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Time-domain reciprocity theorems of the time-convolution and the time-correlation type for
acoustic wave fields in linear, time-invariant, and locally reacting fluids are discussed.
Inhomogeneity, inertial anisotropy, and arbitrary relaxation effects in inertia and
compressibility properties, both of the active and the passive type, are included. The theorems
also apply to the “equivalent fluid model” of a solid in which only compressional waves are
considered and shear is neglected. The analysis is entirely carried out in space-time, without
intermediate recourse to the frequency or the wave vector domains. The application to inverse
source and inverse constituency (or inverse profiling/scattering, or imaging) problems is

briefly indicated.
PACS numbers: 43.20.Bi

INTRODUCTION

A wave field reciprocity theorem interrelates, in a spe-
cific manner, the quantities that characterize two admissible
physical states that could occur in one and the same domain
in space-time. As far as acoustic wave fields are concerned,
Lord Rayleigh' is commonly credited as the first to derive a
reciprocity theorem; it applies to harmonic sound vibrations
in a homogeneous, ideal fluid. (He denotes it as Helmholtz’s
theorem, but gives no reference to Helmholtz.) A clear dis-
tinction between convolution- and correlation-type reci-
procity relations is made by Bojarski,” who has presented the
time-domain reciprocity theorems for homogeneous, iso-
tropic, and lossless media, both for acoustic wave fields and
for electromagnetic fields. In this connection, he introduced
the concept of an “effectual” (or “effectal””) wave field as
the time-reversed counterpart of a “causal” wave field, and
emphasized the relationship between time-advanced and
time-retarded wave fields. The application of reciprocity
theorems to inverse scattering is reviewed by Fisher and
Langenberg,3 where an extensive list of references to earlier
papers also can be found.

The present investigation deals with time-convolution
and time-correlation reciprocity theorems for acoustic wave
fields in time-invariant configurations that are linear and
locally reacting in their acoustic behavior. As regards the
space-time geometry in which the two admissible states oc-
cur, this implies that this geometry is the Cartesian product
D X R of atime-invariant spatial domain DC R ® and the real
time axis R. Further, the constitutive parameters of the
fluids present in the two states are time invariant and inde-
pendent of the wave field values. No further restrictions are
imposed.

The position of observation in R * is specified by the co-
ordinates {x,x,,x,} with respect to a fixed, orthogonal, Car-
tesian reference frame with origin O and the three mutually
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perpendicular base vectors {i,i,i,} of unit length each. In
the indicated order, the base vectors form a right-handed
system. The subscript notation for Cartesian vectors and
tensors in R ® is employed and the summation convention
applies. The corresponding lowercase Latin subscripts are to
be assigned the values {1,2,3}. Whenever appropriate, the
positon vector will be denoted by x = x,,i,. The time coordi-
nate is denoted by #. Partial differentiation is denoted by d, d,,
denotes differentiation with respect to x,, and d, denotes
differentiation with respect to ¢.

The reciprocity theorems will be derived for bounded
domains D. In the analysis the boundary dD of D also occurs,
as well as the complement D' of the union of Dand dDin R >.
The unit vector along the normal to dD is denoted by v; it is
oriented away from D (Fig. 1).

|. SOME PROPERTIES OF THE TIME CONVOLUTION
AND THE TIME CORRELATION OF SPACE-TIME
FUNCTIONS

In this section, we present the properties of the time
convolution and the time correlation of space-time functions
as far as they are needed in the derivation of the reciprocity
theorems. Let f; = f, (x,2) and f, = f,(x,?) betwo transient
space-time functions. By this we mean that the functions are
absolutely integrable on the entire t€R. Then, the time con-
volution of f; and f, is defined as

C(fi,f%,7) = J LxOLxT—)dt
teR

= f Si(x,7 — ) fh(x,0)dt
teR

= C( fo f1:X%,7T). (N

Equation (1) shows that the time convolution is symmetri-
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FIG. 1. Time-invariant config-
oD uration to which the reciproc-
ity theorems apply.

calin f, and f,. The time correlation of f; and f, is defined
as

R(fi, f5%,7) = f Fi(x,0f(x,t — 7)dt
teR

= f Si(x,t + 1) f(x,0)dt
teR
=R( fo, f1;X, — T). (2)

Equation (2) shows that the time correlation is not symmet-
rical in f; and f,.
Now, let f denote the time reverse of f; i.e.,

fxn) =fx, = 1. ¥
Then, it follows from Eqgs. (1)—(3) that

R(fi ) = CUfy, F%,7). (4)
Using Eq. (1), we further obtain the properties

C(Fr %) = Cfou J%,T) (5)
and »

C(foo fx) = CULu [5%,7). (6)

For the time derivative of the time convolution, the rules
3.C(fo, fux,1) = C(f1,d, frx.7) = C(3, f1, [5%,7)
N

apply. In view of the property
3,f=—a./ ©)

the time derivatives of the time correlation are taken care of

by using Eq. (4) in conjunction with Eq. (7), ie.,

C?TC( fl’ .7‘2I;X,T) = C(at fl’ﬂ;xfT) = - C( fl: 8—172;)(,7')-
(9)

For the incorporation of relaxation effects in the reciprocity

theorems, we also need the time convolution of three space-
time functions. For this, either of the definitions

C( .fl; f‘29f‘3;x,7') == C(ﬁsc( f‘z,f;,);X,T)

= C(C(fl’fz)’f;ﬁx"r) (10)
holds.

In view of its simpler properties, the time-convolution
concept is used throughout the entire subsequent deriva-
tions, i.e., both for the time-convolution and for the time-
correlation reciprocity theorems.
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Il. PROPERTIES OF THE ACOUSTIC WAVE FIEL.D IN
THE CONFIGURATION

In each subdomain of the configuration where the
acoustic properties vary continuously with position, the
acoustic wave field quantities are continuously differentiable
and satisfy the equations

— 0+, =g, (11)
akp+d)k = fis (12)
where

p = acoustic pressure (Pa),

v, = particle velocity (ms™"),

@ = dilatation rate (s,

&, = mass flow density rate (kg m~?s7?),

g = volume source density of injection rate (s~ b,
J. = volume source density of force (N m~?).

Equations (11) and (12) are supplemented by the constitu-
tive relations. For a general linear, time-invariant, locally
reacting fluid these are, in their linearized version,

A(x,t) = — 9, Jw ¢ (x,7)p(x,t — 7)dT, (13)

@k(xj)::B,J‘ Vir (XTI, (X, —7)d7,  (14)

where

¢ = fluidity relaxation function (Pa—!'s™1),
Vi, = inertia relaxation function (kg m™>s™ L,

Using the notation of Eq. (1), Eqs. (13) and (14) can be
rewritten as

0(x,t) = —3,C(p;x,1), (15)
¢k (X9t) - a,C(Vk,r,Ur;x,f), (16)

respectively. In Egs. (13) and (14), inhomogeneity, anisot-
ropy, and relaxation of the fluid are included. The inertial
anisotropy in Eq. (14) is introduced to make the theorems
also applicable to acoustic waves in solids where only com-
pression in the stress behavior is considered and shear is
neglected; inertial anisotropy manifests itself, for example,
in the macroscopic seismic behavior of rock with micro-
layering (cf. Schoenberg®) and the macroscopic Biot theory
of the propagation of acoustic waves in solids with fluid-
filled pores (cf. Biot®). In this respect, it is noted that Lord
Rayleigh® has considered this type of anisotropy in connec-
tion with the mechanical ether theory for the propagation of
light in crystals.

If {¢,7:,} (x,7) = 0 when 7 <0, the fluid at x is, to use
the terminology of linear, time-invariant systems, causal. If

$(x,7) =Kk(x)6(7), (17)
yk,r(xﬂ') =pk,r(x)5(7—)’ (18)

where 8(7) is the unit impulse (Dirac distribution), the flu-
id is instantaneously reacting, and « and p,, are its com-
pressibility and its (tensorial) volume density of mass, re-
spectively. If {4,7,,}(x,7) =0 when 7>0, the fluid is
anticausal or effectual. From an energy point of view, a fluid
for which {¢,y, .} (x,7) 0 when 7> 0 is dissipative, a fluid
for which Egs. (17) and (18) hold is lossless, and a fluid for
which {¢,7,,}(x,7) #0 when 7 <0 is active. A fluid that is
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either dissipative or lossless is also denoted as passive. For
our reciprocity theorems, no specific type of relaxation func-
tion is presupposed. Conservation of energy of course re-
quires an acoustically active fluid to be stimulated, through
the constitutive parameters, by some other physical phe-
nomenon (for example, by the passage of light through it).

1t is assumed that ¢ and y,, are piecewise continuous
functions of position. At an interface between two different
fluids, they jump by finite amounts. Across such an inter-
face, the acoustic pressure and the normal component of the
particle velocity are continuous. If an acoustically impen-
etrable object is present, either the pressure (ata void) or the
normal component of the particle velocity (at an immovable
rigid object) has zero value at its boundary. Through the
relevant boundary conditions, the presence of either inter-
faces or impenetrable objects is accounted for.

The two states that occur in the reciprocity theorems
will be denoted by the superscripts “a” and “b,” respective-
ly. It is noted that the two states can apply to different source
distributions and to fluids with different properties, but they
must be present in one and the same domain in space-time.

l. THE RECIPROCITY THEOREM OF THE TIME-
CONVOLUTION TYPE

The reciprocity theorem of the time-convolution type
follows upon considering the interaction quantity
C(p°vix,7) — C(p°v5;x,7). Using Egs. (11) and (12) for
each of the two states, we obtain

3, Cpwlx,r) = C(f& — DL,u8:x,7)

+ C(pg" + 0°x,7) (19
and
3, C(pP i x,m) = C(fL — dL,vex,7)
+CP" + 0°x,7). (20)
Now, in view of Egs. (15) and (16), we have
C(®},05%,7) — C(DFvp5%,7)
= 8.C(7%, — Virtittsx,7) @1
and
Ch0x,7) — C(p%0"x,7) = 9,C(4" — ¢°p"p"x,7),
(22)

where Eq. (7) has been used. Subtracting Eq. (20) from Eq.
(19) and employing Egs. (21) and (22), we arrive at

3, [Cwvrsx,m) — C(phwisx,7) ]
=3,.C(yi, — Vir:ViVisX,T) \
—3,C(¢" — ¢°p"p"x,7)
+ C(Sfevix,m) + C(p°g"x,7)
= C(frvExT) — CPg5x,T). (23)

Equation (23) is the local form of the time-convolution reci-
procity theorem. The first two terms at the right-hand side
are representative for the differences in the properties of the
fluids present in the two states; they vanish at those locations
where 7%, (x,7) = 72, (x,7) and ¢"(x,7) = ¢“(x,7) for all
7eR. In case the latter conditions hold, the two media are
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denoted as each other’s adjoints. Note in this respect that the
adjoint of a causal (effectual) fluid is causal (effectual),
also. The last four terms at the right-hand side of Eq. (23)
are associated with the source distributions; they vanish at
those locations where no sources are present. Upon integrat-
ing Eq. (23) over the subdomains of D where both sides are
continuously differentiable, applying Gauss’ divergence
theorem to the resulting left-hand sides, and adding the re-
sults, we obtain

f v [C s, r) — C(pwix,r) |dA
xedD

— [ 10.cth, — vruvtatxo
xeD
- arc(¢b - ¢0,Paspb§xﬂ') ]dV
+ f [C(fivrx,T) + C(pg°x,7)
xeD

— C(fhvix,1) — C(phgx,7) ]dV. 24)

Equation (24) is the global form, for the domain D, of the
time-convolution reciprocity theorem. Note that the contri-
butions from interfaces between different fluids present in D
have canceled and that the contributions from the bound-
aries of acoustically impenetrable objects present in D vanish
in view of the boundary conditions stated in Sec. II.

Iv. THE RECIPROCITY THEOREM OF THE TIME-
CORRELATION TYPE

The reciprocity theorem of the time-correlation type
follows upon considering the interaction quantity
R(p°v8:x,7) + R(p%vi;x, — 7). On account of Egs. (4)
and (5), this interaction quantity is equivalent to
C(p°,0%;x,7) + C(p°v5;x,7). Using Egs. (11) and (12) for
each of the two states, we obtain

3 C(p°0x,m) = C(f — DL,Bhsx,7)
+C g+ 0%, (25)
and
3 CF i) = C(FY — b2 uex,m)
+ C(P%q° + 0%x,7). (26)
Now, in view of Egs. (15) and (16), we have
— C(BL 0 x,7) — C(DY,Thsx,7)
=8,C(Vh, — VirVisDrsXT) 27
and
Cp%07x,m) + C(F%0%%,7)
=3,C(¢" — ¢“p°P'x,1), (28)

where Eq. (9) has been used. Adding Eq. (26) to Eq. (25)
and employing Egs. (27) and (28), we arrive at

3 [CWw%hx,7) + C(F°vis%,7) |
=3,C(Vi, — Vi Vi0iX,T)
+3,C(8" — ¢°p"5"%,7)

+ C(f4.005x,7) + C(p°\"%,7)

+ C(fo 8%, 1) + C(Phg°x,T). (29)
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Equation (29) is the local form of the time-correlation reci-
procity theorem. The first two terms at the right-hand side
are representative of the differences in the properties of the
fluids present in the two states; they vanish at those locations
where 72, (x,7) = V5, (x,7) and #°(x,7) = ¢*(x,7) for all
7eR. In case the latter conditions hold, the two fluids are
denoted as each other’s time-reverse adjoints. Note in this
respect that the time-reverse adjoint of a causal (effectual)
fluid is an effectual (causal) one. Upon integrating Eq. (29)
over the subdomains of D where both sides are continuously
differentiable, applying Gauss’ diverence theorem to the re-
sulting left-hand sides, and adding the results, we obtain

f v [CQDsx,7) + C(P"visx,7) |dA
xedD

= [57'C(7_/Z,r - Vf,k ’UZ,E[:SX’T)

xeD

+9,C(8" — ¢ p°p'x,7) dV
+ f [C(fa.085%x,7) + C(p°g"%,T)
xeD

+ C(Fv%,7) + C(Bhgx,m) av. - (30)
Equation (30) is the global form, for the domain D, of the
time-correlation reciprocity theorem. Note that the contri-
butions from interfaces between different fluids present in D
have canceled and that the contributions from the bound-
aries of acoustically impenetrable objects present in D vanish
in view of the boundary conditions stated in Sec. IL

V. APPLICATION TO INVERSE PROBLEMS

In this section, we briefly outline the relevance of the
reciprocity theorems given in Egs. (24) and (30) to inverse
problems. In this respect, we distinguish between inverse
source problems and inverse constituency problems. In an
inverse source problem, the aim is to reconstruct the volume
source densities of the injection rate and force of acoustic
sources present in some inaccessible domain in space from
the measured values of the emitted acoustic wave field in
some other domain in space. The constitutive parameters of
the fluids in which the acoustic radiation takes place are
assumed to be known. In an inverse constituency problem
(also denoted as inverse profiling or imaging problem), the
aim is to reconstruct the distribution of constitutive param-
eters in some inaccessible domain in space by irradiating the
configuration by known acoustic sources located in the em-
bedding and measuring the acoustic wave field response in
some other domain in the embedding; the constitutive pa-
rameters of the embedding are known. The two types of
problems will be discussed separately.

A. Inverse source problem

In the inverse source problem, the acoustic wave field in
state “a”’ is taken to be one that is radiated by the unknown
source distributions {g7, fT}. Let D TCR? be their spatial
support. The radiated wave field {p7,v;} is measured in
some accessible observational domain D ®C R *. The inter-
section of D Tand D %is empty (Fig. 2). State “b ”’ is taken to
be a computational state, denoted as the “observational”
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FIG. 2. Configuration illustrative for the inverse source problem: Unknown
acoustic sources radiate in D 7; the acoustic wave field is measured in D @
and on S, :

one. The corresponding wave field {p®,v2} that would be
radiated by known sources with distributions {g®, f} is
computed and its interaction with the measured acoustic
wave field in D @ is evaluated. In general, one could say that
the introduction of the observational state is representative
of the processing of the measured data. Since only the inter-
action in D © is considered, it makes no sense to take the
support of {¢", £} larger than D . Finally, the fluid in the
observational state is taken to be either the adjoint [for the
application of Eq. (24) ] or the time-reverse adjoint [for the
application of Eq. (30)] of the one in which the unknown
sources radiate.

The reciprocity relations given in Egs. (24) and (30)
are now applied to the domain interior to the closed surface
S® that is taken such that DT and D are located in its
interior. Then, Eq. (24) leads to

J [ — COfEvisxm) + Cphgx,m) ]dV
xeD T

= [ — C(fvixT) + CpTgtx)]dV

xeD

= v [CpTodx,m) — C(p™uisx,7) |dA4,

xeS%
(31)
and Eq. (30) leads to
f [ = T — Cg ) 1AV
xeD T
= [C(FEvixT) + CpTgHxT) ]dV
xeD ¢
— vi [CPT0x,7) + C(p™visx,7) |dA.
xeS 9
(32)

In Egs. (31) and (32), the left-hand sides contain the un-
known quantities, while the right-hand sides are known pro-
vided that the necessary measurements and evaluations are
also carried out on.S . A solution to the inverse source prob-
lem is now commonly constructed by taking for {¢®, f} a
sequence of NV linearly independent distributions with spatial
support D @ and fixed, preferably broadband, time behavior
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(for example, an impulse). The corresponding sequence of
acoustic wave field distributions {p®, v} is computed. Next,
the unknown source distributions {g”, f7} are expanded
into an appropriate sequence of M linearly independent
space-time expansion functions with spatial support D 7; the
corresponding expansion coefficients are unknown. Substi-
tution of the results in Egs. (31) and (32) and evaluation of
the relevant integrals lead to systems of linear algebraic
equations with the source expansion coefficients as un-
knowns. When M = N, the system can be solved, unless the
pertaining matrix of coefficients is singular. However, even if
this matrix is nonsingular, it turns out to beill-conditioned in
most practical cases. Therefore, one usually takes M > N,
and a best fit of the expanded source distributions is obtained
by the application of minimization techniques.

At this point, some more must be said about the role of
S ©. In practice, one is mostly interested in causal media.
Then, it is advantageous to choose the wave fields in Eq.
(31) to be causal as well. Given the fact that S ® surrounds
all sources, the integral over S'® can be replaced by an inte-
gral over any sphere .S, with radius A and center at the
origin such that S, surrounds . [This follows from the
application of Eq. (24) to the domain in between S, and
S ] However, for sufficiently large values of A, the causal
wave field on S, is zero, since it propagates with a finite
maximum speed away from the sources. Hence, under these
circumstances, the surface integral in the right-hand side of
Eq. (31) vanishes. A similar argument does not apply to the
surface integral in the right-hand side of Eq. (32), since in
Eq. (32) effectual (or anticausal) wave fields are involved in
all cases. This difference in the roles of the surface integrals
in Egs. (31) and (32) has been pointed out by Bojarski.”

B. Inverse constituency problem

In the inverse constituency problem, the acoustic wave
field in state “a” is taken to be the one that irradiates the
configuration. Let D ‘C R ? be the spatial support of the irra-
diating sources with known distributions {q, % } and let the
corresponding acoustic wave field be {p’,v }. This wave field
is measured in some accessible, observational domain D ¢
CR 3, Further, let D*CR ? be the (inaccessible) domain in
which the constitutive parameters are unknown. The inter-
sections of D* and D "and of D * and D are empty; D’ and
D¢ mély, however, have points in common, or may even
completely coincide (Fig. 3). State “b ”* is taken to be a com-
putational state, denoted as the “observational” one. The
corresponding wave field {p®,v} that would be emitted by
known acoustic sources with distributions {¢®, £} in the
known fluid with the constitutive parameters {¢®7;,} of
the adjoint [for the application of Eq. (24)] or the time-
reverse adjoint [for the application of Eq. (30)] of the
known embedding is computed and its interaction with the
measured acoustic wave field in D © is evaluated. Since only
the interaction in D ®is considered, it makes no sense to take
the support of {g®, £} larger than D . The unknown con-
stitutive parameters of D *are denoted by {¢%,% , }, D “being
the support of the differences {¢* — ¢%, 7i, — ¥} and (¢°
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FIG. 3. Configuration illustrative for the inverse constituency problem:
Known acoustic sources in D’ irradiate the contrasting domain D* with
unknown properties; the acoustic wave field is measured in D and on § .

— 4%, Vir — 77‘,?,( ) for the application of Egs. (24) and (30),
respectively.

The reciprocity relations given in Egs. (24) and (30)
are now applied to the domain interior to the surface S that
is taken such that D, D, and D © are located in its interior.
Then Eq. (24) leads to

J [ — COfoufmr) + Cohamr) |dV
xeD?*

= [C( f;;,U?;X,T) - C(Pn,qi§x»7') ]dV

xeD!

+ [ — C(fivixm) + C(Pg®x,m) |dV

xeD
—f vi [CPLudsx,m) — C(p™vix,7) dA, (33)
xeS 2
in which
¢’ =09,C(¢" — ¢"p'x,7) (34)

is the equivalent contrast volume source density of injection
rate in D, and

ff‘ :aTC(VX/:r - Vf‘,k’vll'(;x;/r) (35)
is the equivalent contrast volume source density of force in
D*. In the same way, Eq. (30) leads to

f [ — C(/20%%7) — CFogmr) |V
xeD*

= [C(fi,00s%,7) + CE%g5x,71) |dV

xeDt
[ 16T + C@aen 1av
xeD %

— | v [CRWxT) + C(F%isx,7) ]d4,
xeS

(36)
in which
q'=09,C(¢" — ¢*p’x,7) (37)

is the equivalent contrast volume source density of injection
rate in D°, and

fi= arc(;/ﬁ,r - ﬁ,k’vi;xﬂ-) (38)
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is the equivalent contrast volume source density of force in
D*

In Eqgs. (33) and (36), the left-hand sides contain the
unknown quantities, while the right-hand sides are known
provided that the necessary measurements and evaluations
are also carried out on S The easiest way to address the
inverse constituency problem is to consider it as an inverse
source problem for the quantities {¢°, /*}. Once values for
these have been obtained, the solution of the forward or di-
rect source problem with known values of {¢’, /% } and {g",
/51 yields the values of {p’,v} } in D*and the temporal de-
convolution of either Eqgs. (34) and (35) or Egs. (37) and
(38) yields, since {¢",y¢,} are known, the values of {¢°,
¥ir} As to the role of the surface integrals over S in the
right-hand sides of Egs. (33) and (36), the same remarks as
for the inverse source problem apply.

To conclude our investigation, we want to emphasize
that the uniqueness and the existence of solutions to both the
inverse source and the inverse constituency problem are, for
the larger part, at the moment open questions.

V1. CONCLUSION

Time-domain reciprocity theorems for the acoustic
wave field in linear, time-invariant, and locally reacting
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fluids have been derived via a full space-time method. In-
homogeneity, anisotropy, and relaxation of the fluid are in-
cluded. The anisotropy is of the inertial type; it is introduced
to make the theorems applicable also to acoustic waves in
anisotropic solids where only compression in the stress be-
havior is considered and shear is neglected. One of the theo-
rems is of the time-convolution type, the other of the time-
correlation type. The application of the two theorems to
inverse source and inverse constituency problems is dis-
cussed.
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