WAVE MOTION 12 (1990) 67-80 67
NORTH-HOLLAND

THEORETICAL CONSIDERATIONS ON A FINITE-ELEMENT METHOD FOR
THE COMPUTATION OF THREE-DIMENSIONAL SPACE-TIME
ELASTODYNAMIC WAVE FIELDS

Hendrik J. STAM and Adrianus T. DE HOOP

Laboratory of Electromagnetic Research, Faculty of Electrical Engineering, Delft University of Technology, P.O. Box 5031,
2600 GA Delft, The Netherlands

Received 4 July 1988

The theory of a space-time finite-element method for the numerical solution of elastodynamic wave problems in bounded
time-invariant subdomains of three-dimensional space is developed. It is shown how the finite-element method can be regarded
as to be based on a space-time elastodynamic reciprocity theorem of the time-correlation type. Particular local representations
for the elastodynamic wave field (particle velocity and stress) are introduced that can handle strongly inhomogeneous
structures with solid/solid, fluid/fluid and fluid/solid interfaces.

1. Introduction

The theoretical essentials of a full space-time finite-element method, based on reciprocity considerations,

~for the numerical solution of elastodynamic wave problems in bounded, time-invariant subdomains of

three-dimensional space are developed. The configuration may consist of fluid and solid parts. The wave
fields in the fluid parts are characterized by their particle velocity and scalar traction; the wave fields in
solid parts are characterized by their particle velocity and stress; these quantities are regarded as the state
variables. It is shown how the finite-element method can be regarded as to be based on a space-time
elastodynamic reciprocity theorem of the time-correlation type [1]. In its turn this theorem is shown to
be equivalent to a certain weighting procedure applied to the equation of motion and the deformation
rate equation that govern the wave motion. The fluids and solids in the configuration are taken to be
linear, locally and instantaneously reacting, and time-invariant in their elastic behavior. Arbitrary
inhomogeneity and anisotropy are taken into account. Particular local representations for the acoustic
and elastodynamic wave field quantities are proposed that can handle strongly inhomogeneous structures,
in which solid/solid, fluid/fluid and fluid/solid interfaces may be present.

2. Basic equations of elastodynamics

The acoustic/elastodynamic waves under consideration are small-amplitude mechanical disturbances
that propagate in a time-invariant configuration in three-dimensional space. Position of observation in
R? is specified by the coordinates {x,, x,, x3} with respect to a fixed, orthogonal, Cartesian reference
frame with origin O and the three mutually perpendicular base vectors {i,, i,, i:} of unit length each. In
the indicated order the base vectors form a right-handed system. The subscript notation for Cartesian
vectors and tensors in R’ is employed and the summation convention applies. The corresponding lower-case
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Latin subscripts are to be assigned the values {1, 2, 3}. Whenever appropriate, the position vector will be
denoted by the bold-face symbol x = x,i,. The time coordinate is denoted by f. Partial differentiation is
denoted by 9; 3, denotes differentiation with respect to x,, 9, denotes differentiation with respect to .
SI-units are used throughout.

The geometrical configuration that we study is taken to be time-invariant. The fluids and solids present
in it are assumed to be linear, locally and instantaneously reacting, and time-invariant in their elastic
behavior. They may be arbitrarily inhomogeneous and anisotropic. Let the configuration occupy the
bounded domain D < R?, and let D° be the subdomain occupied by the solid and D' the subdomain
occupied by the fluid. The boundary of D is denoted by 3D; the part of 3D in the fluid is denoted by sf
and the part of 6D in the solid by S° (see Fig. 1). In D° we characterize the elastodynamic wave field of
the configuration by its particle velocity v, and its stress 7,,, while the physical properties of the solid are
characterized by its tensorial volume density of mass p, (see [2]) and its compliance s;,,. In each
subdomain of D® where the elastodynamic properties vary continuously with position, the elastodynamic
wave field quantities are continuously differentiable and satisfy the (linearized) equation of motion

[3, p. 551, [4, p- 851, [5, p- 17]

~AmpaOmTog t Prr0 Vs = frs (2.1)
and the (linearized) deformation rate equation

Aijrr® iy = Sijpa®iTpq = hyj, (2.2)

where f, = volume source density of force, h;; = volume density of strain rate and Ay, = (8x,0mg T 8kgBimp)/ 2
is a unit tensor of rank four that specifically occurs in elastodynamics (8y, is the Kronecker tensor: &, =1
if k=p and 8, =0 if k # p); it has the symmetry properties Ay,pg = Aikpg = Amigp = Agpmr - At an interface
between two different solids the constitutive coefficients p,, and s, in general jump by finite amounts.
In all applications we shall assume that at a solid/solid interface the media are in rigid contact; then, the
particle velocity and the traction are continuous across the interface, i.e., at each point x of a solid/solid
interface we have (Fig. 2)

lim v,(x+wh)=1lim v,(x+wh) and lim t,(x+wvh)=1im t,(x+ vh), (2.3-2.4)
h10 hlO h10 hio

A
Fig. 1. Domain D consisting of the subdomains D and D' with closed outer boundary 3D and its outwardly directed unit normal
vector v,,. The part of 3D adjacent to the solid is denoted by S* and the part of 9D adjacent to the fluid by S'; 3D is the closed
boundary of D%, aD' is the closed boundary of D',
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Fig. 2. Interface with unit normal vector v.

where 1, is the traction, defined as #, = Ayppg¥mTpq, antd ¥ = v,i,, is the unit vector along the normal to
the solid/solid interface at the point x.

The acoustic wave field in D' is characterized by its particle velocity v, and its scalar traction o (the
opposite of the pressure). The physical properties of the fluid are characterized by its tensorial volume
density of mass p;, (see [6]) and its compressibility . In each subdomain of D where the acoustic
properties vary continuously with position, the acoustic wave field quantities are continuously differentiable
and satisfy the (linearized) equation of motion [7, p. 4]

—3kmamo-+pkratvr=ﬁc, (25)
and the (linearized) deformation rate equation
OmrOml; — KO, T = q, (26)

where f; = volume source density of force, g =volume density of injection rate. Although (2.5) and (2.6)
could be written in a simpler manner (8,0, = 9;), we have retained in the first term on the left-hand side
the Kronecker tensor for reasons of symmetry with the elastodynamic equations. At an interface between
two different fluids the constitutive coefficients p,, and « in general jump by finite amounts. Across a
fluid/fluid interface the normal component of the particle velocity and the scalar traction are continuous,
i.e., at each point x of a fluid/fluid interface we have (Fig. 2)
lim vv,.(x+vh)=1lim v, (x+vh) and lim o(x+wh)=1im o(x+wvh), (2.7-2.8)
h1o hio h1o K0
where v = v,,i,, is the unit vector along the normal to the fluid/fluid interface at the point x.

The last type of interface that can occur in the configuration is a fluid/solid interface. Across a fluid/solid
interface the normal component of the particle velocity is continuous and the normal component of the
fluid traction equals the normal component of the solid traction, while the tangential component of the
solid traction is equal to zero, i.e., at each point x of a fluid/solid interface we have (Fig. 2)

lim »,0,(x+ vh) =lim v,0,(x+ vh), lim vt (x+ vh) =1lim o(x+ vh), (2.9-2.10)
h10 hi0 h10 hio

and A
lim t, (x+vh) — v, t,(x+vh) =0, (2.11)

B10
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where v = v,,i,, is the unit vector along the normal to the fluid/solid interface at the point x pointing
away from the solid.

To account for causality in the wave problem, we need initial conditions at some instant ¢ = ¢, after
which the sources are considered to act; these are denoted by

0.(x, to)=vi(x), and 7,,(x t)= T;,q(x) when x e D® (2.12)
and
v,(x, 1) =vM(x), and o(x, t,)=0c"(x) when xe D", (2.13)

Further, we need boundary conditions at the boundary surface 9D of D. In a number of applications
these are of the explicit type. The admissible ones are shown in Table 1 (Fig. 3).

With these boundary conditions, the initial/boundary-value problem can be shown to have a unique
solution. The proof runs along the same way as the uniqueness of the solution of the elastodynamic wave
problem in a solid [3, pp. 80-82], [4, pp. 176-177], [5, p. 24].

In many scattering problems a certain strongly inhomogeneous configuration is considered to be
embedded in a so-called ‘invariant embedding’ [8] whose properties are taken to be relatively simple ones
(for example, homogeneous and isotropic), such that the Green’s functions (point-excitation solutions to
the wave problem) can be constructed analytically. If this model applies, the contrast-source formulation
of the inhomogeneities with respect to the embedding leads to non-local boundary conditions on 4D that
manage the scattered wave to radiate into the embedding. The corresponding initial/boundary-value
problem can, in this case, too, be shown to have a unique solution. Combined with the finite-element

Table 1

The admissible explicit boundary conditions on 6D

Part of exterior Adjacent to Prescribed value of Type of problem
boundary surface

St fluid normal velocity Dirichlet
SL fluid scalar traction Neumann
S3 solid velocity Dirichlet
S35 solid traction Neumann

Fig. 3. The four types of explicit boundary conditions prescribed at the different parts of the outer boundary § D; XXX = Dirichlet,
OOO = Neumann.
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method applied to the inhomogeneous domain D, the corresponding computational method is known as
the hybrid-element method [9, 10].

3. The space-time finite element method

As the starting point for setting up a finite-element formulation of the acoustic wave problem we take
the space-time elastodynamic reciprocity theorem of the time-correlation type [1]. A reciprocity theorem
interrelates in a specific way two physical states that could be present in one and the same domain. In
the realm of our wave problem we have a relation between two elastodynamic wave fields. We distinguish
their state quantities by the superscripts A and B. In our application of the theorem the Field A is identified
with the actual wave field that is to be computationally approximated, while the Field B is considered as
a computational one that remains to be chosen appropriately. It is noted that the computational Field B
need not represent a physical elastodynamic wave field, but only has to satisfy the equations (2.1) and
(2.2) in D*® and (2.5) and (2.6) in D". As regards the space-time geometry in which the two states occur,
the time-invariance implies that this geometry is the Cartesian product D X R of a time-invariant spatial
domain D < R and the real time axis R. For the elastodynamic waves in the solid parts, the theorem is
applied to the bounded subdomain D* of D where the solid medium is present. Let the latter consist of
the subdomains {D*N; N=1,..., N°} where the medium properties vary continuously with position.
Hence the state quantities are continuously differentiablein {D>"; N =1, ..., N°}. Let the closed boundary
surface of D*" be denoted by aD*" (Fig. 4), then the required reciprocity relation is

Ns

¥ J dt J Brrpg V[0, 1) oy (%, t =)+ 0P (%, 1 — ) 7hy(x, 1)1 dA
N=1 JieR xeaD%N
=3, J' . dt J = Tﬁ(x, t— r)[sﬁ}p,,(x) —s?,,,-j(x)]rﬁq(x, Hdv
te xe
+4, J dt f vi(x, t=7)[pie(x) — prlx)]oP(x, 1) AV
teR xeD*

+J ds J' (%, t—T)h5(x, ) —vR(x, 1 —T)f (%, 1) AV
teR xe D’

A B A B
+I dtj Tog(%, Oy (x, t—7)— v (x, ) (x, t—7) dV. (3.1)
teR xeD*
Fig. 4. Domain D*® consisting of the subdomains {D>"; N = Fig. 5. Domain D' consisting of the subdomains {D""; N =

1,2,..., N°} with boundaries s D", 1,2,..., N'} with boundaries 3D"™.
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First of all we shall show that equation (3.1) can, from a particular point of view, be regarded as a
‘weighted’ form of the equation of motion (2.1) and the deformation rate equation (2.2) pertaining to the
State A. To this end, we take the quantities {v), 75} of the computational State B to be continuously
differentiable in each of the subdomains {D%"; N=1,..., N°}, while we take ph =0, s,[?q,»j=0, fP=
—ApmiidmTh and by = A,,d,0k . Substituting these quantities into (3.1) and applying Gauss’ divergence

theorem to each of the subdomains {D*";n=1,..., N}, of D%, we end up with

J dt J v]lz(xa t— T)[—Akmpqam'rgq(xs t) + pll?r(x)alvﬁ(x, t) _f/I?(xy t)] dv
teR xeD*

—J' dt J Tf}(x, t— T)[Aijm,amvf(x, 1) — sgpq(x)a,fr,’:‘q(x, t)— hf}(x, H)]dv=0. 3.2)
teR xeD*

Upon now taking the functions 7}, =0 (and hence f7 =0) throughout D*x R, and v} # 0, equation (3.2)
amounts to the weighted form of the equation of motion (2.1) over the space-time domain D°x R with
the arbitrary weighting function vy. If, on the other hand, we take the functions v =0 (and hence hfq =0)
throughout D*X R, and 7};#0, equation (3.2) amounts to the weighted form of the deformation rate
equation (2.2) over the space-time domain D®x R with the arbitrary weighting function 73.

For the acoustic waves in the fluid parts, the theorem is applied to the bounded subdomain D' of D
where a fluid medium is present. Let the latter consist of subdomains {D"™; N=1,..., N} where the
medium properties vary continuously with position and hence the state quantities are piecewise con-
tinuously differentiable in {D""; N =1,..., N'. Let the closed boundary surface of D"V be denoted by
aD"Y (Fig. 5), then the required reciprocity relation is

Nf

¥ J dt J St V2(x, )P (x, t —7)+ 02(x, t — 7)o M(x, )] dA
teR xean’N

N=1

=9, J dt J rcTB(x, t—7)[k™x)—kB(x)]o™x, t)dV

+9, J dr J vi(x, t=7)[ Pl (%) — pr(x) 107 (x, 1) AV
teR xeD'

+J dt J oB(x, t—7)g*(x, 1) —vR(x, t—7)fe(x, t) dV
teR xeDr

+J dt J , a®(x, )gB(x, t—7)—v2(x, )P (x, t—7) d V. (3.3)

Equation (3.3) can, from a particular point of view, be regarded as a ‘weighted’ form of the equation of
motion (2.5) and the deformation rate equation (2.6) pertaining to the State A. To show this, we take the
quantities {v}, o®} of State B to be continuously differentiable in the subdomains {D"V; N=1,..., N},
while we take p5 =0, k=0, f£=-8,,0,0" and q®= 8,,9,,v%. Substituting these quantities into (3.3)
and using Gauss’ divergence theorem in the subdomains {D*N; N=1,..., N} of D" where both sides
are continuously differentiable, we end up with

J dt J Vp(X, t = T) [ = Bimdmo ™ (x, 1)+ pi(x)o, 05 (x, 1) —f(x, 1)]dV
teR xeDr Y

A

- J dt J ) aB(x, t = T)[ 80,0 (x, 1) — k(x)3,0%(x, 1) — g™ (x, 1)]dV =0. (3.4)
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Upon now taking the function o®=0 (and hence fF=0) throughout DX R, and vy # 0, equation (3.4)
amounts to the weighted form of the equation of motion (2.5) over the space-time domain D'x R with
the arbitrary weighting function vy. If, on the other hand, we choose the functions v =0 (and hence
q®=0) throughout DX R, and o®# 0, equation (3.4) amounts to the weighted form of the deformation
rate equation (2.6) over the space-time domain D' R with the arbitrary weighting function o®.

The formulations (3.2) and (3.4) are now used to set up a space-time finite-element method. In these
formulations the Field A is identified with an approximation to the actual wave field and the Field B with
an appropriate weighting field within the category discussed above. Upon taking a reciprocity relation as
the point of departure of setting up a numerical scheme, it seems more or less natural to treat the States
A and B in an equivalent manner, which implies that each specimen of the sequence of functions into
which State A is expanded is also taken as a specimen of the State B. As far as (3.2) and (3.4) are
concerned, this implies that the sequence of weighting functions is taken to be the same as the sequence
of expansion functions. This procedure leads to a system of linear algebraic equations with the expansion
coefficients of State A as the unknowns. Boundary conditions of the explicit type are accounted for by
prescribing those expansion coefficients that are related to the relevant field values of State A at the
boundary of D. The above method is known as the method of weighted residuals ([11, pp. 38-39], [12,
pp. 287-306], [13, pp. 138-139]).

To model an acoustic/elastodynamic wave field that radiates into an exterior unbounded domain where
the Green’s function is known, non-local acoustic boundary conditions are applied. These boundary
conditions relate the wave field quantities at the boundary 9D to their values in the interior of D via the
pertaining (discretized) source-type integral representations. In the solution of the wave problem these
relations are added to the equations that follow from using the finite-element method for the interior field
in D.

4, The local expansion functions

In this section particular local expansion functions are introduced that are used to approximate the
acoustic and elastodynamic wave field. In view of the time-invariance of the domain D of computational
interest, the space-time domain over which the finite-element method is applied, is discretized into a union
of elementary subdomains that are cylindrical in the time direction. Their maximum diameter in space is
denoted as the mesh size of the discretization. In these subdomains local expansion functions to represent
the field quantities are defined that are the product of a function of the spatial variables and a function
of time. In conjunction with the cylindricity of the space-time domain in the time direction, this leads to
two independent discretizations: one in the spatial direction and one in the direction of time. In our
discussion we shall concentrate on the spatial discretization because in this direction inhomogeneities
may occur. The simplest local interpolation function is the polynomial of degree zero, i.e., a constant in
each elementary subdomain of the configuration; the value of this constant is attributed to the wave field
value at the barycenter of the elementary subdomain. The corresponding piecewise constant interpolation
of the wave field quantities in the spatial direction has the disadvantage that all components of the
represented wave field quantities are discontinuous across the boundaries of the subdomains, which
physically implies that spurious surface-source distributions of the order of the mesh size of the geometrical
discretization are introduced, with an accompanying error in the field values. To avoid this inaccuracy,
polynomial expansion functions of degree one are taken; they are the lowest-degree polynomials by which
physically non-existing surface source distributions on interfaces of discontinuity can numerically be
avoided in the representations. At the same time, they are the ones through which a consistent interpolation
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is achieved in the most fundamental geometrical shape (the simplex [14, p. 49]), all spatial directions
being treated alike. For the expansion functions in time no restrictions follow from the reciprocity theorem
of Section 3. However, we can argue that for the description of wave motions, where the time and spatial
coordinates play an equivalent role, linear time expansion functions are the most suited ones in combination
with the linear spatial expansion functions.

To arrive at the desired linear interpolation functions, the spatial domain is discretized into a union of
tetrahedra the vertices of which coincide with the nodes of the spatial discretization and the time axes is
discretized into a union of intervals the edge points of which coincide with the nodes of the time
discretization. The position vectors of the four vertices { P(0), P(1), P(2), P(3)} of a representative tetrahe-
dron T are denoted by {x;(0), x;(1), x;(2), x;(3)}, respectively. The position in the interior of T or on its
boundary 3T can be specified by the barycentric coordinates {A(0), A(1), A(2), A(3)} defined through

x; = 23: A(D) x;,(I), with 0=sA(I)<1 and i‘, A(D)=1. (4.1)

We observe that the barycentric coordinates A(I) do perform the linear interpolation in the tetrahedron
(viz. of the position vector) we are looking for. To express them in terms of x;, some geometrical quantities
associated with T are needed. First, the vectorial areas {A;(0), A;(1), A;(2), A;(3)} of the faces of T that
are directed along the outward normals to the faces of T are introduced; they are given by (for the
numbering we refer to Fig. 6)

x(1) % (2) + %;(2)x:.(3) + x:(3) % (1)

Ai(O) = Ejjk 2
Ai(1)=—eu AL )%(3);"(0) +x;(0)x(2) ,
(4.2)
A(2)= Bijkxf(3)xk(0)+xj(O);k(1)+xj(1)xk(3) ,
A(3) = ey, 23D+ 5 (1)%2) + 5 (D5(0)

2

P(3)

A (2)

P(0)

i
: A, (3

Fig. 6. Tetrahedron T with its four vertices {P(0), P(1), P(2), P(3)} and the outwardly directed vectorial areas
{A;(0), A (1), A;(2), A;(3)} of its faces.
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where & is the completely antisymmetric unit tensor of rank three (Levi-Civita tensor). It follows that
3
Yy A (I)=0. (4.3)
I=0

The volume of T is given by

—%:(0); (1), (2) + x:(1)%;(2) % (3) — %:(2) %;(3) %1 (0) + x:(3)x;(0) % (1)

- (4.4)

V=g

Now, we observe that at each vertex of T, the three vectorial edges leaving that vertex and the three
vectorial areas of the faces meeting at that vertex form, apart from a constant factor, a set of (oblique)
reciprocal base vectors. Let us consider the vertex P(0). The three vectorial edges leaving this vertex are
{x%;(1) — x,(0), %;(2) — x:(0), x;(3) —x;(0)} and the three vectorial areas of the faces meeting at this vertex
are {A;(1), A;(2), A;(3)}. Now, it is easily verified that

[x(I)—x(0] A;(J)=-3V8(I,J), withI=1,2,3and J=1,2,3, (4.5)

where 8(I, I)=1 and 8(I,J)=0 if I#J From (4.5) it follows that, at the vertex with position vector
x;(0), the set of vectors {—[x;(1) —x;(0)]/3V, —[x:(2) — x;(0)]/3V, —[x;(3) — x;(0)]/3 V} is reciprocal to the
set {A;(1), A;(2), A;(3)}, and the set {—A;(1)/3V, —A;(2)/3V, —A;(3)/3 V} is reciprocal to the set {x;(1)—
x:(0), x:(2) — x,;(0), x;(3) — x;(0)}. Returning to (4.1), we can, by letting A(0)=1—A(1) —A(2) — A(3), write

3
x;—x;(0) = IZ A(D)[x; (1) = x,(0)]. (4.6)
=1
Upon multiplying this equation by —(3V) 'A;(J) and using (4.5) we obtain

—BV) ' [x-x0)]AJ)=A(J) forJ=1,2,3. 4.7

Since further, on account of (4.3),

~(V) x5O A=~ T A, (48)
it follows that

X —x(0)=—(3V)"! é:o [x —x,(0)] A, (T) x:(J). (4.9)

Similar results hold for the other vertices as well. By combining the results we have

3

xi—x(I)=—=@BV)" Y [x-x(D]AJ) x,(J) for I=0,1,2,3. (4.10)

Summing the results for I =0, 1, 2, 3, respectively, and introducing the position vector b; of the barycenter
of T through |

b= i x(I), (4.11)
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we arrive at the symmetrical expression

x;=b—(3V)" IZ:) (x; —b;) A;(T) x;(I). (4.12)
On account of this relation, we can write

x,-=éo x:(I) ¢(I; x), (4.13)

where
o(1; x):%—(?’v)_l(xj_bj) Ai(I). (4.14)

Comparing (4.13) with (4.1), we see that {¢(I; x); I =0, 1, 2, 3} are nothing but the barycentric coordinates
of a point in T or on its boundary §T. On the other hand, ¢(I; x) performs a linear scalar interpolation
between the value one at the vertex x; = x;(I) and zero at the remaining vertices of T.

The positions of the edge points T(0) and T(1) of a representative interval TIM on the discretized time
axes are denoted by #(0) and #(1). In each interval TIM two local interpolation functions are defined by

Y(M,t)=(t—t{(N))/(t(M)—t(N)), M=0,1, N#M. (4.15)

The function (M, ¢) performs a linear interpolation between the value one at the edge point ¢ = t(M)
and zero at the remaining edge point.

In the following, the local functions ¢(I; x), defined on TUdT and (M, t), defined on TIM, are
employed to interpolate the particle velocity v, in the solid and the fluid, the scalar traction o in the fluid
and the stress 7,, in the solid in the tetrahedron T. Let {o(I; M), v,(I; M), 7,,(I; M), 1=0,1,2,3;
M =0, 1} denote the values of {0, v,, 7,,} When x; = x;(I) is approached via the interior of T and t = t(M)
is approached via the interior of TIM, then their local representations are

(005 0, 5 0, s O} = £ 3 {003 M), 0I5 M), (I MVS(L; 205 )

for (x, 1) e {T U3T}x TIM. (4.16)

In the representation (4.16) the choice of how at each vertex the vectors v,.(I; M) and the tensors 7,,(I1; M)
are decomposed is still open. This choice is determined by the physics of the problem, in particular by
whether the nodal point with which the vertex coincides either is or is not on an interface, and if yes,
what type of interface (fluid/fluid, fluid/solid, solid/solid) it is. For each of these cases the appropriate
choice will be discussed in Section 5.

In the discretized geometry we take the elastodynamic properties of the medium and the volume source
densities to be linearly varying with position in each tetrahedral subdomain of D and the surface sources
are taken to be linearly varying on each triangular subdomain of the discretized outer boundary 9D of
the domain of computational interest.

5. Choice of the vectorial/tensorial decompositions at the vertices of a tetrahedron

The different possibilities that occur in an inhomogeneous fluid/solid configuration and the choices of
how vectors and tensors at a vertex of a tetrahedral subdomain of the configuration are to be composed
will be discussed separately below.
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Vertex coincides with nodal point not on an interface

In a vertex that coincides with a nodal point that is not on an interface we decompose the field quantities
along the axes of the background Cartesian reference frame.

Vertex coincides with nodal point on a solid / solid interface

Across a solid/solid interface all components of the particle velocity and the normal component of the
stress (the traction) are to be continuous, while the tangential components of the stress may jump by
finite amounts. Accordingly, in a vertex x;(I) of a tetrahedron T that coincides with a nodal point located
on a solid/solid interface, the particle velocity is decomposed along the axes of the background Cartesian
reference frame, and the stress 7,,(I; M) is written as

ol M) = =(3V) ™ ¥ T,(17 M, (D) =, (D) (5.1

i.e., as far as its second subscript is concerned it is decomposed along the local base vectors
{—BV) [x,(J)—x,(I)], J=0,1,2,3, J# I} that are directed along the edges meeting in x;(I). Using
(4.5), it follows that the expansion coeflicient

T,(I,J; M) =1,,(I; M) A,(J), with I#1J, (5.2)

is the traction at the face with vectorial area A,(J) in the vertex x;(I) at the instant +(M) times the area
of the face. Obviously, the term with J = I drops automatically from the summation (5.1); for later purposes
it is, however, advantageous to put

T,(I, I; M) =0. (5.3)

Vertex coincides with nodal point on a fluid / fluid interface

Across a fluid/fluid interface the normal components of the particle velocity are continuous while the
tangential components of the particle velocity may jump by finite amounts. Accordingly, in each vertex
x;(I) of a tetrahedron T that coincides with a nodal point that is located on a fluid/fluid interface the
particle velocity v.(I; M) is written as

3
v (I; M)=—-(3V)"' ¥ V(L J; M)[x.(J)—x.(I)]. (5.4)
J=0
i.e., it is decomposed along the local base vectors {—(3V) '[x,(J)—x,(I)], J=0,1,2,3, J# I} that are
directed along the edges meeting in x;(I). Using (4.5) it follows that the expansion coefficient
VLT, M)=uv,(I; M) A.(J) withJ#I (5.5)

is the normal component of the particle velocity at the face with vectorial area A,(J) in the vertex x;(I)
at the time (M) times the area of the face. Obviously, the term with J = I drops automatically from the
summation in (5.4); for later purposes it is, however, advantageous to put

\‘\

V(I I; M)=0. (5.6)

It is noted that for the scalar traction o the expansion (4.16) holds.
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Vertex coincides with nodal point on a fluid / solid interface

Across a fluid/solid interface the normal component of the particle velocity is continuous while its
tangential component may jump by finite amounts. Further, the normal component of the traction in the
solid is equal to the scalar traction in the fluid, while the tangential components of the traction in the
solid are equal to zero. Accordingly, in a vertex x;(I) of a tetrahedron T that coincides with a nodal point
that is located on a fluid/solid interface the particle velocity v,{I; M) is represented by (5.4) and the
stress 7,,(I; M) by (5.1) where the coefficient 7,(I, J; M) is now given as

T,(LJs M)= ~(BV)" ¥ T(LJ, K; M)%,(K) = x,(D)] (57)

i.e., the stress is completely decomposed along the local base vectors {—(3V) '[x,(K)—x,(I)], K =
0,1,2,3, K # I} that are directed along the edges meeting in x;(I). Using (4.5) it follows that the expansion
coeflicient is given by

T(L,J,K; M)=T,(IJ; M) A,(K) with J# I, K #I (5.8)

Substitution of (5.7) into (5.1) gives the representation of the stress 7,,(I; M) in the vertex x;(I) at the
instant +(M):
3 3
(I3 M)=(3V) 7 JZO KZ T(1, J, K5 M)[x,(K) —x,(I)][%,(J) = x,(I)]. (5.9)
= =0.
For K = J the coefficient (5.8) is the normal component of the traction at the face with vectorial area
A,(J) in x;(I) at the instant t(M) times the square of the area of the face. Obviously, the terms with
K =1 and J=1 in (5.9) drop from the summation. It is advantageous however, to put

T(L L K; M)=T(I,J,I; M)=0. (5.10)

With this, for nodal points located on either of the interfaces under consideration, appropriate expansions
for the elastodynamic state quantities have been defined.

6. Global spatial expansion functions

Now that in Section 5 the different local expansion functions have been constructed, we are able to
construct the corresponding global expansion functions. In this, we let ourselves guide by the same type
of argument as that has been used in [15] for the representation of three-dimensional electromagnetic
fields for finite-element modeling in strongly inhomogeneous media, i.e., we want functions that (in the
computer code automatically) guarantee the continuity of all field-components that are continuous across
an interface, while leaving the non-continuous components free to jump by finite amounts. In the realm
of acoustic and elastodynamic wave fields this implies that near interfaces we construct representations
for the fields that automatically satisfy the interface conditions (2.3), (2.4) and (2.7)-(2.11) while leaving
" the remaining components free to jump by finite amounts.

The set of expansion coefficients that follows upon allocating to each tetrahedron of the discretized
geometry the local expansions of Section 5 is now introduced as the set of ‘vertex’ expansion coefficients,
each vertex being considered as a ‘multiple node’ of the grid that covers the domain of computational
interest, with multiplicity equal to the number of tetrahedra that have the particular vertex in common
(i.e., that form the simplicial star of that vertex). If now, depending on the location of the vertex (not on
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an interface, or on a solid/solid, fluid/fluid, or fluid/solid interface) it follows from the physics that some
or all of the vertex expansion coefficients of a multiple node should have equal values, this common
vertex expansion coefficient is introduced as a single nodal expansion coefficient. Thus, the number of
nodal expansion coefficients is (sometimes considerably) less than the number of vertex expansion
coefficients. The set of nodal expansion coefficients is next introduced as the set of global expansion
coefficients and correspondingly the global expansion functions are introduced as the ones that have as
spatial support the union of all tetrahedra to which the particular global expansion coefficient applies
and that perform the linear interpolation from the value one at the node under consideration to the value
zero at the remaining nodes of its support. In this manner the global expansion of the acoustic wave field
satisfies (again, in the computer code automatically) the continuity and jump requirements at each of the
interfaces present in the domain of computational interest.

With this philosophy as regards the spatial expansion functions a finite-element code is under
development.

7. Conclusion

The theory of a space-time finite-element method for the numerical computation of three-dimensional
elastodynamic wave motions in bounded, time-invariant configurations that may be anisotropic and
strongly inhomogeneous, is presented. It is shown that the finite-element method can be considered to be
based on a space-time reciprocity theorem of the time-correlation type. Linear spatial expansions for the
representation of the particle velocity in the fluid and the solid, the stress in the solid and the scalar
traction in the fluid in the discretized geometry are constructed that automatically guarantee the continuity
requirements at interfaces of discontinuity in material properties (solid/solid, fluid/fluid, fluid/solid) in
an elastic configuration while leaving noncontinuous elastodynamic field components free to jump by
finite amounts. For these functions as spatial elementary subdomain the tetrahedron was taken. In the
time direction, piecewise linear functions in combination with the linear spatial functions were considered
as the most suited ones to describe in a consistent way wavelike phenomena.

Acknowledgement

The research presented in this paper has been sponsored by Royal/Dutch Shell Exploration and
Production Laboratories, Rijswijk, The Netherlands. This financial support is gratefully acknowledged.

References

[1] A.T. de Hoop and H.J. Stam, “Time-domain reciprocity theorems for elastodynamic wave fields in solids with relaxation and
their application to inverse problems”, Wave Motion 10, 479-489 (1988).

[2] T.JLT'A. Bromwich, “Note on the wave surface of a dynamical medium, aeolotropic in all respects”, Proc. London Math. Soc.
34, 307-321 (1902).

[3] 1.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam (1973).

[4] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge (1959), 4th ed.

[5] K. Aki and P.G. Richards, Quantitative Seismology, Freeman, San Francisco (1980).

[6] Lord Rayleigh, “On double refraction”, Scientific Papers 1, Cambridge University Press, Cambridge (1899) 111-119.

[7] H. Lamb, Hydrodynamics, Cambridge University Press, Cambridge (1957), 6th ed.




80 H.J. Stam, A.T. de Hoop / Finite element method for wave fields

[8] R. Bellman and R. Kalaba, “On the principle of invariant imbedding and propagation through inhomogeneous media”, Proc.
Nat. Acad. Sci. U.S.A. 42, 629-632 (1956).
[9] K.H. Lee, D.F. Pridmore and H.F. Morrison, “A hybrid three-dimensional electromagnetic modeling scheme”, Geophysics 46,
796-805 (1981).
[10] P.K. Gupta, L.A. Bennett and A.P. Raiche, “Hybrid calculations of the three-dimensional electromagnetic response of buried
conductors”, Geophysics 52, 301-306 (1987).
[11] O.C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, London (1971).
[12] I.N. Reddy, Applied Functional Analysis and Variational Methods in Engineering, McGraw-Hill, New York (1986).
[13] G. Dhatt and G. Touzot, The Finite Element Method Displayed, Wiley, New York (1984).
[14] L. Naber, Topological Methods in Euclidian Spaces, Cambridge University Press, Cambridge (1980).
[15] G. Mur and A.T. de Hoop, “A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous
media”, IEEE Trans. Magnetics 21, 2188-2191 (1985).




