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The linearized theory of the acoustic radiation generated by impulsive point
sources in a layered fiuid medium is developed. Space-time expressions for the
acoustic pressure and the particle velocity of the acoustic wave field are
derived with the aid of the modified Cagniard method. These expressions have
the form of a time convolution of the strength of the source as a function of
time (‘source signature’) and a properly defined space-time Green’s function
that is“qharacteristic for the type of source (volume-injection source, force
source) and for the configuration in which the acoustic radiation takes place.
The applications to seismics are briefly discussed.

1. INTRODUCTION
Acoustic waves belong to the standard diagnostic tools to probe the subsurface
structure of the earth in the search for fossile energy resources. In the acquisi-
tion of land seismic data we distinguish between surface seismics, vertical
seismic profiling, and cross-borehole seismics. In surface seismics, the acoustic
source is located either on the earth’s surface (for a mechanical vibrator) or
somewhat below, but close to, it (for an explosion source), while the resulting
acoustic wave motion is picked up by a number of acoustic receivers (geo-
phones) placed at the surface of the earth. In this kind of seismics, the offset
between source and receivers is predominantly horizontal, and the interpreta-
tion of the data is mainly based on the acoustic wave reflection against inter-
faces between the successive layers out of which the earth is composed. In
Vertical Seismic Profiling (VSP), again an acoustic source of the type as used
in surface seismics is employed, while the acoustic receivers are now placed in
a borehole. In this kind of seismics, the offset between source and receivers is
predominantly vertical, and the interpretation of the data is mainly based on
the acoustic wave transmission across the successive layers of the earth: In
cross-borehole seismics, the acoustic source (usually of an explosion type) is
placed in one borehole, while the acoustic receivers are placed in an adjacent
one. In this kind of seismics, there is no predominant offset, and the interpre-
tation of the data is based on both the reflection and the transmission proper-
ties of the successive layers of the earth.

In the acquisition of marine seismic data, both the acoustic source (usually
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an airgun) and the acoustic receivers (hydrophones) are situated somewhat
below, but close to, the surface of the sea; they are towed by a surface vessel.
Here, too, the offset between source and receiver is predominantly horizontal.

The problem of seismic prospecting is, in fact, an inverse one: given the
measured data, one is to reconstruct the physical properties of the probed
“structure. In seismic practice, most of this inversion is still carried out by
assuming that the earth’s structure changes in its mechanical properties
(volume density of mass, elastic compliance or stiffness) much more rapidly in
the (downward) vertical direction than in the horizontal direction. Accord-
ingly, one takes a horizontally layered model of the earth as point of depar-
ture. Using this model, the thickness of the layers and their mechanical param-
eters are, roughly speaking, inferred by comparing the measured data with the
theoretically determined response of a number of model configurations of the
indicated type. Hence, there is a need for a versatile and efficient computa-
tional method to generate so-called synthetic seismograms for a wide variety of
structures of the indicated kind. The modified Cagniard method (CAGNIARD
[3], DE Hoop [5,6]) provides such a method (see also ACHENBACH [1}, MIK-
rowitz [11], and AKI and RICHARDS [2]).

The present paper discusses this method for the case of acoustic waves gen-
erated by an impulsive point source located in a layered fluid medium. The
results are also of importance to the case of a layered isotropic solid if the
acoustic wave motion in the solid is predominantly of the compressional type
(as is the case of fluids), which amounts to neglecting, in the first instance, the
influence of shear waves. It is observed, however, that the modified Cagniard
method can without difficulty also incorporate the presence of shear waves (cf.
Dt Hoop and VAN DER HUDEN [7,8,9]), while with the unavoidable increase in
the degree of complexity it can also be applied to arbitrarily anisotropic solid
media (VAN DER HUDEN [13]). Through the method, the total acoustic wave
motion is expressed as a time convolution of the strength of the source as a
function of time (‘source signature’) and a properly defined space-time Green'’s
function that is characteristic for the type of source (volume-injection source,
force source) and for the configuration in which the acoustic radiation takes
place. The space-time Green’s function is expressed as the superposition of
generalized rays (WIGGINS and HELMBERGER [15]). This representation is
exact, and within a finite time interval the number of contributing generalized
rays is finite. The expressions for the acoustic pressure and the particle velocity
of each generalized ray consist of a single integral over a real, finite range, the
integrand of which is an algebraic function of a certain complex ray parame-
ter. The so-called modified Cagniard path maps this complex ray parameter in
a one-to-one way to the real time parameter. For large horizontal and vertical
offsets, simplified asymptotic representations for the space-time Green’s func-
tion can be derived (see ROEVER, VINING, and STRICK [12], WIGGINS and
HELMBERGER [15], and DE Hoor [16]).
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2. DESCRIPTION OF THE CONFIGURATION

We investigate theoretically the acoustic wave motion in a layered fluid the
mechanical properties of which vary in a single rectilinear direction in space
only. This direction is taken to be the vertical one. To specify position in the
configuration we employ the coordinates {x;,x2,x3} with respect to a fixed,
orthogonal, Cartesian reference frame with the origin O and the three mutually
perpendicular base vectors {iy,i,i3} of unit length each. In the indicated order,
the base vectors form a right-handed system. In accordance with the geophysi-
cal conventions, i3 points vertically downwards. The subscript notation for
Cartesian vectors and tensors is used. Lower-case Latin subscripts are used for
this purpose; they are to be assigned the values 1, 2 and 3. Further, the sum-
mation convention applies to repeated subscripts. Whenever appropriate, the
position is also specified by the position vector x=x,i,, with xeR3. The time
coordinate is denoted by ¢, with ¢ R. Partial differentiation with respect to x,
is denoted by 8,; the symbol 9, is reserved for partial differentiation with
respect to ¢. SI-units are used throughout.

The acoustic properties of the fluid are characterized by its volume density
of mass p (which is characteristic for the inertia properties of the fluid) and its
compressibility x (which is characteristic for the elastic compliance of the
fluid). Both p and « are functions of x3. They are independent of x;, x, or ¢,
which makes the configuration shift invariant in the horizontal xi,x,-plane,
and time invariant as well. The real-valued functions p=p(x3) and k=x(x3)
are taken to be positive and piecewise constant. The acoustic wave speed asso-
ciated with p and « is given by ¢=(px)" V2. Their values in the different sub-
domains are listed in Table 1.

TaABLE 1. Nomenclature of the configuration

Vertical Volume Compress- Wave

Domain  coordinate density  ibility speed
of mass

D, —0<x3<Xx31 P K| €
Dy X35-1<X3<X3s Ps Ks cs
Dg 11 X3s<X3<X35+1  PS+1 KS +1 Cs+1
............................. Hesssserersessssensssrunsssnnsernnanastinrstaversstanesirsessesessseressanieranse
Dyp X3ND-1<X3<00  PnD KND CND

An impulsive point source, located at {0,0,x3,5}, generates the acoustic waves.
For our further analysis it turns out to be advantageous to introduce an inter-
face at the level x3 =x3.5, even if the source is located in the interior of one of
the domains. The relevant level has been included already in the nomenclature
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listed in Table 1. The source starts to act at the instant ¢ =0. To determine
the wave motion that is causally related to the action of the source, we put the
state quantities describing this wave motion equal to zero in the time interval
¢ <0 (initial condition). Figure 1 shows schematically the configuration and the
location of the source.

receiver
P1, K D,
\4
X3:1
P2, K D, l
i3
Ps s Ks source Dg
N
7N X3:8
Ps+15Ks+1 Ds +1
PND » KND Dyp
FIGURE 1.

Horizontally layered fluid medium in which acoustic waves are generated
by an impulsive point source

3. BASIC EQUATIONS FOR THE ACOUSTIC WAVE MOTION

The state quantities that characterize the acoustic wave motion are the acoustic
pressure p and the particle velocity v¢. In a subdomain of the configuration
where p and k vary continuously with position, p and v, are continuously
differentiable functions of x and #, and they satisfy the acoustic wave equations

kdp + 3y, =g 3.1)

% + pdm = fi (3.2)

in which ¢ is the volume source density of injection rate and fj is the volume
source density of force. The source densities are assumed to be piecewise con-
tinuous functions of x and #. At the interfaces where p and/or k show a jump
discontinuity, the pressure and the normal component of the particle velocity
are assumed to be continuous.

For the specific case of a point source located at {0,0,x3.5} we have

{q’.ﬁf} = {Q(t)a Fk(t)}s(xl,xbx:i _x3;S) (33)

where {Q(t),Fy(t)} characterize the strength of the source as a function of time
and where 8§ denotes the three-dimensional unit pulse (Dirac distribution). It is
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understood that {Q(f),Fi(¥)} =0 when ¢<<0. When Q0 and F;=0, the
source is of the volume-injection type; such a source is also denoted as an
acoustic monopole source. When Q =0 and F;5%0, the source is of the force
type; such a source is also denoted as an acoustic dipole source.

To solve equations (3.1) - (3.3) and their accompanying boundary conditions
in the configuration discussed in Section 2, we subject them to a succession of
integral transformations that are compatible with the time invariance of the
configuration and its shift invariance in the horizontal plane.

4. THE TRANSFORM-DOMAIN ACOUSTIC WAVE EQUATIONS

First, the acoustic state quantities and the volume source densities are sub-
jected to a one-sided Laplace transformation with respect to time over the
range ¢t>0. To show the notation we give the transformation of the acoustic
pressure:

o0
pxs) = [ exp(—stp(x,t)dt. @.1)
1=0
In (4.1), the Laplace-transform parameter s is taken to be real and sufficiently
large positive. Taking {Q(t),Fi(t)} to be at most of order exp(so?) as t—o0, it
can be shown that also {p(x,?),vc(x,¢)} are at most of this order, and the
corresponding right-hand sides of (4.1) exist for s>s,. Considering (4.1) as an
integral equation for the space-time quantities, given their Laplace transforms,
the solution of this integral equation is unique and vanishes in the interval
<0 on account of Lerch’s theorem (WIDDER [14]). Due to this property, the
selection of the causal quantities in the (x,f)-domain is brought down to select-
ing their bounded counterparts in the (x,s)-domain.
Next, we carry out a Fourier transformation with respect to the horizontal
space coordinates over their entire range (x; ,X,)€R2. Again, to show the nota-
tion, we give the expression for the acoustic pressure:

0 e.2]

Plaay,xs,s) = [ dey [ explis(enxy +anx2)] p(x1,X2,x3,8)dx1. (42)

X, =—00 X=—00
In (4.2), the Fourier-transform parameters {a;,a,} are taken to be real, and i
is the imaginary unit. Note that in terms of the standard Fourier transforma-
tion, {sa;,sa,} are the Fourier-transform parameters. As a consequence, the
inverse transformation is given by

"
p(xl’x25x3’s) = (S/ZW)Z f dal'
a=—00

43)

(¢ o]
f expl—is(x 101 +x20)] play,a3,%3,5)dety.

o= —00

Applying the transformations (4.1) and (4.2) to equations (3.1) and (3.2), tak-
ing into account that 9;——isa;, 8,——isay, and d,—s, and eliminating V1
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‘and ¥, from the resulting equations, we end up with

sYYp + 0393 = ¢’ 4.4

3sp + syY lv; = ]" (4.5)
in which

y = (1/c2+al +a3)2>0 (4.6)
is the vertical slowness,

¢ = (kp)~ V23>0 4.7
is the acoustic wave speed,

Y =v/p (4.9)
is the vertical acoustic wave admittance, and

7 = g+p Vafy Honfy) (4.9)

;=7 (4.10)

are the transform-domain ‘notional source distributions’ of force and volume
injection, respectively.

Equations (4.4) and (4.5) are the transform-domain acoustic wave equations.
They constitute a system of ordinary differential equations with x3 as indepen-
dent variable and {p,73} as dependent variables. At those interfaces between
two adjacent domains with different mechanical properties that are source-free,
the quantities p and 3 are assumed to be continuous. Since, further, the
transform-domain source distributions follow from (3.3) as

(@} = (Q:Fi)8(xs —x55) @.1)
the boundary conditions at the interface x3=x3,5 are on account of (4.4) and
4.5)

~

lim,, ., 3 — litg gy, 73 = O’ (4.12)

limy,js,, p — limes,, p = F' (4.13)
in which (cf. (4.9) - (4.11))

0=0+ p~ Vi Fy +iayFy) 4.14)

F=F 4.15)

are the transform-domain ‘notional strengths’ of the point source at {0,0,x3,5}.

Equations (4.4), (4.5), (4.12) and (4.13) will be solved by expanding, in each
homogeneous source-free subdomain of the configuration, {p,¥3} in terms of
transform-domain wave constituents that in space-time correspond to down-
and upgoing waves.
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-5. THE TRANSFORM-DOMAIN ACOUSTIC WAVE
In the homogeneous source-free subdomain Dy of the configuration, we write

~ o~ ~ ~ ~+ ~ o~ ~— .
(5,53} = (pxv3w) = (v + Pn» 9o + Fyn} with Ne(l,..,ND}  (5.1)
where (cf. (4.4) and (4.5))

v = Wiexpl—syu(xs—xan-1l | (52

Py = Wi expl—syn(xsn—x3)] (5.3)

Viw = £Vpy (54
with (cf. (4.6) - (4.8))

W = (1/c%;+a%+a%)”2 >0 (5.5)

ey = (knpw)”2>0 (5.6)

Yy = vv/on. (.7

The wave {ﬁ;,ﬁ;N} propagates away from the interface x3=x3y— in the
direction of increasing x3; (and hence downwardly), whereas the wave
{pn »v3.n) propagates away from the interface x3=x3y in the direction of
decreasing x5 (and hence upwardly). Since both s>0 and yy>0, the right-
hand side of (5.2) stays bounded as x3—co and the right-hand side of (5.3)
stays bounded as x3—>—oo. Hence, the causality condition is satisfied. The
quantities (W3 ,Wyx ) are the transform-domain wave amplitudes of the down-
and upgoing waves, respectively. In order to satisfy the causality condition in
the outer half-spaces, we have Wi =0 and Wyxp=0.

The different wave amplitudes are interrelated by the boundary conditions
at the interfaces. At a source-free interface we express this relationship via a
scattering description, whereby the amplitudes of the waves propagating away
from the interface are expressed in terms of the amplitudes of the waves prop-
agating toward the interface through the scattering matrix. At the interface
where the source is located, the scattering description is supplemented by exci-
tation terms that are related to the notional source strengths. Let, accordingly,
for any Ne{1,...,.ND —1},

Wy = Syt Wy + Sy~ Wy + X (5-8)

Wi, = S;;*W; + SH "Wy + X+ (-9)
where ! |

Wy = Wiexp(—syydy) for any Ne{2,.,ND —1) (5.10)

_WT ~0 (5.11)

T = 0 (5.12)

denote the so-called modified wave amplitudes, and
dN = X3N — X3N-1 with NE{2,,ND "‘1} (513)

'\
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is the thickness of the layer occupying the domain Dy. For our single source
located at {0,0,x3.5), only X5 and X¢., differ from zero. Substitution of
(5.8) and (5.9) in the boundary conditions (cf. (4.12) and (4.13))

lim,,p,,, Vaw+1 — limyegy, Vav = Q'y (5.14)
lim, ., py+1 — limyggy, Py = Fy (5.15)
leads, with the aid of (5.2) - (5.4) to |
Syt = (Yv— Y1)/ (v +Yy+1) (5.16)
Sy~ = 2Yy+1/(Xy+1+Yn) « (.17
St = 2¥y/(Yy+Yy+1) (5.13)
ST = (Yv+1— )/ Tn+1tYw) (5.19)
and '
X5 = (Q's—Ys+1F's)/(Ys+Ys11) (5:20)
X§s1 = (Q's+YsF's)/(Ys41+Ys). | (5:21)

The expressions (5.16) and (5.19) are reflection coefficients and the expressions
(5.17) and (5.18) are transmission coefficients at the interface x3 =x3,y.

To describe the overall behaviour of the structure, we introduce a matrix
formalism, in which the transform-domain wave amplitudes are arranged in
the (2XND —2)-by-1 wave matrix [W]. Next, we introduce the modified
scattering coefficients as

Sy = Syt exp(—ndy) (5:22)
Sy’ = Sy~ exp(—Yn+1dn +1) (5.23)
Sv'' =S exp(—ywdy) (5.24)
Sy’ = S exp(—vw1dv+1) | (5.25)

and arrange the modified scattering coefficients in the 2(ND —1)-by-2(ND —1)
modified scattering matrix [S]. Finally, the excitation amplitudes are arranged
in the 2(ND —1)-by- 1 matrix [X], in which in our case only the elements Xg
and X3, differ from zero. The relevant arrangements follow from (5.8) and
(5.9) as shown in Table 2 (CISTERNAS, BETANCOURT and LEIVA [4]). The equa-
tion in Table 2 is solved by a Neumann iteration. Carrying out I' steps, with
I'=0, we have

I _ —
1= 3 STIX]+ [SF 1] (5.26)
Y=
as is easily verified. Now, it is observed that each element of [S] contains an
exponential factor of the type occurring in the expressions (5.22) - (5.25). In
the (x,7)-domain these factors correspond to a non-vanishing time delay. Now,
in practice, one only observes the acoustic wave motion in some finite time
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interval, the so-called time window of observation. From a certain value of T’
onward, the last term in (5.26) yields only contributions with a time delay that
exceeds the duration of the time window of observation, and the relevant con-
tribution can be ignored.

TABLE 2. Wave-matrix formalism for the layered fluid

wr ] oo s 1 [ wr
wi 00 5 - wi
Ws SssTo o S5 ws | | Xs
= | = — - +
Wi S;’+ 0 0 S’ W Xén
_ 5t -
WND-—I SND -1 0 0 WND—l
Wip L Svobi 000 L Wip -

Each element of [S][X] contains y interactions at the different interfaces; the
value y=0 yields the direct excitation of the acoustic wave at the source level.
We note that [S]’ contains the Laplace-transform parameter s only through the
exponential functions occurring in (5.22) - (5.25). Further, [X] contains s only
via the source strengths. These properties play a fundamental role in the
transformation back to the (x,#)-domain via the modified Cagniard method.

~ After the elements of the wave matrix have been determined, the transform-
domain expressions for py and vsy follow from (5.2) - (5.4), while ¥,y and
vo.n are, on account of (3.2), (4.1) and (4.2), expressed in terms of PN as

Pin = oF doy py (5.27)
Van = PN' iy Py. (5.28)

With this, the determination of the transform-domain acoustic wave quanti-
ties has been completed. Through the wave-vector formalism, they are
expressed as a superposition of wave constituents that are generated by the
source and then undergo: successive reflections and transmissions at the inter-
faces of the layered structure. Each element of the term [ST'[X] in the right-
hand side of (5.26) is denoted as a generalized-ray constituent of order y. Now,
the transformation back to the space-time domain with the aid of the modified
Cagniard method typically applies to the generalized-ray wave constituents.
The relevant steps will be discussed in subsequent sections. As the general
form of a generalized-ray constituent we take :

W= Q(S)H(ax,az)expl—sx% (en,a)n] (5.29)

A
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where Q=0(s) is representative for the signature of the source, II=1I(e), )
is the (s-independent) factor that describes the coupling of the generalized-ray
constituent to the source as well as the reflections and transmissions it has
undergone at the interfaces, k) is the total (possible multiple) vertical path
length that the generalized ray has traversed in the domain D), v, is the verti-
cal slowness in D, and Ae{l,..,ND}.

6. THE TRANSFORMATION BACK TO THE SPACE-TIME DOMAIN
The first step in the transformation back to the space-time domain consists of
applying (4.3) to (5.29). This yields

w(x,s) = (s/ZTr)ZQ(s) 7 d.al-

[:

[ Ten,aexpl—sGiarx; + ioyx; + AEA (a1, a2)hp)lda. (6.1)

aG=—w
Next, we rewrite (6.1) as
Wx,5) = s20(5)G(x,5) (6.2)

where

G(x,5) = 2m) 2 7 day-

a;— —00

0
[ M(ay,ap)expl—sionxy + iopxs + )‘%YA(al,az)hx)]daz 6.3)
=—00 (=1
is by definition the Green’s function of the generalized ray. The modified
Cagniard method now aims at rewriting, somehow, (6.3) as

0
G(x,5) = [ exp(—smwC(x,7)dr, (6.4)
=T
where 7 is a real variable of integration, T7>0, and where wC(x,7) does not
depend on 5. Suppose that this has been achieved, then the uniqueness theorem
of the Laplace transformation with real, positive, transform parameter (Lerch’s
theorem; see WIDDER [14]) ensures that

0. when 1 <T,

Gx.1) = {w‘\;(x,t) when >T. (6.5)

Additional properties of the Laplace transformation then lead to the final
space-time result

0 when 1 <T.
wx,t) = ; ' (6.6)

8? [ @@—mwC(x,dr when t>T.
=T



Acoustic waves in layered fluids 121

Equation (6.6) shows that T is the arrival time of the generalized-ray consti-
tuent at the point of observation.

In rewriting (6.3) in the form (6.4) several steps are carried out; they are
characteristic for the modified Cagniard method. First, the variables of integra-
tion {a;,a,} in (6.3) are transformed into {p,q} via the substitution

@ = —ipcos(9) — ¢sin(¢) ©.7)
o = —ipsin(g) + g cos(@) 68)

where ¢ follows from the polar-coordinate specification of the point of obser-
vation in the horizontal plane, i.e. from

X1 = rcos(¢), x; = rsin(¢) (6.9)

with r=0 and 0<¢<2m, pel and qeR. Since dajda,=i"'dpdq and
iayxy +iayx, =pr, we have

G(x,5) = (4r*i)”! f dgq / I(p,q) expl—s(pr+ 2D (610
g=— P—_l 0

where IT results from IT and ¥ Y\ from y\ under the substitution (6.7) - (6.8). In

the integration with respect to p we next continue the integrand analytically

into the complex p-plane, away from the imaginary axis. In this process we

encounter the singularities in Il and ¥,. In view of (5.16) - (5.21) and (5.5),

these are the branch points of ¥, i.e. p===S)(g), where

Sy = (1/ct +gH? > 0. | (6.11)

To make the analytic continuation single-valued, we introduce branch cuts
along Im(p)=0, |[Re(p)|=S). In the cut p-plane, we then have Re(y,)>0.
Further, it can be shown that the denominators in (5.16) - (5.21) never vanish
in the finite part of the p-plane; hence, no poles occur.

Keeping ¢ real, the integration in the complex p-plane is now carned out
along a path along which

pr+ AZA NEPh =7 (6.12)
where 7 is real and positive; such a path is denoted as a modified Cagniard
path. Since r=0, and Im(y,)<<0 and >0 in the upper and lower halves of the
complex p-plane, respectively, the modified Cagniard paths are located in the
right-half of the p-plane. It is clear that the part of the real p-axis
O0<<Re(p)<miny A [Sr(g)], Im(p)=0 satisfies (6.12). Further, there is a complex
path that satisfies (6.12); it has the asymptotic representation

- p ~1/(FiQ hy) as T (6.13)
AeA

in the upper/lower half of the p-plane. This part is denoted as the body-wave
path; its representation in the first quadrant of the p-plane will be denoted as
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p=p?B(r,q). Since the left-hand side of (6.12) satisfies Schwarz’s reflection
principle, the representation in the fourth quadrant is then p =p®*(r,q), where
* denotes complex conjugation. The point of intersection of p=p?® with the
real p-axis follows from the consideration that at that point 7 attains its
minimum value. Let p=po(¢g) denote the relevant (real) value of p, then we
have

r—p }E\(hx/%\) =0 atp = po(g). : (6.14)

Since p=pg(g) is necessarily located between p=0 and each of the branch
points p =S,(q) (all ¥y with Ae A must be real at po), we can write

Po(q) = Sa(q) sin[\(q)] for all A€ A, (6.15)
with 0<<6)(g)=<m/2. Since, then,

= Sa(g)cos[h(g)] at p = po (6.16)
equation (6.14) can be rewritten as

r— )\EA hy tan[f\(q)] = 0 atp = po(q). (6.17)
Let r=T%(q) at p=po(q), then T2 follows from (6.12) as

Tg) = 3, (S /coth @) 6.19)

In the first instance we replace the integration along pel in (6.10) by an
integration along p=p®(r,q) and p=p®*(s, g). In view of Cauchy’s theorem,
Jordan’s lemma, and the properties of p =p®(r,q), this is admissible provided
that II=II(p,q) has either no other singularities than {p=S,(g),A€A} or
additional branch points (due to reflection against a layer in which the
generalized-ray constituent under consideration does not propagate) that are
outside the range 0<<\p<<mimy5[SA(¢)]. The generalized-ray constituent under
consideration then only contains a body-wave part. If II=1II(p,q) does have an
additional branch point in the indicated range, the body-wave part of the
modified Cagniard path must, depending on the location of the point of obser-
vation with respect to the source, be supplemented by a loop integral around
the branch cut belonging to this branch point and joining the points
p=po(g)—i0 and p=po(q)+i0, where p=p®*(r,q) and p=p*(s,q), respec-
tively, were tempted to cross the real p-axis. This part of the path of integra-
tion is denoted as the head-wave part, and its contribution to the generalized-
ray constituent is called the head-wave contribution. The body-wave and the
head-wave contributions to the generalized-ray constituent will be investigated
in Sections 7 and 8, respectively.
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7. BODY-WAVE CONTRIBUTION TO A GENERALIZED-RAY CONSTITUENT

The body-wave contribution to a generalized-ray Green’s function follows from

(6.10) and (6.12) as

G xs) =R [ dg [ exp(—s)Im[Ilp®,q)@pP/dnldr (D)

g=—w =T°()

where the parts along p=p®(r,q) and p®*(r,q) have been taken together,

Schwarz’s reflection principle (that also applies to II) has been used, and

where the Jacobian of the transformation from p? to 7 follows from (6.12) as
opP/dr = [r—p® Z (/v (12)

AeA :
Next, we interchange in the right-hand side of (7.1) the order of the integra-
tions. This yields

- e Q°(n _
sy = [ exp(—sdr@r?) [ ImTipPq)@pt/anldg (1)
=10 =0

in which g=QP2(r) is the inverse of the mapping r=T?(q) for ¢=0. (Note
that, in view of (6.12), T3(q) is an even function of g, while differentiation of
the left-hand side with respect to g shows that 9, T%(¢)>0 if ¢>0). Now, (7.3)
is of the form of (6.4) and hence

0 when ¢ <T2(0),
wB(x,t) = A (7.4)
'™ -
@)t [ Im{IIp®,q)@p®/3r)ldg when t>T7(0).
- g=—0"(

With this, the body-wave contribution to the generalized-ray constituent fol-
lows as

0 when ¢ <T2(0),
wi(x,t) = 1 (7.5)

t
2 [ Qu—mwP(x,ndr when r>T?(0).
L r=T%0)

8. HEAD-WAVE CONTRIBUTION TO A GENERALIZED-RAY CONSTITUENT

Let us consider the head-wave contribution that is due to the occurrence of
Y. =7u(p.q) in II=II(p,q), where pe(l,...ND}, but pg¢A. Then, the integral
along the body-wave contour must be supplemented by a loop integral around
the branch cut associated with ¥, and joining the points po(g)—i0 and
polq)+i0 where p=p®*(r,q) and p=pP®(r,q), respectively, were tempted to
cross the real axis. Along this loop, too, the parametrization (6.12) has to be
carried out. The relevant values of p in the upper and lower halves of the p-
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plane will be denoted by p=pf(r,q) and p=p”*(r,q), respectively. Let
T=T"H(g) denote the value of 7 at p=S,(q), then (6.12) leads to

T¥(g) = Sulgr + 3 1@ — Sp@I"h 8.1)
Now, for a head-wave contribution to occur, we must have §,(¢q)<<po(q), or,
using (6.15),

Su(g)<S\(g)sin[f)(g)] with AeA. (8.2)

For those values of g where (8.2) is satisfied, we introduce the ‘critical angles’
{6%(¢q); Ae A}, with 0<<B{(g)<w/2, through

sm[B4(9)] = S,(g)/Sx(9) 8.3)
Then (8.2) implies

sinf6(¢)]>sin[6X(q)] (8.4)
which in its turn implies

tan[0(¢)1>tan[0%(9)} (8.5)

Using (8.5) in combination with (6.17), the condition S,(q)<<po(q) is then
equivalent to

r> 3y tanlth (o) (8.6)
or
> 3y —SH@/$H@ .

xeh (1= Sk(@)/ SR (@]
When ¢=0, (8.7) reduces to
CA/C“
> h
St

which is the condition for ‘total reflection’ against an interface of the layer D,
in accordance with Snell’s law of refraction at the other interfaces. Further,
since

(8.9)

Sau(@) ~ lg| + ®g™") as |g]>o0 (8.9)
equation (6.15) leads to
br(g) ~ © + &g™") as |g|>c0 (8.10)
and hence
- polg) ~ |g| sin(®) + &g ") as |g|—>c0. 8.11)

Since sin(@)<1, we always have po(q)<S,(¢) from a certain value of |g|
onward, and hence (8.2) is, beyond this value, no longer satisfied. Let (8.2) be
satisfied in the range —Q,<¢<Q,, then the head-wave contribution to the

\
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generalized-ray Green’s function can be written as

~H Qn TB(q) -

G (xs)=@™" [ dq / exp(—sH)Im[IIp?,q)@pH /00)dr  (8.12)
q=- Qn T= T”(‘l)

where the parts along p=p%(r,q) and p=p™*(r,q) have been taken together,

Schwarz’s teflection principle has been used, and where the Jacobian of the

transformation from p¥ to  follows from (6.12) as

apt /e = [r=p" 3 (/A 8.13)

Next, in the right-hand side of (8.12) we interchange the order of the integra-
tions. This yields

n 7°(0) 0" (r) _
sy = [ exp(—sndr @) [ ImiIpT,q)@p"/8nldg (3.14)
r=T"(0) g=-0"
T, -0°(m o'm  _
+ [ exp(—sndr 2r*) 7] [+ [ NMmlII(pT,q)0p"/dn)dg
=T"(0) g=—0"®» ¢=0"(

in which ¢=Q# (1) is the inverse of the mapping 7=T"(g) for 4=0. (Note
that, in view of (6.12), T#(g) is an even function of ¢, while differentiation of
the left-hand side with respect to ¢ shows that 3,7"(g)>0 if ¢>0.) In the
7,¢-plane, the curves 1=T"(¢q) and 7=T H(g) have the point g=Q,,7=T, in
common. This follows from the definition of @, and T,. At this point they
have, however, also a common tangent, as follows by differentiation of (6.12)
with respect to ¢ and taking into account (6.14). Now, (8.14) is of the form of

(6.4) and hence
0 when ¢t <TH(0),
' Q" _
e Im{TL(p#,q)(pT/d7)ldg  when TH(Q)<T*(0),
g=—0"m

wOH(x ) = 3 (8.15)

-0’( 0"(m —
e [+ [ NmIIp¥,q)@pT/9m)dg
g=-0"@ ¢=0°0
L '\
With this, the head-wave contribution to the generalized-ray constituent fol-
lows as '

when T2(0)<7<T,.

0 when ¢t <TH#(0),

wHx, =1 (8.16)
|82 [ o@-nwSH(xndr  when 1>TH(0).
Ioe=T0) ‘
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Note that, for (8.16) to occur, (8.8) must be satisfied, i.e. the horizontal offset
between source and receiver must be large enough.

9. NUMERICAL IMPLEMENTATION

Except for the simplest case where in the summation in the exponential func-
tion in (5.29) only a single term is present, the modified Cagniard path must
be determined with the aid of numerical methods. First, for each g and given r
and {hy;A€A}, (6.14) is solved for py. Using (6.12), the mappings 7=T>(g)
and g=Q%(r) follow. Next, for each ¢ and given r and {hy;AeA}, (6.12) is
solved for p® in the range 7>T>(g), and this value is used in the body-wave
contributions. If head-wave contributions are present, (8.1) is used to obtain
the mappings 7=T#(g) and ¢=Q%(r). Subsequently, (6.12) is used to con-
struct the value of p¥ that is to be used in the head-wave contribution. For the
evaluation of the generalized-ray Green’s functions, the integrations occurring
in (7.4) and (8.15) have to be carried out numerically. This has to be done
carefully because of the inverse square root singularity, due to dp/dr, at the
end points of the interval of integration. The application of a local stretching
procedure circumvents this difficulty. The final evaluation of the convolution
integrals (7.5) and (8.16) presents usually no difficulty. Numerical results
along these lines can be found in DE Hoop and VAN DER HUDEN [7,8,9], VAN
DER HUUDEN [13], and DRUKONINGEN and FOXKKEMA [10].
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APPENDIX

The modified cagniard method for a generalized
ray that propagates in a single medium only

For a generalized-ray constituent that propagates in a single medium only, the
summation in the exponential function in (5.29) contains a single term only.
The modified Cagniard path then follows from an expression of the form

pr+1[8@F —p1?h =1 (A1)

in which
S(q) = (1/c2+¢2)2>0. (A2)

The value of po=po(q) then follows from (cf. (6.14))

r— pIS@P — pI"Vh = 0. (A3)
Equation (A.3) leads to

po = 1S(g)/(r* +hH2, (A4)
Substitution of (A.4) in (A.1) yields

T2 = T3(q) = S(g)(r* +h%)2. (A.5)
Using (A.2), it follows from (A.5) that

Q% = Q¥(r) = [P/(?+h*) — 1/ (A.6)
Solving p from (A.1), we obtain

PLE 7r +lh[’7: 2‘_33(4)2]“2 (A7)
from which the Jacobian of the transformation from p® to 7 is found as

apB /or = r{\-ihf[i;_l_T:Z(Q)z]"”z , (A.8)

Let, further, the presence of v, in one of the reflection coefficients be responsi-
ble for the occurrence of a head wave. Then (cf. (8.1)),

TH =TH(g) = Su(gr + (1/¢t=1/c2)"*h (A9)
in which

S, = 1/ +¢H)"2 (A.10)
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“Using (A.9) and (A.10), it follows that

Q" = QH(r) = {[r/r— (/2 =1/ 2h/rP—1/cE 32 (AD)
Solving p from (A.1), we now obtain ‘

PO 1 el O) et

P r*+h?
from which the Jacobian of the transformation from p# to 7 is found as
r+hdT8(qP -7

r*+h?

The end point of the g-interval in which a head-wave contribution is present,
follows as

Q, = [(1/c2=1/ci)y?/h*—1/c2 ]2 (A.14)
which leads to '
T, = (r*+h?)(1/c*—1/c3)*/h. (A.15)

(A.12)

apH/or = (A.13)



