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1. INTRODUCTION

In inverse scattering theory, the ultimate aim is to
find the geometrical and/or physical parameters of
unknown configurations from measured data of the
scattered wave resulting from a known incident wave
used to probe the unknown objects [Das and Boer-
ner, 1978; Boerner et al., 1981; Boerner and Mo,
1981; Bojarski, 1967, 1968, 1972]. For this purpose,
computer algorithms are developed and to test these
algorithms, often, as a first step at least, a linearized
scheme is used, based on the low-contrast or Born
approximation. As wave phenomena do take place in
space-time, an investigation in space-time seems the
most appropriate one. Hence, analytical time domain
scattering results are needed for simple, though not
trivial, cases that can be used as test cases for compu-
tational time domain inversion algorithms.

In the present paper, closed-form analytic ex-
pressions are derived for the spherical wave, far-field,
scattering amplitude 1n case a plane electromagnetic
wave is incident upon a penetrable object of bounded
extent situated in a homogeneous and isotropic em-
bedding. The analysis is entirely carried out in the
space-time domain. To incorporate, 1n a simple nota-
tional manner, anisotropy of the scattering object, all
formulas are presented in the subscript notation for
vectors and tensors. Relaxation effects in the scatter-
ing object are also included in our time domain
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are d for the spherical wave far-field
ects of the [ollowing shepes: an ellipsoid, an elliptic
e height, and a tetrahedron. Relaxation effects and

object are included. The resulls are, among others, useful as test cases for

analysis. Homogeneous objects of the following
shapes are considered: an ellipsoid, an elliptic cone of
finite height, an elliptic cylinder of finite height, and a
tetrahedron. A structure consisting of a composition
of objects considered here can, in the Born approxi-
mation, be dealt with by superposition.

In a recent paper by de Hoop [1985], the time
domain scattering of a scalar plane wave by an ob-
stacle is, in the Born approximation, dealt with. The
present paper deals with the general vectorial prob-
lem of electromagnetic scattering,

2, FORMULATION OF THE SCATTERING PROBLEM

In three-dimensional space R? a penetrable, scat-
tering object occupying the bounded domain 2* is
present, The domain outside the object is denoted by
9 (Figure 1). To locate position in space, we employ
the coordinates {x,, x,, X3} with respect to an or-
thogonal Cartesian reference frame with origin O and
three mutually perpendicular base vectors {iy, 1, i3}
of unit length each. These base vectors form, in the
indicated order, a right-handed system. The time co-
ordinate is denoted by z. Partial differentiation is de-
noted by &. The subscript notation for vectors and
tensors is used and the summation convention
applies. Occasionally, vectors are denoted by bold-
face symbols; for example, X = x, i, denotes the posi-
tion vector. In 9, an isotropic, homogeneous, linear,
time-invariant and lossless medium is present. Its
constitutive parameters are the permittivity & and the
permeability p; ¢ and p are real, positive constants.
In any sourcefree subdomain of 2, the electro-
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Fig 1 Scattering configuration,

magnetic field quantities satisfy the electromagnetic
field equations

g OpHy + 80, Ep =0 o)
bmpuaOpEq + 1, Hy = 0 )

In these equations, E, denotes the electric field
strength, H,, the magnetic field strength, and e, ,,
the completely antisymmetrical unit tensor of rank 3
(Levi-Civita tensor), defined as &,,,={+1, —1}
when {m, p, q} is an {even, odd} permutation of {1, 2,
3}, while &, ,, = 0 when not all subscripts are differ-
ent.

The scattering object shows a contrast with respect
to the surrounding medium. This contrast is accoun-
ted for by the electric contrast susceptibility relax-
ation function k7, , = x5, (X, 1) and the magnetic con-
trast susceptibility relaxation function xJ;, = i (x,
t). Then, the electromagnetic field quantities satisfy in
2* the equations

~~8m,pq0p Hy + 86, E,,
w
+ 20, J Kpa(X, DESX, t—7) dr=0 3)
im0
EnpgOp Eq + 10, Hp

+ ud, I KX, DH(X, t —7) dT =10 @
For a scatterer that is mstantaneously reacting, and
has a permittivity &, ,(x) and a permeability uj, .(x),
we have x&,(x, 0) = [gh (/e — 116() and K%,(x,
1) = [ .(X)/¢t — 1]8(2). In (3)~(4), causality has been
taken into account

The scatterer is irradiated by a uniform plane elec-
tromagnetic wave {E.,, H'} propagating in the direc-
tion of the unit vector a. E}, and H! are related by

Epy = (fe) o p g Hy g O]

and
H, = (6/) ey, p g0, B 0]
The scattered field {E%,, H5} is defined as
m=E.—E, H,=H,—H, U]

With (1)4), it follows that Ej, and H$ satisfy in R?
the equations

~Epm g Op Hy + €0, Efy = {-J5, 0}
EmopgOp B + 10, Hyy = {— K5, 0}

x e {2, 9} ®
x € {@, 9} )

where

Ji, = ed, Jm KpulX) DE(%, t — 1) dT (10

is the contrast volume density of electric current of
the scattering object, and

K, = g, I KmalX, DH(X, £ — 7) de (1
r=0
is the contrast volume density of magnetic current of
the scattering object

From (8}(9), it follows that {E%,, H%} can be ex-
pressed in terms of the retarded potentials

{45, F)x, 1)

= J; [{J;, K;}(x’, t—|x —x'|fc)fdn|x—x'[]dV (12
ve

in which ¢ = (g)™%/2 15 the wave speed in the sur-

rounding medium £. Introducing for the time-

differentiated and time-integrated forms of the retar-

ded potentials the notation

(DA, DFJx 0 = {0,4,, 4F}x, ) (13

and

{14, IF}x, £) = ['

{4 A%, 7), F(x, 1)} dr (14

the expressions for {E3,, H;} are
E(x, t) = —pDAL + 618,08, 145 — 64,0, F% 19
H(x, ) = —2DF}+ 7 '8,8,1F% + 6,,,, 0, 45 (16

In (12), (15) and (16) the condition of causality has
been taken into account. This means, of course, thal
quantities related to the scattered field vanish prior
to to, where t, is the instant at which the incidenl
wave hits the object. A concise derivation of (15)16)
can be obtained with the aid of a Laplace translor-
mation with respect to time and a Fourier transfor-
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mation over R%. The expressions in (15)-(16) also
follow directly from corresponding expressions of
Felsen and Marcuvitz [1973].

In the representations (15)16), the right-hand
sides yield, at any instant of discontinuity in time and
at any surface of discontinuity in space of .J; and/or
K¢, half the sum of the limiting values at either side
of the relevant discontinuity.

By letting |x|— co in (15)16), we arrive at inte-
pral representations for the far-field amplitude radi-
ation characteristics of the scattered wave. Upon em-
ploying the relation
|x—-x‘|=|x|—€,x;+vanishing terms [x|—>c0 (IT)

in which & = x/| x| is the unit vector 1n the direction
of observation, the vector potentials are obtained as

{45, Falx, ) ~ 1A, Fi™ 1@, £ — | x|/c)/4n]x| (18)
1x]—= 0
where
(5=, Fi)E, 0 = J: 3 KO, £ 4 &/ aV (19)
' e DY
while for the spatial derivatives we have
8445, FM, 1) ~ —(En/c){ DA™, DFy™}

(& ¢ — |x|/e)/am]x]

Writing the far-field approximation to the scattered
field as

|x|— 0 (20)

{En, Ha}x, ) ~ {E5®, Hy=}&, £ — I xl/e)/an x| 1)

|x|— o0
we have
EX* = — b — EmEpDAG™ + & p fEp/)DF R (22)
Hy™ = —#(0yq — EaCQDFY™ — 81,,(E, /)DAZ™ 23)

It is easily verified that the plane wave relation, as
expressed in (5)-(6) for the incident plane wave, also
holds for the spherical wave amplitudes in the far-
field approximation of the scattered field (22)423).
Now, the scattering problem would have been solved,
if E, and H,, and hence J%, and K&, were known in
2. For low-contrast scattering objects, the total field
values are, in the (first-order) Born approximation,
replaced by the corresponding values of the incident
wave. In the subsequent sections, this approximation
will be carried out for a number of homogeneous
objects having different geometrical shapes.
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3. BORN APPROXIMATION

In the low-contrast, or (first-order) Born approxi-
mation the unknown values of the total field in 2*
are replaced by the known values of the incident
field. After this has been done, the volume densities
of the contrast current Jj and Kj are explicitly
known in 2*, namely, (cf. (10}~11))

J; = 83, J: KX, DERX, t—T)dt  xE€D* 24)
=0

and

K; = pd, J. KoolX DHYX, t—17)dt %€ 2P’ 25)
le=0

In the following, this approximation will be ap-
plied to homogeneous scatterers of different shapes.
The incident field Will be taken to be the uniform
plane wave

{Eh. Hi}(x, 1) = {en, halt — ¢, x,/c) (26)

where a(t) is the, somehow normalized, wave shape of
the mncident wave, and {e,,, h,} are constant ampli-
tude vectors. In particular, we shall determine the
far-field radiation characteristics of the scattered
field. With (24)-(26) we obtain, after introducing the
vector

u=(E—a)c @n

through which the amplitude radiation character-
istics depend on the direction of observation E, the
direction of propagation « of the incident wave, and
the wave speed ¢ in the surrounding medium,

uDAE® = e,V J: s = dt (28)
(]

and

©

K (OY(, t ~ 1) dr (29)
o

eDFy® = h,V [
in which
Y, ) =c2V! J; Dalt +u,x)dV (30
LE )

is a shape factor and V is the volume of the scaiterer.
The shape factor Y depends on the geometrical shape
of the scatterer, on the normalized wave shape of the
incident wave and on u. For any geometry, we have
Y0, £y = c~2D%(r) (31

This implies that for observation in the far-field
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region and “behind” the scatterer, the amplitude of
the scattered field is independent of the shape of the
scatterer and fully determined by the latter’s contrast
and volume.

Since alt + u,x,) satisfies the homogeneous equa-
tion ju|"%8,0,a — 82a =0 when u # 0, we can, in
(30), replace the operator ¢ 2D? by ¢~ %|u["23,3,
and apply Gauss’ divergence theorem. This results
into the expression

Y(u, t)=c“|u|"V'1L (v, u)Dalt + u,x,) d4

(32)

n#0

where 02° denotes the boundary of the scatterer and
v is the unit vector along the outward normal to 82°.
Equation (32) shows that in the far-field region, the
plane-wave scattering by a homogeneous object can,
in the Born approximation, be viewed upon as a sur-
face effect, when the observation is not “behind” the
scatterer (cf. (31)).

4. SHAPE FACTOR FOR DIFFERENT
HOMOGENEOUS OBJECTS

In this section the shape factors for the ellipsoid,
the elliptic cone of finite height, the elliptic cylinder
of finite height and the tetrahedron will be presented.
Details of the calculation of these shape factors are
given in the appendices.

4.1. Ellipsoid
For the ellipsoid defined by

P'={x; 0 < xijof + x}jaf + x}/fai <1} (33)
the shape factor Y is found to be
Y = (@YU Ha(t +T) +aft —T)
~T~"[a(t + ) — laft — )]} (34)
where
T = [{u,8,)* + (ua,)* + (u3a5)*1*2 20 (35)

By taking the limit I'— 0 in (34), which corresponds
to u— 0, it can be verified that Y— ¢~ 2D?a(t), which
is in accordance with (31).
4.2. Elliptic cone of finite height

For the elliptic cone of finite height defined by
9* = {x; 0 < x}a? + x3/a} < x3/h%, 0 < x; < h} (36)

the shape factor Y is found to be

1
Y = (6/nc?) J (Cr+uy )2
-1

{(Tx + usMDalt + Tt + uy h) — 2a(t + Tt + uy b)
+ 2Tt +uy B) " [Taft + To+uy k)— La(e)]}(1 — )2 dg
@7
where
[ = [(u,a,)* + (W282)*1"2 2 0 (38)

For the limiting cases u;—0, I #0 and u;0,
I"'— 0, the shape factor follows immediately from
(37). In the case u—0 (ie, '—0 and uy~»0), the
shape factor follows from (37) as Y = c~2D%a),
which is in accordance with (31).

43,
For the elliptic cylinder of finite height defined by

Elliptic cylinder of finite height

P ={x;0<x¥ad +xjak <1, —W2<xy <h2} (39
the shape factor Y is found to be

1

Y = (2/nc?uy k) J‘

[Da(t + I't + uy h/2)
1

— Da(t + Tt — uy if2)J(1 — 1242 dr 40)
where
T = [(uay)* + (4282)°12 2 0 “)
For the limiting case u;— 0, T 5 0, the shape factor
reduces to

1
T = (2/nc?) J Dt + Ti{l — )2 dc  (42)
-1

For the limiting case I'— 0, uy % 0, we have
Y = (1/c?us [Dalt + uy b/2) — Dalt ~ u3 b/2)] 43)

The case u— 0 (ie, I'— 0 and uy— 0) leads, either
through (42) or (43), to Y = ¢~ 2D?a(t), which is in
accordance with (31).

4.4, Tetrahedron
For the tetrahedron defined by
4 4
9‘={x;x=2/1,vx",0<).~<1,Z}.N=1} )
Ne=l N=1

in which x" denotes the position vector of the Nth
vertex (N = 1, 2, 3, 4), the shape factor Y is found to
be
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Y = 6¢ 72 [(TPerPRIPS) " Ua(t + u;xT)
+ (TORTOTON)~ Hglt + 4, x0)
+ (TRTRPTR) ™ a(t + u,xf)

+ (TS TS0~ Ha(r 4 u,x5)] (45)

in which
P2 = uxf — uyxf = —T¥

and {P, @, R, S} is a permutation of {1, 2,3, 4}.

Note that the summation convention does not
apply to the upper case superscripts and subscripts,
only to the subscripts denoted by lower case letters.
As special cases we have to comsider: (1) § —a is
perpendicular to a single edge, (2) € —a is perpen-
dicular to two nonintersecting edges, (3) § — « is per-
pendicular to three edges (ie., perpendicular to a
face).

44.,1. & —a perpendicular to a single edge. Let
& — o be perpendicular to edge x2 — x; then "2 =
I'?P = 0. The shape factor 1s now

Y = 6¢2{(CPACP) " alt + u,xf) — (FFR)!
+ (TF)=Ya(t + u,xP] + (TR ~HTRS " ale + uyxF
(TS )~ Ut + 1, x})} “n

442. & — o perpendicular to iwo secting
edges. Let & — & be perpendicular to x2 — x* and
x¥ —x®; then, " =T% =0 and '™ =" =0
The shape factor is now

T = 60 (M) [alt + uxf) + alt + w4y x{)]
— AN [t + u,x)) — alt + v, x[)} “®)

443. & —a perpendicular to three edges. Let
E — o be perpendicular to x2 — xf, x® —x” and x®
—x2: then, [P2=r%"=0, ""=T**=0 and
' = '®€ = 0. The shape factor is now

T= 66_2{(F PS)=3[%(I'"%)*Dalt + u,x,') — IP(t + u,xT)
+ Ia(t + u;xD)] + ()~ 3a(t + u, x5} 49)

As before, {P, 0, R, S} is a permutation of {1, 2, 3, 4}.
Finally, if u— 0, the shape factor follows from (46}~
{49) as Y = ¢~ 2D%a(z), which is in accordance with
(31).

(46)

5. CONCLUSION

With the aid of analytical techniques, expressions
have been obtained for the far-field electric- and
magnetic-field radiation characteristics in a homoge-
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neous surrounding medium, when a plane electro-
magnetic wave is incident upon a number of con-
trasting penetrable objects of canomcal geometry
and the Born approximation is applicable. The syn-
thetic data thus obtained for simple, though not triv-
ial, geometries can, apart from their interest in direct
scattering theory, be used as test cases for compu-
tational time domain inversion algorithms.

APPENDIX A, CALCULATION OF THE SHAPE
FACTOR OF THE ELLIPSOID

The ellipsoid is defined by (33). Its volume is given
by

V = 4na,a,a;/3 (A1)

In order to perform the integration in the right-hand
side of (30), we introduce as variables of integration

Y3 =2X3/a (A2)

In y space, the domain of integration is the unit
sphere 0 < y? + y2 + y3 < 1. By carrying out in y
space the integration with the use of the spherical
coordinates {p, 0, ¢} with 0<p<1, 0<f<m,
0< ¢ <2n, around the vector ugai +uya,i, +
u, a; iy as polar axis, we obtain

y=x/a, V2 =x/a,

Uy X, = (@)Y + (82 02)y2 + (B3 83)ys =Tp cos {f)  (A3)
where T is given by (35), while
dV = a,a,a;p* sin (6) dp 0 d¢ (A4)

With (A1){A4) the shape factor, defined 1n (30), is
rewritten as

Y = (3/4nc?)

i fr 2z
J Jl J D3a(t + Lp cos (0)p* dp sin (6) d0 dp  (A5)
0 JO JOo

The integration in (A5) is performed by replacing the
differentiation of a(t 4+ I'p cos (8)) with respect to ¢ by
differentiation with respect to p or to 6, and (34)
results.

APPENDIX B CALCULATION OF THE
SHAPE FACTOR OF THE ELLIPTIC CONE
OF FINITE HEIGHT AND OF THE
ELLIPTIC CYLINDER OF
FINITE HEIGHT

In the process of the calculation of the shape factor
of the elliptic cone of finite height defined by (36) and
of the elliptic cylinder of finite height defined by (39),
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the same steps have to be taken. Consequently, this
appendix does apply to both objects Only the vol-
umes of these objects differ; the volume of the elliptic
cone is given by

V =mna,az hf3 (B1)
and the volume of the elliptic cylinder by
V =na,a,h (B2)

In order to perform the integration in the right-
hand side of (30), we introduce as variables of inte-
gration

(B3)

In the y plane the domain of integration 1s the circle
0 < y2 + y2 <(x3/h)? in the case of the elliptic cone
and the circle 0 < y? 4 y3 < 1 in the case of the ellip-
tic cylinder. By introducing in this y plane as vari-
ables of integration the polar coordinates {p, 0}
around u,a,i, + u,a,i, as polar axis with 0 < p <
x3/h in the case of the elliptic cone and 0 < p < 1 in
the case of the elliptic cylinder and 0 < 6 < 2z, we
obtain

Y= x4/ay Y2 =x3/8,

U, X, = (u18,)y; + (2 42)y; + 3 X3 = pI" cos (0) + Uy x5
(B4)
where T is given by either (38) or (41), while

dx, dx, dxy = a,a,p dp df dx; (B5)

With (B1) and (B3}-(B3) the shape factor, defined
1n (30), is for the case of the elliptic cone rewritten as

Y = (3/c*rh)

' (2% ;rxafh
. J- I J D2a(t + Tp cos (0) + uy x3)p dx, d6 dp
0 0

0
(B6)

This expression is further modified by reducing the
integral with respect to 6 to one over the interval (0,
7) and introducing © = cos (f) as variable of integra-
tion. This results into the expression

bl rxajh
T= (6/cz7th)J‘ J I (1 -1y
0 J-1do

- D*a(t + Ipt + uyx3)p dx; dr dp (B7)

The integration in (B7) is performed by replacing
the differentiation of a(t + I'pt + u; x;) with respect
to t by a differentiation with respect to p or to x;.
The final result 15 obtained by performing consecu-
tively the integration with respect to p, an integration
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by parts with respect to t and, finally, the integration
with respect to x;.

For the derivation of the shape factor of the ellip-
tic cylinder the same steps as outlined above for the
elliptic cone have to be executed

APPENDIX C: CALCULATION OF THE SHAPE
FACTOR OF THE TETRAHEDRON

The tetrahedron is defined by (44). Its volume is
given by

V = ey, dxn — xp)Xx2 — x¥xk —xP1/6 ()

in which {P, Q, R, S} is a permutation of {1, 2, 3,4}.

In (44), 2,, 23, 45 and 2, denote the barycentric
coordinates of a point in the interior, or on the
boundary, of the tetrahedron. In order to perform the
integration in the right-hand side of (30), we replace
A, by t — A, — 13 — 1, and carry out the integration
over the ranges 0 <, <1, 0<A3<1—1,, 0<
/4 <1 — 2, — A3. Further, we take into account the
value of the Jacobian d(x;, x;, X3)/d(4;, 43, Ag) =
6V. With these substitutions the shape factor, defined
in (30), is rewritten as

1pr1-Azp1-42-43
Y=6c"J- J J — 23D%a(t + u,x}
0 JO 0

4
+ ¥ Auux¥ — x])) dA, diz di, (CY)
M=2

The integration in (C2) is performed by replacing
the differentiation of a(t + ux} + Y ar=y Aptlx}
— x})) with respect to t by a differentiation with re-
spect to A, , 45 and A,, respectively. The special cases
are most easily dealt with by redoing the integrations
that need modification.
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