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The low-contrast or (first-order) Born approximation is applied to the time-domain scattering
of a plane acoustic wave by a penetrable object of bounded extent embedded in a homogeneous
fluid. Closed-form analytic expressions are obtained for the spherical-wave farfield scattering
amplitude related to homogeneous objects of the following shapes: an ellipsoid, an elliptic cone
of finite height, an elliptic cylinder of finite height, and a tetrahedron. Relaxation effects are
included. The results are, amongst others, useful as test cases for time-domain inverse-

scattering algorithms.

PACS numbers: 43.20.Fn

INTRODUCTION

In inverse scattering theory, much effort is put into the
development of computer algorithms that ultimately are to
reproduce the geometrical and/or physical parameters of
unknown configurations from measured data pertinent to
the scattered wave that results from a known wave incident
on the unknown configuration to probe it.”™'? In order to test
these algorithms, often, at least in the initial phases, a linear-
ized inversion scheme is used, based on the low-contrast or
Born approximation. Further, an investigation in space—
time seems the most appropriate one due to the fact that
wave phenomena do take place in space-time. Hence, there
is a need for analytical time-domain scattering results per-
taining to simple, yet not too trivial, cases that can be used as
test cases for computational time-domain inversion algor-
ithms.

In the present paper, closed-form analytic expressions
are derived for the spherical-wave, farfield, scattering ampli-
tudein case a plane acoustic wave is incident upon a penetra-
ble object of bounded extent situtated in a homogeneous sur-
rounding fluid. Homogeneous objects of the following
shapes are considered: an ellipsoid, an elliptic cone of finite
height, an elliptic cylinder of finite height, and a tetrahe-
dron. The analysis is carried out entirely in the space—time
domain, and relaxation effects are included. A structure con-
sisting of a composition of objects considered here can, in the
Born approximation, be dealt with by superposition.

I. FORMULATION OF THE SCATTERING PROBLEM

In a homogeneous, unbounded fluid an acoustically
penetrable, scattering object occupying the bounded domain
7" is present. The domain outside the object is denoted by
7", (Fig. 1). To locate position in space, we employ the
coordinates {x,y,x} with respect to an orthogonal Cartesian
reference frame with origin O and three mutually perpendic-
ular base vectors {i,,i,,i,} of unit length each. These base
vectors form, in the indicated order, a right-handed system.
The position vector r is given by r = xi, + yi, + zi,. The
time coordinate is denoted by ¢. Partial differentiation is de-
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noted by d and V=19, +1,d, +1,0,. SI units are em-
ployed.

In 77y an ideal, homogeneous fluid is present. Its me-
chanical properties are characterized by the volume density
of mass p, and the compressibility «,. In any source-free
subdomain of 77, the acoustic wave quantities satisfy the
linearized acoustic equations

Vp + pod, v =0, (n

Vv + k.0, p = 0. (2)
The scattering object shows a contrast with respect to the
surrounding fluid. This contrast is accounted for by the vol-
ume density of mass p = p(r) and the compressibility relax-
ation function y = y(r,t). Then, in #7,, the acoustic wave
quantities satisfy the equations

Vo +p(r)d,v=0, 3

V-v+/c0c9,p+1c08,f y@mpt—7)dr=0. (4)
(6]

In these equations, p denotes the acoustic pressure and v is
the particle velocity. When the object is instantaneously
reacting with the compressibility «(r), we have
x(r,t) = [r(r)/x, — 118(¢). In Eq. (4), causality has been
taken into account.

The object is irradiated by a uniform plane acoustic
wave {p’, v’} with pressure amplitude p, and wave shape
a(t), and propagating in the direction of the unit vector o.
The corresponding wavefunctions for p’ and v are given by
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FIG. 1. Scattering configuration.
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P =pea(t —aw/cy) (5)
and

v = (poCo) ~'pota(t — arr/cy), (6)
in which ¢, = (x, p,) ~'/? is the acoustic wave speed in the

surrounding fluid. The wave functions { p°,v’} for the scat-
tered wave are defined as

pP=p—pandv=v—Vv. N

With Eqgs. (1)—(7), it follows that p° and v* satisfy in R3 the
equations

Vo' + pd, v =1, (3)

Vv’ + k,0,p° = 6, %
where

f= —[p(r) —pold,v (10)

is the contrast volume density of force and

0= — K0, fw x (e, )p(x,t —7)dr (11)
o

is the contrast volume density of injection rate. From Egs.
(8) and (9) it follows that { p%,¥'} can be expressed as''

pi(r,2) = pod, ¢ — V-A, (12)
t
vi(r,t) = — Vi + k,d, A +p0_1VX(VXJ A dr),
T
in which
Y(r,t) =J. (47r|r—r’|)_19(r’,t~— v —¥'|/co)dV
e’
(14)
and
A(r,t) :J- (4rfr — ') U@t — |x —¥'|/cp)dV.
r'e?”)
(15)

In the farfield region, Eq. (12) for the acoustic pressure re-
duces, with B = r/|r| as the unit vector in the direction of
observation, to

Pi(r,t)~(4le|) 7b( B, — |r|/cy) (16)
and Eq. (13) for the particle velocity to

V(1,0) ~=( pocy) " (4mr]) TIBB( Byt — [r]/cy), (17
with

b= bmon + baip> (18)
in which

boon ( Bit) = pod, O(x',t + Ber'/cy)dV (19)

r'e?”|

and
baip ( Bst) =co™'9, J BE(r',t + Ber'/cy)dV. (20)
r'e?’,

In Egs. (16) and (17) the delay in travel time from the
origin, which is located near the scattering object, to the
point of observation is included in the argument of . It is
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clear that b the
dipole term.

Now, the scattering problem would have been solved if p
and v were known in 77,. For low-contrast scattering objects
these quantities are in the (first-order) Born approximation
replaced by the corresponding values of the incident wave.
In the subsequent sections, this approximation will be car-

ried out for a number of geometrical shapes.

represents the monopole term and b

mon dip

il. THE BORN APPROXIMATION

In the low-contrast, or (first-order) Born approxima-
tion the unknown values of p and v in 7", are replaced by the
known values of the incident wave functions p’ and v/, re-
spectively. Then b(,7) changes into

de dry(v',r)a(t — 7+ sr’)
0
(21a)

bmon = _c(; P()a%

r'e?’|

and

baip = — 5 Po(Bra)d? dV [ p')/ps—1]

r'e?”)

Xa(t+ st'), (21b)

where

s= (B —a)/c, (22)
In the further analysis, the right-hand sides of Egs. (21a)
and (21b) will be evaluated for a number of homogeneous
objects of different shapes. Then, Eq. (21) can be written as

Dmon = — Vpof Y)Y (s,t — 7)drT, (23a)
0

by = — Vpo(B-d)ApT(s 1), (23b)

where Vis the volume of the object, Ap = ( p/po — 1) isthe
relative contrast in mass density, and
A2a(t+sr)dV

Y(s.0) :co_zV_‘J (24)

ey

is a shape factor that depends on the shape and the dimen-
sions of the objects, on the wave shape of the incident wave,
and on s. In the shape factor, the wave shape of the incident
wave itself as well as its differentiated and integrated forms
appear. For the differentiated wave shapes we employ the
notation

D'a=4d% with n=1,2,.... (25)
The integrated wave shape is denoted by
t
Iazf a(r)dr. (26)

It follows immediately that when s = 0 (i.e., for observation
“behind” the object or “forward scattering”), we have

Y(0,t) =c5 2D %a(1),
which holds for any object.

Since a(t+ sr) satisfies the equation [s|~?V-Va
~ % = 0, when s#0, we can replace the operator ¢5 9}

by |s| ~%cg *V-V and apply Gauss’ divergence theorem. This
results, for Eq. (24), in the expression

(27)
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(vs)Da(t -+ sr)dA,

red?”,

Y(s,0) = |s| %y PV !

when s#0, (28)

where 377, denotes the boundary of the scattering object
and w is the unit vector along the outward normal to d77,.
Equation (28) shows that the farfield, plane-wave scattering
by a homogeneous object can, in the Born approximation, be
viewed upon as a surface effect, when the observation is not
“behind ”’ the object [cf. Eq. (27)].

. THE SHAPE FACTORS FOR THE DIFFERENT
OBJECTS

In this section the shape factors for the ellipsoid, the
elliptic cone of finite height, the elliptic cylinder of finite
height, and the tetrahedron will be presented. Details of the
calculation of these shape factors are given in the Appen-
dixes.

A. Ellipsoid
For the ellipsoid defined by
7 =1{r0<x*/a® + y/b 4+ 22/P < 1},
the shape factor Y is found to be
Y= (3¢, 2" Hat+7) +alt—y)
—y 'a(t+y) —la(t — )13,

(29)

- (30)
where
7= (s2a® + s2b” + s2c») '/220. (31)

In the limiting case where y—0, which corresponds to s—0,
the expression in the right-hand side of Eq. (30) reduces to
the value ¢ 2D %a(t), which is in accordance with Eq. (27).

B. Elliptic cone of finite height
For the elliptic cone of finite height defined by
7 = {r0<x?/a® + y*/b> <22 /h*0 <z <h},

the shape factor Y is found to be
1

Y = (6/7¢}) (yr+s,h) "2

—1
X{(yr + s, h)Da(t + yr +s,h) — 2a(t + yr + 5, h)
+2(yr +s,h) " [Ta(t + yr +5,h) —Ia(1) ]}

(32)

X (1 —7)%4r, (33)
where .
y= (sfcaz—{—sf,bz)”'z}O. (34)

For the limiting cases s,—0, ¥ #0 and s, #0, y—0, the shape
factor follows immediately from Eq. (33). In the case s—0
(i.e., ¥—0 and 5,—0), the shape factor follows from Eq.
(33) as Y = ¢; 2D %a(t), which is in accordance with Eq.
27).

C. Elliptic eylinder of finite height
For the elliptic cylinder of finite height defined by

7 = {n0<x¥/a® 4y /b <, —h/2<z<h/2},
‘ (35)
the shape factor Y is found to be
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1
Y= (2/7rc§szh)J. [Da(t+ yr+5,h/2)
—1

—Da(t+yr—s,h/2)] (1 —™)'dr, (36)
where
(37)

For the limiting case s,—0, 7540, the shape factor Y reduces
to

y = (s2a* 4 526 %) V/*>0.

1
T:(z/ﬂcg) D2a(t+7/7_)(1__7,2)1/2d7_'

~1
For the limiting case y—0, 5, #£0, we have
Y = (1/c§s,h) [Da(t + s,h /2) — Da(t—s,h/2)]. (39)
The case s—0 (i.e., y—0 and 5,—0) follows either from Eq.
(38) or Eq. (39) as Y = ¢ 2D “a(t), which is in accordance
with Eq. (27).

(38)

D. Tetrahedron
For the tetrahedron defined by
4 4
7, = {r;r =Y A,1,,0<4, <1, > A= 1], (40)

n=1 n=1
in which r, denotes the position vector of vertex n
(n=1,2,3,4), the shape factor Y is found to be
Y = 6c5 [ (Vi Vu¥a) ~Halt +sr,)
+ (7/1‘1(7/1'17/]'{)’1[0({ + S'l‘j)
+ VaVia¥ig) ~Ha(t 4 s1)
+ (VIKVUylk)—]Ia(t“’S'rl)]’ (41)
in which
vy =8, — E) = — Vi (42)
and {J, j,k,I} is a permutation of {1,2,3,4}.
As special cases we have to distinguish
(1) B — ais perpendicular to a single edge;
(2) B — o is perpendicular to two crossing edges,
(3) B — a is perpendicular to three edges (i.e., perpen-
dicular to a face).

1. B — a perpendicular to a single edge

Let B—a be
v:; = ¥ = 0. The shape factor is now

Y = 6co L (Vura) ™ [a(t+ sr;)
- (%Zl + v Dla(t+ S'rf)]

+ Pva)  Ta(t+ 1) + () Ha(t +s1,) ).
(43)

perpendicular to v, —r, then

J

2. B — « perpendicular to two crossing edges

Let B — a be perpendicular tor; —r; and r; — 1y, then
vy = v = 0and y,, = . = 0. The shape factor is now

Y = 6cy Hyw*[a(t +sr,) +a(t+s1,)]

— it Ha(t +sry) —Ta(t+sr) ]} (44)
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FIG. 2. Coordinate system and tetrahedron with vertices (1,0,0), (0,1,0),
( — 1,0,0), and (0,0,1).

3. B — a perpendicular to three edges

Let B — a be perpendicular to r; —r;, rp —1;, and
T — rj:then7’ij =Y =0V =V = 0,andyy =7y = 0.
The shape factor is now

Y = 6c5 Ay *[3viDalt +s1;) — yya(l + sr;)
+Ia(t+s1)] +vi la(t +s1)} (45)
As before, {i, j,k,I} is a permutation of {1,2,3,4}.
Finally, if s—0 the shape factor follows from Eqs. (42)~

(45) as Y = ¢; *D?a(t), which is in accordance with Eq.
27).

IV. RESULTS

In this section we present some curves showing the
shape factor as defined in Eq. (24) for a tetrahedron as a
function of time. The location of the tetrahedron is given by
its vertices r, = (1,0,0), r, = (0,1,0), r; = ( — 1,0,0) and
r, = (0,0,1) (Fig. 2).

The tetrahedron is embedded in water ( p, = 1000 kg/
m?3, ¢, = 1500 m/s). A wave of unit amplitude and of wave
shape (Fig. 3)

0, when — oo <t<0,
a(t) =41 —cos(2wt /AT), when 0<t<AT,
0, when AT <t < oo,
46)

is incident upon the tetrahedron. The duration AT of the
pulse is taken as AT = 6.107> s. The duration of the pulse is
chosen such that the influence of the position of the vertices
shows up clearly. The direction of propagation of the inci-
dent wave is the positive y direction, i.e., a = (0,1,0). As
directions of observation are chosen ( —1, —1, %\/\?:), (0,
— W2, 2), (0,0, — 1), (0, — 1,0), and (0,1,0), respective-
ly, they illustrate the various cases characteristic for the tet-
rahedron.

In Fig. 4, the direction of observation and the direction
of propagation of the incident wave are chosen such the
B — ais not perpendicular to any edge. Then, the integrated
form of the wave shape is present four times. In Fig. 5,8 — o
is perpendicular to a single edge. Correspondingly, the inte-
grated form of the wave shape is present three times and the
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FIG. 3. Wave shapes related to the incident wave. (a) The wave shape itself;
(b) its integrated form; (c) its differentiated form; (d) its twice differentiat-
ed form.

wave shape itself is present once. In Fig. 6, B — cis perpen-
dicular to two crossing edges. Hence, the integrated form of
the wave shape is present twice and the wave shape itself is
also present two times. In Fig. 7, B — a is perpendicular to a
face. Correspondingly, the differentiated form of the wave
shape is present once, the wave shape itself is present once,
and the integrated form of the wave shape is present two

0
-0.3F \7

SHAPE FACTOR (D) —>

o0 035 0 0.2 0.0 0.8 0.8 1 1.2 Lu
TIME (s) —>

FIG. 4. Shape factor of the tetrahedron shown in Fig. 2 with
B=(—14 —141¥2), a=(0.10) (general case).
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SHAPE FACTOR(m™) — s

BET 62 0 0.2 0.4 0.5 0.8 1 1.2 1.1

TIME(s) ——>

FIG. 5. Shape factor of the tetrahedron shown in Fig, 2 with
B=(0,— 2, }v2), a=(0,1,0) (B— a perpendicular to the edge
r; —r;). The amplitude in the dashed part of the curve is blown up by a
factor of 10.

times. In Fig. 8, B — a =0 (i.e., observation “behind” the
object). Hence, only the two times differentiated wave shape
is present.

Due to the very short duration of the pulse chosen such
as to visualize the influence of the separate vertices, the am-
plitude of the integrated waveform is very small. In order to
achieve the showing up of this amplitude in Figs. 5 and 7, its
scale has been blown up by the factors of 10 and 100, respec-
tively. Figure 7 shows that, in the first pulse, the differentiat-

SHAPE FACTOR (M) —s

0U 0.2 0 0.2 0.4 0.6 0.5 1 Tz 1.4
TIME(s) ——>
FIG. 6. Shape factor of the tetrahedron shown in Fig. 2 with

B=1(00,—1), a=(0,10) (B— a perpendicular to the two crossing
edgesry —ryand ry —r;).
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150
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SHRPE FACTOR (m™2) ——

-120F

-150

0.1 0.2 0 0.2 0.0 0.6 0.5 1 1.2 1.0
TIME (5) —>

FIG. 7. Shape factor of the tetrahedron shown in Fig. 2 with
B=(0,—1,0), a =(0,1,0) (B — « perpendicular to the face defined by
the vertices ry, ry, and r,). The amplitude in the dashed part of the curve is
blown up by a factor of 100.

ed waveform is predominant. Further, the wave shape itself
manifests itself in the difference in amplitudes in the maxi-
mum and minimum, while the integrated wave shape is neg-
ligible.

V.CONCLUSION

With the aid of analytical techniques, expressions for
the farfield acoustic pressure and particle velocity in a fluid
have been derived, when a plane acoustic wave is incident
upon a number of penetrable objects having a canonical ge-

wid
150
120 ¢
T 90+
60
C‘I‘A
£ 30
< ;
S i
5 0
@
L
w -30F
@
T
sl
60 -
-g0 k
~-120
~150 i L

60 <0.2 0 0.2 0.1 0.5 0.8 1 1.2 [.4
TIME(s) —>

FIG. 8. Shape factor of the tetrahedron shown in Fig. 2 with 8 = (0,1,0),

o= (0,1,0) (B —a=0,ie, forward scattering).

Quak et al.; Farfield scattering 1232




ometry. The numerical results for the shape factors of the
tetrahedron illustrate the changes in wave shape that are
observed in different directions. The synthetic data thus ob-
tained for the simple, though not trivial, geometries can be
used as test cases for computational time-domain inversion
algorithms. This point of view has also been elaborated by
Rose and Richardson'? in connection with some examples of
elastic-wave scattering.

APPENDIX A. CAL.CULATION OF THE SHAPE FACTOR
OF THE ELLIPSOID

The ellipsoid is defined by Eq. (29). Its volume is given
by

V = 4mabe/3. (A1)

In order to perform the integration in the right-hand side of
Eq. (24) we introduce as variables of integration

E=x/a, n=y/b, {=2z/c (A2)
In &, n, & space the domain of integration is the sphere
0<£?+ 7* + £ % < 1. By introducing in £, 17, { space as vari-
ables of integration the polar coordinates { p,0,¢} with
0<p < 1,0<0<7, 0<¢ < 2, around s, ai, + 5,bi, + 5,ci, as
axis, we obtain: o

st = (5,a)5 4 (s,b) + (5,¢){ = yp cos(6), (A3)
where ¥ is given by Eq. (31), while ‘

dV = abc p* sin(9)dp db d¢. (A4)
The integration in Eq. (24) is performed by replacing the
differentiation of ¢ with respect to ¢ by differentiations with

respect to the appropriate spatial variable of integration, and
Eq. (30) results.

APPENDIX B. CALCULATION OF THE SHAPE FACTOR
OF THE ELLIPTIC CONE OF FINITE HEIGHT

The elliptic cone of finite height is defined by Eq. (32).
Its volume is given by

V = mabh /3. (B1)

In order to perform the integration in the right-hand side of
Eq. (24), we introduce as variables of integration

E=x/a, n=y/b. (B2)

In the &, 5 plane the domain of integration is the circle
0<&? 4 9% <Z2%/h % By introducing in the &, 7 plane as vari-
ables of integration the polar coordinates {p,0} with
0<p <z/h,0<8 < 2maround s, ai, + s,bi, as axis we obtain:

Sr = (Sxa)g + (s,0)n + 5,2 =yp cos(8) + 5,2z, (B3)
where y is given by Eq. (34), while

dx dy dz = ab pdp d0 dz. (B4)
The integration in Eq. (24) is performed by replacing the
differentiation of a with respect to ¢ by differentiations with
respect to the appropriate spatial variable of integration.
Further, the integral with respect to 8 is reduced to one over
the interval (0,7) and 7 = cos(68) is introduced as variable
of integration. The final result, Eq. (33), is obtained by per-
forming consecutively the integration with respect to p, an
integration by parts with respect to 7 and, finally, the inte-
gration with respect to z.

1
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APPENDIX C. CALCULATION OF THE SHAPE FACTOR
OF THE ELLIPTIC CYLINDER OF FINITE HEIGHT

The elliptic cylinder of finite height is defined by Eq.
(35). Its volume is given by

V = mabh. (C1)

In order to perform the integration in the right-hand side of
Eq. (24), we introduce as variables of integration

E=x/a, n=y/b. (C2)

In the £, 77 plane the domain of integration is the circle
0<£? + 7* < 1. By introducing in this &, 5 plane as variables
of integration the polar coordinates { p,6} with O0<p <1,
0<68 <27 around s, ai, + s,bi, as axis we obtain

sr=(5.a)§ + (5,0)n + 5,2=1yp cos(O) + 5,2, (C3)
where ¥ is given by Eq. (37), while
dx dy dz = ab pdp d0 dz. (C4)

The integration in Eq. (24) is performed by replacing the
differentiations of @ with respect to ¢ by differentiations with
respect to the appropriate spatial variable of integration.
First, the integration with respect to z is performed, which is
elementary. Further, the integral with respect to 8 is reduced
to one over the interval (0,7) and 7 = cos(8) is introduced
as variable of integration. The final resuit, Eq. (36), is ob-
tained by performing an appropriate integration by parts
with respect to 7.

APPENDIX D. CALCULATION OF THE SHAPE FACTOR
OF THE TETRAHEDRON

The tetrahedron is defined by Eq. (40). Its volume is
given by

V=l —r) [ — 1) Xt —1;)]/6}, (D)
in which {, j,k,7} is a permutation of {1,2,3,4}.

In Eq. (40) A, A,, A5, and A, denote the barycentric
coordinates of a point in the interior or on the boundary of
the tetrahedron. In order to perform the integration in the
right-hand side of Eq. (24), we replace A, by
1— A, —A;— A4, and carry out the integration over the
ranges O<A, <1, O<dy<l—A4, O0<dy<l—4,— A4,
Further, we take into account the value of the Jacobian
d(x, y,2)/3(A2A3A,) = 6V. The integration in Eq. (24) is
performed by replacing the differentiation of a with respect
to ¢ by differentiations with respect to A,, A5 or A,. The spe-
cial cases are most easily dealt with by redoing the integra-
tions that need modification.
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