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LARGE-OFFSET APPROXIMATIONS
IN THE MODIFIED CAGNIARD METHOD
FOR COMPUTINC SYNTHETIC SEISMOGRAMS:
A SURVEY!

A. T. DE HOOP?

'ABSTRACT

De Hoop, A.T. 1988. Large-offset approximations in the modified Cagniard method for com-
puting synthetic seismograms: a survey. Geophysical Prospecting 36, 465-477.

Large horizontal offset and large vertical offset approximations in the modified Cagniard
method for computing synthetic seismograms in a horizontally layered model of the earth are
derived. They apply to each of the generalized-ray constituents into which the seismic wave
motion is decomposed. For the results applying to large horizontal offset, which are known in
the seismological literature, a simplified derivation is given. The results for large vertical
offset, which are of particular interest to vertical seismic profiling, are new. The use of the
large-offset approximations, both horizontal and vertical, leads to a considerable reduction in
computation time for synthetic seismograms compared with the full three-dimensional
version of the modified Cagniard method.

1. INTRODUCTION

The modified Cagniard method is one of the methods that can be applied to
compute synthetic seismograms. It applies to a lossless, horizontally layered model
of the earth. In the method, the total seismic wave motion is decomposed into
generalized-ray constituents (Spencer 1960; Cisternas, Betancourt and Leiva 1973)
that travel from the source, and after successive reflections and transmissions at the
interfaces reach the point of observation. The space-time expressions for these con-
stituents are arrived at by a specific scheme of integral-transform relations, com-
bined with complex-variable analysis. For recent reviews of the method, see Van der
Hijden (1987) and De Hoop (1988). Although the numerical evaluation of the
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resulting integrals and the determination of the relevant modified Cagniard paths
consume little time, at least per generalized ray, a considerable simplification still
arises for large horizontal and large vertical offsets between source and receiver. The
former are often encountered in surface seismics, the latter in vertical seismic pro-
filing. The large horizontal offset approximation has been used by Roever, Vining
and Strick (1959), Helmberger (1968) and Wiggins and Helmberger (1974). These
authors derived it from the Pekeris representation of the transform-domain seismic
wavefield (Pekeris 1955, 1956). Both the large horizontal offset and the large vertical
offset approximations can be obtained directly from De Hoop’s modification of
Cagniard’s method (see Cagniard 1939, 1962; De Hoop 1960, 1961; Achenbach
1973; Miklowitz 1978; Aki and Richards 1980) by replacing particular integrals by
their appropriate asymptotic representations, without using (modified) Bessel func-
tions in the intermediate steps. Thus, for the large horizontal offset approximation a
simplified derivation is obtained, while the results for large vertical offset are new.
The use of the large-offset approximations, both horizontal and vertical, leads to a
considerable reduction in computation time for synthetic seismograms compared
with a full three-dimensional version of the modified Cagniard method. For the
large horizontal offset approximation this feature has been investigated by Helmber-
ger and Harkrider (1978). The large vertical offset approximation has been numeri-
cally implemented by Van der Hijden (1987).

2. THE GENERALIZED-RAY CONSTITUENT

By applying the standard scheme of integral transformations of the modified Cag-
niard method, the time Laplace-transform domain expression of a generalized-ray
constituent in a lossless, horizontally layered, structure of isotropic material (model
of the earth) is obtained as

W(x, s) = (s/21)20(s) foo do, foo (i, , i) exp {—sliioq Xy + oy X,

aL = 2= T

+ 3 yaliog, iaz)th} da, , 1)
AeA

where s is the real and positive time Laplace-transform parameter, x is the Cartesian
position vector from the source to the point of observation, x, and x, are the hori-
zontal components of X, h, is the (possibly multiple) path that the generalized ray
has traversed in the layer with wave speed c, (of either P- or S-waves),

vi=(l/ci +of +a3)''* (2)

is the vertical slowness of the wave with wave speed c;, A is the set of layers in
which the generalized ray has propagated, i is the imaginary unit, Q(s) is representa-
tive of the source signature, and IT = (i, , i®,) is an s-independent product of the
coupling coefficient of the generalized ray to the source, and a number of interface
reflection and transmission coefficients. It is assumed that the source has started to
act at the instant t = 0, where ¢t is the time coordinate. The aim of the modified



TUTORIAL 467

Cagniard method is to rewrite the expression

G(x, s) = (2n) "2 f de, j (e, ioc,)

ay = 2=—a
X exp {—s[icxl Xy oy X, + Y ey, iaz)hl}} da, €))
AeA
in the form
G(x, s) = J exp (—stwl(x, 7) dt, @
t=T

where 7 is a real variable of integration, T > 0 and w9(x, 1) is independent of s. If
this is accomplished, the uniqueness theorem of the Laplace transformation for real,
positive transform parameter (Lerch’s theorem; see Widder 1946) ensures that the
space—time counterpart w = w(x, t) of W = W(x, s) is given by
0 fort< T,
w(x, t) = t
0?2 ot — wé(x, 1) dt fort> T,

t=T

)

where additional elementary rules of the Laplace transformation have been used.
The function w(x, 7) is denoted as the (space-time) Green’s function of the gener-
alized ray under consideration.

3. THE LARGE HORIZONTAL OFFSET APPROXIMATION
Let the polar-coordinate specification of x, and x, be given by
Xy =1 €08 (), X, = F sin (@), (6)

with r > 0, 0 < ¢ < 2n. To arrive at the large horizontal offset approximation we
replace in (3) the variables of integration {a, o,} by {x, ¥} via

a0y =rKcos (Y +¢), oy=kKsin@)+¢), ()
with k > 0, 0 <y < 2n. Then, (3) changes into

G(x, s) = (2n) "2 f " e di f - I(ix, ¥, ¢)

k=0 ¥=0
X exp {—s[i;cr cos (Y) + D p,(i)h A:'} dy, 8)
AeA
where IT = II(ix, ¥, ¢) results from II = I(ia,, ix,) and 7, = §,(ix) from y, =
y,(i0ty , 1o,) under the substitution (7). From (2) it follows that

Pa=Pilin) = (1/ci + )72 ©)
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is independent of {y and ¢. The next step consists of decomposing the integral with
respect to y as

27 ) 3n/2
J dy = dyr +J dy, (10)
y=0 v=—xn/2 W =m/2
where the periodicity in iy of the integral has been used. In the last integral we
replace the variable of integration ¥ by Y + =; then the bounds become the same as
. those of the first integral. However, under the replacement y» — { + ©, we have
o; = —o; and a, - —a, as (7) shows. Since the transform-domain seismic wavefield
quantities arise from partial differential equations with real-valued coefficients and
the wavefield quantities are real-valued, II has the property II(—ie;, —ia,)
= I(ie, , io,)*, where * denotes complex conjugate. Since s, x, r, ¢ and h, are real,
we have

© /2
G(x, s) = 2n%) " 'Re J‘ Kk dx J M(ix, ¥, ¢)
k=0 W =—n/2

X exp {—s[ixr cos () + Y. ?l(ix)hl}} dy. (11)
AeA
The large horizontal offset approximation is found by applying the method of
stationary phase to the integral with respect to ¥ and replacing it by its asymptotic
representation for ¥ — oo (Erdelyi 1956, pp. 51-56). The only stationary point of the
argument of the exponential function is ¥ = 0, which is an inner point of the inter-
val of integration. Using around y = 0 the expansion

cos () ~ 1 — /2, (12)
and employing the result
Jw exp (iskry2/2) dy = (2r/sxr)t/? exp (in/4), (13)
W= — o0

we obtain the asymptotic approximation

J " TG, y, ¢) exp [—iswr cos ()] du

=—n/2
~ (2n/sxr)'/? exp (in/4)(ix, 0, @) exp (—iskr) as  r— oo. (14)

Finally, we replace in the integration with respect to k, the variable of integration of
x by p=ix. Then x™'?exp (in/4) =ip~"/?, and x dx = —pdp. The resulting
expression for G(x, s) is

G(X, S) ~ (n/s)l/zghor(x3 S) as r — 0, | (15)
where
Guor3 5) = (212207 Im fm (p, 0, ¢) exp {—s[pr ) m(p)m]}p 1 dp.
p=0 ieA

(16)
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The application of the modified Cagniard method to infer the time-domain counter-
part of the right-hand side of (15) will be discussed in Section 5.

4, THE LARGE VERTICAL OFFSET APPROXIMATION

To arrive at the large vertical offset approximation we replace in (3) the variables of
integration {«,, a,) by {p, ¢} via

oy = —ip cos (¢) — g sin (¢), a7
o, = —ip sin (¢) + g cos (¢),
with p € I and g € R, and where ¢ is the same as in (6). Then, (3) changes into

ioco

G(x, s) = (4n?) ! f exp (—spr) dp

p=—iw

X f (p, ig, ¢) exp [-S 2. 74, i‘Z)hA:l dq, (18)
q=— AeA

where IT = I(p, ig, ¢) results from IT = I(ix;, ix,) and J, = J,(p, iq) from y, =

Valloey , iory) under the substitution (17). From (2) it follows that

V2= 7up, ig) = (1/c} + g> — pH)'2. (19)

For large values of Y, ., h, the main contribution to the integration with respect to
q arises from around g = 0. In view of this, the large vertical offset approximation is
arrived at by replacing the Laplace-type integral with respect to g by its asymptotic
approximation for Y ; . 5 h, — oo (Erdelyi 1956, pp. 36-39). Using the expansion

712 74P, 0) + 4%/274(p, 0) (20)
around g = 0 and employing the result
© 1/2
f exp [—8(42/2) DI O)h}.:‘ dg = [27T/S > 91, O)hz:l ) (21)
qg= - AeA AeA

we obtain the asymptotic approximation

'Jw I(p, iq, ¢) exp [——S 2 9P, iQ)hz:l dq

= -0 Ae A

1/2
~ |:27'C/S Z 5’; l(Pa \O)hj.:l I—I(p’ 0: d))

Ae A

X exp |:—s Y 3, O)hl} as Y h;— 0. (22)

AeA AeA
Using (22) in (18) we arrive at

G(x, 8) ~ (1/s)*gye(x; ) as . hy— oo, (23)
AeA
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where

ico

I(p, 0, $) exp {—s[pr + 2 9, O)h}.:l}

le A

Gvedx, 5) = (4m]) 12172 f

p=—io0

-1/2
X LZA?{ ', O)th dp. (24

The application of the modified Cagniard method to infer the time-domain counter-
part of the right-hand side of (24) will be discussed in Section 5.

5. THE MODIFIED CAGNIARD PATH

The first step in the modified Cagniard method consists of continuing—in (16) and
(24)—the integrand analytically into the complex p-plane, away from the imaginary
axis. In this process we encounter the singularities in II(p, 0, ¢) and in (cf. (9) and

(19))
I'ip) = (1/c3 — p*)"2. (25)

These are the branch points of I'j(p), i.e. p = +1/c, and the possible poles of I1(p, 0,
¢). The latter are associated with the possible surface waves of the interface type
(non-existent along a fluid/fluid interface, Scholte waves along a fluid/solid interface,
Stoneley waves along a solid/solid interface, and Rayleigh waves along the traction-
free boundary of a solid). If surface-wave poles do occur in II(p, 0, ¢), they are
located on the real p-axis in the interval |Re (p)| > max,_, (1/c;). To make the
analytical continuation single-valued, we introduce branch cuts along Im(p) =
|Re (p)| = 1/c, for all A. In the cut p-plane, we then have Re [T"y(p)] > 0.

Next, the integrations in (16) and (24) in the complex p-plane are carried out on
a path along which

pr+ Y Liph, =1, (26)

Ae A

where 7 is real and positive; such a path is denoted as a modified Cagniard path.
Since r > 0, and Im (I';) < 0 and >0 in the upper and lower halves of the complex
p-plane, respectively, the modified Cagniard paths are located in the right-half of the
p-plane. It is clear that the part of the real p-axis 0 < Re (p) < min, ., (1/c,),
Im (p) = 0, satisfies (26). On this part, I1(p, 0, ¢) is real-valued, since the transform-
domain wave constituents result from the integral transformations of partial differ-
ential equations with real-valued coefficients and the wavefield quantities are
real-valued. Further, there i is a complex part that satlsﬁes (26); it has the asymptotic
representation

p~r/<r$i Y hl> as  T—> (27)
AeA

in the upper or lower half of the p-plane. This part is denoted as the body-wave part
of the modified Cagniard path; its representation in the first quadrant of the p-plane
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will be denoted as p = p®(z). Since the left-hand side of (26) satisfies Schwarz’s reflec-
tion principle, the representation in the fourth quadrant is then p = p?(x), where *
denotes complex conjugate. The point of intersection of p = p%(7) and p = p¥'(z) with
the real p-axis follows from the consideration that at that point 7 attains its
minimum value. Let p = p, denote the relevant (real) value of p, then by differentiat-
ing (26) with respect to p,

r—p ) [h/Tp)]1=0 at  p=p,. (28)

Ae A

Since p = p, is necessarily located in between p = 0 and each of the branch points
p=1/c;, Ae Aall T, with A € A must be real at p,), we can write

po = (1/c;) sin (6,) for all leA, (29)
with 0 < 6, < =/2. Equation (29) reflects Snell’s law of refraction. Since

I',(p) = (1/c;) cos (8)) at  p=po, (30
(28) can be rewritten as :

r-lz hytan(0)=0 at p=p,. (31)

cA

Let T = T® at p = p,, then T® follows from (26) and (31) as

T5 = ,z;\[hl/cl cos (0,)] ' (32)

Since T® will be shown to be the arrival time of the body-wave part of the
generalized-ray constituent, (32) is in accordance with Fermat’s principle.

Firstly we replace the integration in (16) by one along the path p = p%(7) and the
integration in (24) by one along the paths p = p¥(t) and p = p¥(z). In view of
Cauchy’s theorem, Jordan’s lemma and the properties of p = p®(z), this is admissible
provided that IT = Il(p; 0, ¢) has either no other singularities than p = 1/c;, A e A
or possible additional branch points (due to reflection against a layer in which the
generalized-ray constituent does not propagate) that are outside the range 0 < p <
min, ., (1/c;). The generalized-ray constituent under consideration then contains
only a body-wave part. If IT = II(p, 0, ¢) has an additional branch point in the
indicated range, the body-wave part of the modified Cagniard path must, depending
on . the location of the point of observation with respect to the source, be supple-
mented:

—in (16) by an integral running from this branch point, and just above its
branch cut, to p = p,, \

—in (24) by a loop integral around the branch cut belonging to this branch
point and joining the points p = p, —i0 and p = p, +i0, where p = p¥(zr) and
p = pB(t), respectively, were tempted to cross the real p-axis. This part of the modi-
fied Cagniard path is the head-wave part, and its contribution to the generalized-ray
constituent is denoted as its head-wave contribution. The body-wave and the head-
wave contributions to the generalized-ray constituent will be further investigated in
Sections 6 and 7, respectively.
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6. THE BoDY-WAVE CONTRIBUTION

The body-wave contributions to the generalized-ray Green’s function in the large-
offset approximations follow from (16), (24) and (26) as

o]

ProrlX, 5) = (2/r)2(2n%) 7 f

t=T

exp (—s7) Im [T1(p%, 0, $)(p®)"/(0p%/0)] dt, (33)

and

[eo]

e(x, 5) = (2m) 712172 f

exp (—s7)
1=TB

x Im {ﬁ(pﬂ, 0, ¢)[ Y rzl(pB)hi]—”z(apB/ar)} dr.  (34)

Ae A

In (34), the parts along p = p®(r) and p = p®(r) have been taken together and
Schwarz’s reflection principle has been used. The Jacobian of the transformation
from p® to 7 follows from (26) as

op®/ot = [f‘— 2D Y l(pB)hz]_l- (35)

AeA

Equations (33) and (34) are the shape of a Laplace transformation over the range
(T®, o). The uniqueness theorem of the Laplace transformation with real, positive
transform parameter then yields the space—time expressions

. 0 for t < TE
T 1) = {(?-/r)”z(Zer)‘1 Im [TIQ%, 0, §)pP)2(0p%/0n)] for  t> T2 OO
and
KO for t < TE
o (x, 1) = | @7 1212 Im (TP, 0, ¢) (37)
LgAF Py l(pB)hx} 1/2(61)’*/(3"1)} for t> T

\

Further, (n/s)"/? corresponds in the time domain to the function t~'/2 for ¢ > 0.
Then the body-wave contribution to the generalized-ray Green’s function follows in
the large horizontal offset approximation from (15) as

0 fi t< T"
or < T°, (38)

G:B << !
woH(x, 1) J (t—1t)"Pgl (x,t)dt’  for t>TB
t'=TB
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as r — o0, and in the large vertical offset approximation from (23) as

0 for t < TE,
WG;B(X, t) ~ t (39)
(t — )" 2g8 (x, t') dt’ for T > T3,
t'=TB .

as Y h, — oo.
AeA

7. THE HEAD-WAVE CONTRIBUTION

Let us consider the head-wave contribution that is due to the occurrence of I', in
(p, 0, ¢), where u ¢ A and 1/c, <min,_, (1/c;). Then the body-wave part of the
modified Cagniard path must be supplemented by the head-wave part (discussed at
the end of Section 5). Along this part too, the parametrization (26) has to be carried
out. The relevant values of p in the upper and lower halves of the p-plane will be
denoted by p = p"(z) and p = p™'(x), respectively. Let t = TH denote the value of 7
at p = 1/c,, then (26) leads to

T =r/c, + ). (l/cﬁ —1/c)"?h;. (40)

AeA

For a head-wave contribution to occur we must have 1/c, < p,, or, using (29),

1/c, < (1/c;) sin (6,) for all A€A. (41)
Let the ‘critical angles’ {04 ; A € A}, with 0 < 6% < n/2, be introduced through

sin (0%) = c,/c,. 42)
Then, (41) implies

sin (0;) > sin (6%), for all AeA, 43)
which in turn implies that

tan (6;) > tan (6%) for all Ae A (44)
Using (44) in combination with (31), the condition 1/c, < p, is then equivalent to

r> > h, tan (69, (45)

1eA

or '

S T - (46)

yen (L= cife)®

Equation (46) is the condition for ‘total reflection’ against an interface of a medium
with wave speed c,, in accordance with Snell’s law of refraction at the interfaces of
the media with wave speed c,(4 € A).
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The head-wave contributions to the generalized-ray Green’s functions in the
large-offset approximations follow from (16), (24) and (26) as

Iiedx, 5) = (2/)*(2n%) 7! JTB exp (—s7) Im [TI(p*, 0, ¢)(p™)"/*(0p"/07)] dx,
47)
and
Jinx, 5) = 2n?) 712172 JTB exp (—s7)
-1/2
x Im {TI(p¥, 0, ¢)[12Ar;1(pﬂ>ha} (@p"/00)} dr. (48)

In (48), the parts along p = p¥(zr) and p = p™'(z) have been taken together, and
Schwarz’s reflection principle has been used. The Jacobian of the transformation
from p" to  follows from (26) as

ap"/ot = [r -pP Y Iy 1(pH)hl]—l- (49)
. AeA

Now, (47) and (48) are the shape of a Laplace transformation over the range (T¥,
T®). As in Section 6 we then obtain the space-time expressions

0 for t<T® and t> T5,

Thor(X, 1) =3 (2/1)?(27%) 71 (50)
x Im [TI(pY, 0, ¢)p™)2(0pH/07)] for TH <t < T3,
and
.

0 for t<TH and t> T5
. 2n?)~ 1212 Tm {ﬁ " 0, 51
gver(x’ t) =< ( ) (p ¢) ( )

X [ Y r;l(pH)hJ_m(apH/ar)} for TH <t<T5
.

AeA

The head-wave contribution to the generalized-ray Green’s function then follows in
the large horizontal offset approximation from (15) as

(0 for t< TH,

t
J (t —¢)"gflx, t) dt’ for TH<t<TE (52
t

wOH(x, £) ~< Jr=1n

TB
f (t —t)"12gH (x, t') dt’ for t> T%
t

'=TH
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as r — oo, and in the large vertical offset approximation from (23) as

(0 for t < TH,

t
WG;H(X, t) ~< \[’=TH

TB
J (t — )" Y2gH (x, ¢') dt’ for t> T®
t

'=TH

(t — )" Vgl (x, t') dt’ for TH <t < T5, (53)

N

as Y ;ea h; — co. Note that for (52) and (53) to occur, (46) must be satisfied, i.e. the
horizontal offset between the source and the point of observation must be large
enough.

8. NUMERICAL IMPLEMENTATION

Except for the simplest case—in the summation in the exponential function in (26)
only a single term is present (see Appendix)—the modified Cagniard path must be
determined with the aid of numerical methods. First, for each given r and {h,;
A € A}, (28) is solved for p,. T® follows using (26). Next, for each given r and {h,;
A € A}, (26) is solved for p® in the range v > T®, and this value is used in the body-
wave contributions. If head-wave contributions are present, T# follows from (40).
Subsequently, (26) is solved for p¥ in the range T <7 < T® for each r and {h;;
4 € A} that are subject to the condition (46), and this value is used in the head-wave
contributions. For the evaluation of the generalized-ray Green’s functions, the inte-
grations occurring in (38), (39), (52) and (53) have to be carried out numerically. This
must be done carefully because of the inverse square root singularities in (t — ')~ /2
near t' = t and in 0p®/dt and dp¥/0t near t = T®. The application of a local stretch-
ing procedure circumvents this difficulty. The final evaluation of the convolution
integrals (5) usually presents no difficulties. Numerical results obtained along these
lines can be found in Roever et al. (1959), Helmberger (1968) and Wiggins and
Helmberger (1974) for the large horizontal offset approximations, and Van der
Hijden (1987) for both the large horizontal offset and the large vertical offset
approximations. In the last reference, the application to anisotropic layered media is
also discussed.

APPENDIX

THE MODIFIED CAGNIARD PATH FOR A GENERALIZED
RAY THAT PROPAGATES IN A SINGLE MEDIUM ONLY

For a generalized-ray constituent that propagates in a single medium only, the sum-
mation in (26) contains a single term. The modified Cagniard path then follows from
an expression of the form

pr + (1/c* — pHPh = 1. (A1)
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The value of p, follows from (cf. (28))

r—p/c —p)""?h=0 at  p=p,. (A2)
Equation (A2) leads to

po = r/c(r® + h?)'2, (A3)
Substitution of (A3) in (A1) yields

T = (r* + h®)?/c. (A4)

Solving p from (A1), we obtain
_ar + ih[e? — (TP

B
7'2 + h2 ’ (AS)
from which the Jacobian of the transformation from p® to 7 is found as
iht[72 — (TB)27~ /2
opPjor = L le — (177 (A6)

Further, let the presence of 7, = 7P, 0) in one of the reflection coefficients be
responsible for the occurrence of a head wave. Then (cf. (40)),

T =r1/c, +:(1/c* — 1/c2)"h. (A7)
Solving p from (A1), we obtain

_ " — h[(TB)2 . 12]1/2

H
p TR (A8)
from which the Jacobian of the transformation from p* to 7 is found:
r+ ht[(TB)? — 2] 12
op¥/or = TR . (A9)
The head-wave contribution is present if ¢, > ¢, and (cf. (46))
ro bl (A10)

(1= fc2)'

From (A6) and (A9) the inverse square root singularities in dp®/dt and 0p™/dt in the
neighbourhood of © = T® are obvious.
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