt’> (incident S-wave). ' (55)

T

(PHr+(P)r= _P<VS}(T) J

. to
Equations (54) and (55) constitute the energy theorems for time-periodic wave scattering. Note that in
the time integration of the scattered-field spherical-wave amplitudes the properties

(VP)r=0 (56)
and
(VS{)r=0 (57)

hold in view of (36) and (37), respectively.

Obviously, it has been assumed here that the incident waves and the scattered waves are both time
periodic with the same period T. Now, with regard to the scattering object this implies that a possible
time-varying behavior has to comply with this assumption, i.e. the elastodynamic properties of the scattering
object must at most be time periodic with the same period T, too.

3. Perpetuating fields

For perpetuating fields we assume that the time-averaged values of the different power flow densities
exist. Let (- *)» denote the relevant time averages. Then

T,

¢ Vo=_ lim (T,—T)™! J oo dt (58)

Ty —00,T3->00 T,

In accordance with this, the fields are assumed to have bounded values as t—> —00 and as > o, Then,
with (1) and (2) it follows that

(PY,=0. (59)

As in the case of transient fields we consider the expression for the sum of the time-averaged absorbed
power and the time-averaged scattered power. This can be written as (cf. (41))

(P o+ (P = <J v (7h0i+ 7o) dA> (60)

x€aD o

For an incident P-wave we substitute in (60) the expressions (14) and use (20) and (21). The result is

(Pt (P = —<j [TPy(1 = apxe/ ep) W, 1)+ VP (1 — apxe/ co)fi(x, 1)] dA> (61)

x€adD e}

After interchanging the time integration with the one over % and shifting the variable in the resulting
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time integration, we obtain

(Pt (P = —J (TP (1) h(x, t+ apxp/ cp) + VP[] (x, t + apxp/ cp))e dA. (62)
x€dD

After comparing the integral over 09 in (62) with the expression for VP; that results from (36) with

& = a;, and taking into account that (16) holds, we arrive at

(P o+ (P = —p<VP}(t) J’t VPi(a, t') dt’> (incident P-wave). (63)

[e o]

For an incident S-wave we arrive along similar lines at
t
(PNt (P = —p<VS}(t) J‘ VSi(a, t') dt’> (incident S-wave). (64)

Equations (63) and (64) constitute the energy theorems for the scattering of perpetuating plane waves.
Note that in the time integration of the scattered-field spherical-wave amplitudes the properties

(VPYo=0 and (VSD,=0

hold. In comparison with the case of time-periodic fields no restrictions are, in this case, laid upon the
possible time variations in the elastodynamic properties of the scattering object.

5. Conclusions

For the scattering of a plane P- or a plane S-wave by an object of bounded extent embedded in a
homogeneous, isotropic, perfectly elastic solid an energy theorem related to the scattering phenomenon
has been derived. It relates the energy that is both absorbed and scattered by the object to the spherical-wave
amplitudes of the scattered wave field in the far-field region, when observed in the direction of propagation
of the incident plane wave. In the relevant time interaction integral, only the interaction between incident
P and scattered P, and incident S and scattered S occurs, although for each type of incident wave both
types of scattered waves are excited. Depending on the time behaviour of the incident wave (transient,
periodic, perpetuating), the energy theorem takes on somewhat different forms. An important consequence
of the full time-domain analysis is that the elastodynamic properties of the scattering object hardly need
any specification. For example, unlike the case in the frequency-domain analysis, a time-variant and/or
non-linear behavior is included.
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