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The low-contrast or (first-order) Born approximation is applied to the time-domain scattering of a plane scalar wave
by an object of bounded extent present in a homogeneous embedding. Closed-form analytic expressions are
obtained for the spherical-wave far-field scattering amplitude related to homogeneous objects of the following
shapes: an ellipsoid, an elliptic cylinder of finite height, and a tetrahedron. Dispersion is included. Apart from
their intrinsic interest, the results may be useful as test cases for time-domain inverse-scattering algorithms.

1. INTRODUCTION

In the field of inverse scattering, much research is focused on
the development of computer algorithms that serve to recon-
struct geometrical and/or physical parameters of certain
configurations from measured data related to the scattered
wave arising from a known incident wave that probes the
configuration.!-1® Since any wave phenomenon is a phe-
nomenon in space-time, it seems more or less natural to
perform the inversion in space-time too. Many inversion
algorithms are, furthermore, at least in their initial phases,
tested for the linearized inversion problem that results on
applying the low-contrast or (first-order) Born approxima-
tion. These considerations motivate the search for time-
domain scattering problems that can be solved in closed
form, provided that the objects show enough features to
make them interesting as test cases for time-domain inver-
sion algorithms.

In the present paper, closed-form analytic expressions are
obtained for the spherical-wave, far-field scattering ampli-
tude in the case in which a plane wave is incident upon an
object of bounded extent present in a homogeneous embed-
ding. Homogeneous objects of the following shapes are con-
sidered: an ellipsoid, an elliptic cylinder of finite height,
and a tetrahedron. The analysis is entirely carried out in
the space-time domain. Dispersion is included; the Lorent-
zian absorption line is discussed as an example. Scattering,

in the Born approximation, by a geometry that is the union.

of the elementary geometries considered here can be dealt
with by superposition. Superposition also applies to the
presence of several absorption lines. .
!
2. FORMULATION OF THE SCATTERING
PROBLEM

In three-dimensional space a scattering object is present
that occupies a bounded domain V. The domain exterior to
V is denoted by V. To specify a position in the configura-
tion, we employ the coordinates {x, y, z} with respect to an
orthogonal Cartesian reference frame with origin O and the
three mutually perpendicular base vectors {iy, iy, 1.} of unit
length each. Inthe indicated order, the base vectors form a
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right-handed system. When appropriate, the space coordi-
nates are collectively denoted by the position vector r = xi,
+ yi, + zi,. The time coordinate is denoted by ¢. In the
configuration, scattering of waves takes place whose physi-
cal effects are accounted for by the scalar wave function u =
u(r, t).

The domain V" is assumed to be homogeneous and disper-
sion free. In it, the waves propagate with speed co. In any
source-free subdomain of V', u satisfies the homogeneous,
three-dimensional wave equation

(V-Vu— co_zafu =, (2.1)

where V = i,d, + 1,9, + 1,0, and 9 denotes partial differentia-
tion. The scattering object shows a contrast in physical
properties with respect to the embedding. This contrast is
accounted for by a scalar, causal, contrast-susceptibility re-

laxation function x = x(r, £). Then, in V, u satisfies the

wave equation

(V- V) = 420, ulr, ¢) + j "X, Ot - 1)de] = 0.
0

(2.2)

Here, x(r, t) represents the (causal) time response at posi-
tion r in the medium in the case in which the local value of
the wave function u would be a unit pulse (delta function) in
time. For a homogeneous medium, x is independent of r.
The most common example in optics is the dielectric re-
sponse of a collection of polarized atoms, according to the
classical Lorentz model, and characteristic for a spectral
absorption line. In this case we have

0 when —= <t <0 .
X= {(wPQ/Q)exp(—Ft)sin(Qt) when 0 <t < = (2.3)
with
w, = (Ng/meg)”* (2.4)
and
Q= (0 + w,%/3 — T2, (2.5)
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In Egs. (2.3)-(2.5), the symbols have the following meaning:

N is the number density,
q is the absolute value of electric charge,
m is the mass,
€ is the permittivity in vacuo,
wp is the angular resonance frequency associated with the
restoring force (Coulomb force),
. wp is the angular plasma frequency,
T is the phenomenological damping coefficient,
Q is the natural angular frequency,

all associated with the atom’s moving electric-charge distri-
bution. In the model, the spherical-cavity Lorentz correc-
tion has been taken into account. [The corresponding fre-
quency-domain susceptibility x is given by

X = (.opz(—w2 = 2l + woz + wp2/3)—1, (2.6)

with the complex time factor exp(—iwt) understood.] Obvi-
ously,x =0whenre V. :

The object is irradiated by a uniform plane wave with
wave shape f = f(t) and propagating in the direction of the
unit vector @. The corresponding wave function ! is given
by

ui = f(t - & . r/Co)- (27)

Next, the wave function of the scattered wave is introduced
as

u = u - ul, (2.8)

Inview of Egs. (2.1), (2.2), (2.7), and (2.8), the scattered wave
function satisfies the equation

(V- V)us — cg 20,2 = —¢°, (2.9)

where

¢ = —cg 29,2 J o (e, ¢ — YA, (2.10)
0
From Eq. (2.9) it follows that the scattered wave that is

causally related to the incident wave can be expressed as

v/, t —|r— /e
u(r, ) = j ey t=lr=rle) 1y o1y
eV 4rjr — v/
In the far-field region, Eq. (2.11) reduces to
A, t —|x|/cy)
us(x, 1) ~—¢, (r = =), (212
47y
with
AB, 1) = J CW, t+Ber/e)dV, | (2.13)
reV

in which 3 = r/|r| denotes the unit vector in the direction of
observation. Note that in expression (2.12) the time argu-
ment in A has been delayed by the travel time from the
origin (which is located in the neighborhood of the object) to
the point of observation. It is clear that if ¢* were known,
expressions (2.11)-(2.13) would solve the scattering prob-.
lem. In Section 3, ¢* will be obtained by applying the low-
contrast or (first-order) Born approximation.
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3. THE BORN APPROXIMATION

In the weak-scattering, low-contrast or (first-order) Born
approximation, the wave function w in the right-hand side of
Eq. (2.10) is replaced by ui. In our case, this amounts to

¢ L —c, %, J (e OVt — = & t/e)dt.  (3.1)
0

In our further analysis, the expression that results on substi-
tuting Eq. (3.1) into Eq. (2.13) will be evaluated for a number
of homogeneous objects of different shapes. For such ob-
jects we write

AR, t) = -V f CXOIB-&t-t)dr, (3.2
0

where V is the volume of the object and T is a shape factor
.that depends on the shape and the dimensions of the object,
on the wave shape of the incident wave, and on B—a. Asfar
as the dependence on the wave shape of the incident wave is
concerned, this wave shape itself occurs as well as its differ-
entiated and integrated forms. For the differentiated wave
shapes we employ the notation

Df = 8,'f with n=12..., (3.3)
and for the integrated wave shape
¢
1= ferar, (3.4)
to

where t, is the instant at which the incident wave reaches the
origin of the chosen coordinate system.

The general expression for T follows from Eqgs. (3.1) and
'(3.2) as

T(s, ) = ¢, 2V j 0t +s-)AV,  (35)

reV

where we have puts = (5 — a)/co. From Eq. (3.5) it immedi-
ately follows that when s = 0 (i.e., for observation behind the
object) we have

1(0, t) = ¢y 2D?*(2) (3.6)

for any-object. Another general property of T(s, t) follows
by observing that f satisfies the homogeneous wave equation
(2.1). Replacing in Eq. (3.5) ¢g=28,%f by (V - V)f and applying
Gauss’s divergence theorem, we arrive at

(s, t) = V- ] G-s)Dft+s-1)d4, (37

redV
where 8V denotes the boundary surface of V and v is the unit
vector along the outward normal to V. Equation (3.7) shows
that the far-field, plane-wave scattering by a homogeneous
object can, in the Born approximation, be regarded as a
surface effect.

For an arbitrary incident wave we have

A, 1) =~V [ T XOTB, ¢ - t)ar, (3.8)
0 -
where now
T3, £) = ¢ 2V J o2udV. (3.9)
reV
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Proceeding as before, we obtain

T(3,t) =V ] (v - V)uldA4, (3.10)

redV
with the same conclusion as to the Born scattering being a

surface effect.

4. THE SHAPE FACTOR OF AN ELLIPSOID

In this section we calculate the shape factor T, defined in Eq.
(3.5), for the ellipsoid

V ={r; 0 < x¥a® + y¥/b% + 2%/c? < 1}. 4.1)
The volume of this object is
V = 4rabe/3. (4.2)

To carry out the integration at the right-hand side of Eq.
(3.5), we first introduce as variables of integration

£ =x/a, ¢=z/c. (4.3)

In &, 9, { space the domain of integration is the solid sphere 0
< £+ 72+ {2 <1of unit radius. In this space we introduce
as variables of integration the spherical polar coordinates {p,
0, ¢} with0<p <1,0 <0 <m,0< ¢ < 2m, around s,ai, + s,bi,
+ s,ci, as the axis. Then,

s.r=(sa)f+ (syb)n + (s,0)¢

n=y/b,

= vp cos(f), (4.4)

where
v = (s%a® + 5,27 + 5,%H12 > 0, (4.5)

while
dV = abep? sin(f)dpdode. (4.6)

Replacing differentiations of f with respect to t by differenti-
ations with respect to the appropriate spatial variables of
integration, the resulting integral can be evaluated in closed
form. We obtain

T = (Beg /29y [ft + ) + ft — )]
= If(t + v) + If(t — )} 4.7)

When y — 0, i.e., s — 0, the right-hand side approaches the
value ¢;~2D?f, which is the correct limit in view of Eq. (3.6).

5. THE SHAPE FACTOR OF AN ELLIPTIC
CYLINDER OF FINITE HEIGHT

In this section we calculate the shape factor T, defined in Eq.
(3.5), for the elliptic cylinder of finite height

V=1r;0<x%a®+y*/b2 <1, —h/2 <z <h/2}. (5.1)
The volume of this object is
V = rabh. (5.2)

In the right-hand side of Eq. (3.5) we first carry out the
integration with respect to z, which is elementary: To carry

out the integration with respect to x and y, we first introduce’

as variables of integration

£ = x/a, n=y/b. (5.3)
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In the &, 7 plane the domain of integration is the interior of
the circle 0 < £ + 52 < 1 of unit radius. In this plane we
introduce as variables of integration the polar coordinates {p,
fwith0<p<1,0<6<2r around s,ai, + s,biy as the axis.
Then,

5%t 8y = (s,@)E + (syb)n

= yp cos(f), (5.4)

where
v = (sx2a2 + sy2b2)1/2 >0, (5.5)

while
dxdy = abpdpdd. (5.6)

Replacing differentiations of f with respect to ¢ by differenti-

.ations with respect to the appropriate spatial variables of

integration, reducing the integral with respect to ¢ to one
over the interval (0, =), introducing 7 = cos(f) as the variable
of integration, and integrating by parts, we end up with

T = [2/mwcy’s,h] jl (1 = ADYVDf[t + 7 + s,h/2]
-1
— Df[t + v — s,h/2]}dr. (6.7

Special cases occur when s, = 0 (i.e., 8, = ;) and wheny = 0
(e, Bx = ay and By = «,). These are discussed below.

Special Case s, = 0
By letting s, — 0 in the right-hand side of Eq. (5.7), we arrive
at

T = (2/mcy?) j ' D*(t + y7)(1 — Y27, (5.8)
-1

Special Case y = 0
By letting v — 0 in the right-hand side of Eq. (5.7) we arrive
at

T = (cy"/s,h)[Df(t + s,h/2) — Df(t — s,h/2)]. (5.9)

The special case s = 0 (i.e., 8 = a) follows from either Eq.
(5.8) or Eq. (5.9) as T = ¢¢~2D2f(t), which is the correct limit
in view of Eq. (3.6).

6. THE SHAPE FACTOR OF A TETRAHEDRON

In this section we calculate the shape factor T, defined in Eq.
(3.5), for the tetrahedron

4 4
V={r;r=z>\iri,0<>\i<1,2)\i=1} . (6.1)
i=1 =1

In Eq. (6.1), ry, ¥y, r3, and r, are the position vectors of the
vertices, and Ay, Ay, A3, and A4 are the barycentric coordinates
of a point in the interior of the tetrahedron or on its bound-
ary. 'The volume of this object is

V=|=r;-(rg X 1) + 1y (ryX1,)
—ry-(ry Xx)) +1,-(r; X15)|/6. 6.2)

The integration is carried out by putting \; = 1 — Ay — Ag — Ay
and extending the resulting integration over the range 0 < Ay
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<1,0< A <1—= 2%, 0< A <1—= N — A3 Taking into
account that the Jacobian d8(x, ¥, 2)/0(\s, A3, A\y) =6V, weend
up with
T = 6c, *[(v1gviavie) It +5-1)
+ (VarYagved) It + 5 - x5)
+ (Yarvazva) If(t + 5. 13)

+ (Yaveeve) T 51y, (6.3)

in which

vij=8- (0= 1) = =y (6.4)

The special cases in which s is perpendicular to an edge, or to
two crossing edges, or to a face of the tetrahedron will be
discussed below. These special cases are most easily dealt
with by redoing the integrations that need modification.

Special Case y15 = y21 = 0 o
This covers the case in which 8 — « is perpendicular to the
edge from vertex r; to vertex ro. The result is
T = 6c, H(yi13710) & +s01) = (v + vy 7Y
X If(t + 5 -1)] + (v4,2v5) Hf(E +5-15)
+ (v 2y ) At + 51y (6.5)

Special Case v12 = va1 = 0and vi3 = v5 = 0
This covers the case in which 8 — & is perpendicular to the
face having the vertices r, ry, and r3. The result is
T = 6cy vy [Yovi*DIt +5-1y)
— v ft+s-r) It +s-1))]
+ v B IFE + s 1l (6.6)

Special Case v1; = vp3 = 0 and v34 = v43 =0
This covers the case in which 8 — « is perpendicular to two
nonintersecting edges bounded by the vertices rq, re and r,
ry, respectively. The result is

T = 6cy Hyay f(t + s 1) +f(t+5-1)]

— 295, SIf(t +s-1ry) —If(t +s-1)]}.  (6.7)

Similar results hold for other edges and faces.

7. CONCLUSION

The explicit expressions derived in the foregoing sections
show that the time-domain spherical-wave far-field scatter-

A
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ing amplitude for plane-wave scattering in the Born approx-
imation contains, in general, the wave shape of the incident
wave, its (once or twice) differentiated forms, and its inte-
grated form. In special directions the overall wave shape
differs from the one that applies to the general case.
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