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The acoustic radiation generated by an impulsive point source in a continuously layered fluid
with depth-varying parameters is investigated theoretically with the aid of the modified
Cagniard method. Using a one-sided time Laplace transformation with a real positive
transform parameter, a Fourier transformation with respect to the horizontal space
coordinates and appropriate one-sided Green’s functions, the system of transform-domain
differential equations in the depth coordinate is rewritten as a system of integral equations that
can be solved by a Neumann iteration. The modified Cagniard method leads to space-time
expressions for the relevant iterates that physically are representative for the successively
reflected waves. This iterative method is shown to be convergent in the time domain for any
continuous and piecewise continuously differentiable depth profile in the inertia and
compressibility properties of the fluid. To show the generality of the method, the fluid is
assumed to show anisotropy in its volume density of mass, which is the kind of anisotropy that
shows up in the equivalent medium theory of a finely layered fluid. The continuously refracted
waves emitted by the source and the singly, continuously, reflected waves are discussed in
detail. With this technique, no difficulties arise with “turning rays,” as is the case in the
asymptotic ray theory of the (real) frequency-domain analysis of the problem.

PACS numbers: 43.20.Bi, 43.20.Mv, 43.20.Px, 43.30.Bp

LIST OF SYMBOLS

p acoustic pressure (Pa)

v, particle velocity (m/s)

" volume source density of force (N/m")

q volume source density of injection rate (s ')
Pir tensorial volume density of mass (kg/m*)

K compressibility (Pa ')

W,  spectral-domain wave amplitude of nth order

upgoing wave
INTRODUCTION

The layered fluid with depth-varying properties is one of
the canonical model configurations that serves to study the
properties of impulsive acoustic or elastic wave motion with
regard to its application to ocean acoustics as well as to seis-
mology. In the latter, the model is used when the analysis is
concentrated on compressional waves, and interaction with
shear waves is neglected. For a vertically inhomogeneous
medium that is modeled as a stack of homogeneous plane
layers, the author’s modification of Cagniard’s method b
also denoted as the generalized-ray method,” '' pr ovides an
efficient computational method to generate synthetic seis-
mograms, both for two- and three-dimensional wave mo-
tion. Recently, the method has also been used to study the
influence of anisotropy in the elastic properties of each of the
layers.”” The case of a continuously layered medium has
received less attention. Two extensive and thorough papers
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w. spectral-domain wave amplitude of nth
order downgoing wave

¥ spectral-domain vertical wave slowness of
upgoing wave

pt spectral-domain vertical wave slowness of

downgoing wave

Y spectral-domain vertical acoustic wave admittance
X, space coordinates

t time coordinate

d partial differentiation

by Chapman deal with the subject. In the first,"* the approx-
imation of the continuously layered medium by one consist-
ing of a large number of thin, homogeneous layers is taken as
the point of departure. In the second,'* the case of a continu-
ously layered medium is addressed directly. The transform-
domain differential equations are solved by iteratively solv-
ing their Volterra integral-equation counterparts, and the
different terms in the iteration process are interpreted as gen-
eralized rays that have undergone continuous refraction
and, single or multiple, continuous reflections in the gradu-
ally changing medium. Next, the iterates are transformed
back to the time domain with the aid of the Pekeris'*'® ver-
sion of the Cagniard technique and the subsequent applica-
tion of the large horizontal offset approximation used by
Roever ef al.'” and Wiggins and Helmberger'' (see, also,
Ref. 18). In Chapman’s analysis, turning rays are included,
while also lateral rays that propagate horizontally over some
finite distance, as in the case of discretely layered media
(where they are also denoted as head waves), occur.

If the standard Fourier transformation is carried out
with respect to the time coordinate, instead of the one-sided
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Laplace transformation according to Cagniard, difficulties
arise with the turning points of the corresponding WKBJ
iterative method to solve the transform-domain differential
equations. These have been overcome by Chapman'” by us-
ing uniformly asymptotic representations of the Langer type
(which involve Airy functions) and transforming these back
to the time domain. This method is considerably more com-
plicated than the one in the present paper, where only ele-
mentary functions and operations are involved. A survey
paper by Chapman®’ covers a variety of general aspects of
obtaining time-domain expressions for the wave motion in
layered media. Recently, the influence of anisotropy has also
been studied.?' **

In the present paper, the problem of the transient wave
propagation in a continuously layered fluid is, just as in Ref.
14, addressed directly. The standard integral transforma-
tions that are characteristic for the modified Cagniard meth-
od are applied to the first-order acoustic wave equations of a
fluid. By the use of appropriate one-sided Green'’s functions,
the resulting system of differential equations in the depth
coordinate is next transformed into a system of integral
equations. These integral equations admit a solution by a
Neumann iteration. Each higher-order iterate can be physi-
cally interpreted as to be generated, through continuous re-
flection, by the previous one. To show the generality of the
method, anisotropy of the fluid in its volume density of mass
is included (this type of anisotropy is encountered in the
equivalent medium theory of finely discretely layered me-
dia™); the compressibility is a scalar. Next, the transforma-
tion back to the space-time domain is discussed, in which a
number of steps can be carried out analytically, even for the
anisotropic case. The iterative method is shown to be conver-
gent for any continuous and piecewise continuously differ-
entiable depth profile in the inertia and compressibility
properties of the fluid. This is contrary to the frequency-
domain analysis of the problem, where the corresponding
Neumann series (which is also known as the Bremmer?® 2
series) can only be shown to be convergent for profiles that
vary within certain, frequency-dependent, bounds. These
aspects are discussed by Broer,? Sluijter,”**' and Broer and
Van Vroonhoven,*> while the corresponding time-domain
convergence has been investigated by Gray,”* for discretely
layered media, and by Verheggen et al.,** for continuously
layered media. Finally, a large review paper by Chapman
and Orcutt® is mentioned.

The difficulties that are met with the inversion method,
based on a time Fourier transformation with a real frequency
variable, can be ascribed to the fact that, with this transfor-
mation, causality is lost, while with a time Laplace transfor-
mation with a real transform parameter, as used by Cag-
niard,"” as a crucial point, causality is automatically taken
care of by restricting the transform-domain counterparts of
the physical quantities to being bounded functions of the
remaining space variables. Also, in the modified Cagniard
method, the time variable is kept real all the way through, in
accordance with its physical meaning. Furthermore, no
asymptotics is needed, and only convergent expansions oc-
cur. Another aspect of the propagation of transient waves in
continuously layered media is covered by the spectral theory
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of transients, which has been introduced by Heyman and
Felsen*™"7 and has been further applied by Heyman er
al.,*** and Heyman.” This theory aims at a complete
asymptotic expression for the total wave field in the neigh-
borhood of the wave fronts, rather than an exact expression
in terms of successively reflected wave constituents,

|. DESCRIPTION OF THE CONFIGURATION AND
FORMULATION OF THE ACOUSTIC WAVE PROBLEM

Small-amplitude acoustic wave motion is considered in
an unbounded inhomogeneous fluid, the properties of which
vary in a single rectilinear direction in space only. This direc-
tion is taken as the vertical one. To specify position in the
configuration, the coordinates {x,,x,,x }, with respect to a
fixed, orthogonal, Cartesian reference frame, with the origin
O and the three mutually perpendicular base vectors
{i, i,,i;} of unit length each, are used; i, points vertically
downward. The subscript notation for vectors and tensors is
used and the summation convention applies. Lowercase Lat-
in subscripts are used for this purpose; they are to be assigned
the values {1,2,3}. The time coordinate is denoted by ¢. Par-
tial differentiation is denoted by d; d,, denotes differenti-
ation with respect to x,,; d, is a reserved symbol denoting
differentiation with respect to ¢.

The acoustic properties of the (anisotropic) fluid are
characterized by the tensorial volume density of mass p, ,
and the scalar compressibility «. Both are functions of x,
only; these functions are assumed to be continuous and
piecewise continuously differentiable. At any x,, the tensor
P 18 assumed to be symmetrical and positive definite (this
implies that a nonnegative definite volume density of kinetic
energy is associated with the wave motion), and that « is
positive (this implies that a nonnegative definite volume
density of deformation energy is associated with the wave
motion). In view of the properties stated, the configuration
is time invariant as well as shift invariant in the horizontal
direction (see Fig. 1). Due to this shift invariance, it is ad-
vantageous to distinguish, in the vectorial and tensorial
quantities, between their horizontal and their vertical com-
ponents. For the former, lowercase Greek subscripts will be
used; for the latter, the subscript 3 will be written explicitly.

The acoustic wave motion in the configuration is char-
acterized by its acoustic pressure p and its particle velocity
v,. These quantities satisfy the first-order acoustic wave
equations

receiver T3:min

3:5 ¥ source

Z3;max

z5\ z3 Y
FIG. 1. Acoustic source and receiver in a continuously layered anisotropic
fluid with tensorial volume density of mass and scalar compressibility.
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akp +pk./‘atvr :f;\" (1)
d.v, +kd,p=q, (2)

where f, is the volume source density of force and ¢ is the
volume source density of injection rate. For a point source
located at x,, = x,,.s, the volume source densities are given
by

{f}\"q}('xm’t) = {Fk;S’QS}(t)ﬁ('xm - 'xm:S)’ (3)

where §(x,,) is the three-dimensional spatial impulse func-
tion (Dirac distribution) operative at the point x,, = 0, and
{F,.,Qs}(t) are the source strengths as a function of time.
If F,.¢ =0 and Qg 50, the source is a monopole source; if
F,. <50 and Qs = 0, the source is a dipole source. It is as-
sumed that the source starts to act at the instant 7 = 0. The
problem is to determine, at an arbitrary point of the configu-
ration, the acoustic wave motion that is causally related to
the action of this source.

I, THE TRANSFORM-DOMAIN ACOUSTIC WAVE
EQUATIONS AND THE WAVE-MATRIX FORMALISM

In accordance with the time invariance and the shift
invariance of the configuration in the horizontal direction,
the acoustic wave equations (1) and (2) are subjected to a
sequence of integral transformations that is characteristic
for the modified Cagniard method. These are: a one-sided
Laplace transformation with respect to time with real, posi-
tive transform parameter s, and a Fourier transformation
with respect to the horizontal space coordinates with real
transform parameters s, and sa, . For the acoustic pressure
the two transformations are

ﬁ(‘xm’s) :f
t=0

and
plia, ,x;,8) = f

xR

exp( — st)p(x,,,t)dt ) (4)

exp(isa, x, )p(x,,,s)dx, dx,,

(5)

respectively. The extra factor of s in the spatial Fourier-
transform parameters has been included for later conven-
ience. In view of this, the transformation inverse to Eq. (5) is
given by

ﬁumg):(_LJAf exp( — isc, x,)
2 ,eR’

T
Xplia, ,x,,s)da, da,. (6)

Under these transformations and the condition of causality,
the rules d, »s and d, - — isa,, apply, and hence Egs. (1)

and (2) transform into \

— s, p + sp,.,U, ':]”,{, ‘ (7)
3P+ 3p3..0, = [, (8)
—isa, b, + 3,0, + skp = q. (9

Upon eliminating the horizontal components i, of the parti-
cle velocity from these equations, a system of two ordinary
differential equations results with x, as the independent
variable and p and 0, as dependent variables. For later ease of
manipulation, these equations are arranged as a matrix dif-
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ferential equation. The relevant matrices will be denoted by
an uppercase symbol enclosed in square brackets when re-
ferred to in the text, while in displayed equations the relevant
symbol will be supplied with uppercase Latin subscripts to
which, again, the summation convention applies; to these
subscripts the values 1 and 2 are to be assigned. Let [F]
denote the acgustic field matrix, [A4] the acoustic system’s

matrix, and [ V] the notional source matrix, then the trans-
form-domain matrix differential equation is "'

ds F\/ + SZ,\/.A\'F\‘ = NM’ (10)

in which the elements of the acoustic field matrix are given
by

F,

F2:U3s

|

b, (11)
v (12)

the elements of the acoustic system’s matrix by

21.1 =p3, (o) l)/),l\‘iaK’ (13)
Zl.z =p33 — P P : ) pucP 3 (14)
A, =x— ia,(py ),.1a,, (15)
4,, = i, (py ') s (16)
and the elements of the notional source matrix by
No=—pu, oy D +Js (17)
Ny =ia,(py V)l + 7. (18)
Here, (p; D o 18 the inverse of p, ,. Note that [4] is inde-

pendent of s.

Via an appropriate linear transformation to be carried
out on the acoustic field matrix, a wave-matrix formalism
will be arrived at from which the interaction between up-
and downgoing waves in a region of inhomogeneity will be
manifest. The same analysis for the isotropic case has been
given by Chapman.'® Because some new features, associated
with the anisotropy of the fluid, show up, all steps of the
procedure are briefly, but explicitly, indicated. Felsen and
Marcuvitz*' have, for the isotropic case, shown that the de-
composition into up- and downgoing waves can also be de-
duced from a Green’s function formalism applied to the sec-
ond-order differential equation for the transform-domain
acoustic pressure. The relevant linear transformation is writ-
ten as

FN :Z;\np ﬁ/l” (19)

where [ W] is the wave matrix, and the matrix [L] is to be
chosen appropriately. On the assumption that the inverse
[L] ' of[L] exists, substitution of Eq. (19) into Eq. (10)
yields ‘

d, IA/VL +57\L.P f/i//’ = (Z ])L‘MNM
~ (L ")y (8 Ly p) Wi, (20)
where
7\1../» = (Z ])LA:\IZM.‘\"Z‘\’.P' (21)

Equation (20) indeed expresses the traveling-wave struc-
ture of the up- and downgoing waves, provided that [A] isa
diagonal matrix. From the observation that [cf. Eq. (21)]

;14\‘1. .\'Zz\"P = ZM,L KL‘P? (22)
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it follows that [A] is diagonal if [L] consists of the eigenco-
lumns of [A4]; [A] then has the eigenvalues of [4] as its
(diagonal) elements. The latter are written as

Ku* =98, p
where &, ,, is the unit matrix.

So far, the normalization of the eigencolumns of [4],
out of which [L] is composed, is free. This freedom can be
exploited to give [ L] a number of additional desirable prop-
erties. The most important one of these is that, for the phys-
ical interpretation of Eq. (21), one would rather avoid the
coupling of some wave occurring in the coupling term on the
right-hand side of Eq. (20) to the particular wave that oc-
curs on the left-hand side. This is accomplished if
(L] ' [83Z ] has zero-value diagonal elements. Further, it
would be desirable if [L] ' could be constructed from [L]
without the intervention of a (numerical) matrix inversion
procedure. Both properties are realized if each eigencolumn
[£'"] of [A] is normalized such that

(23)

ﬁ””f);”’ _}_pll’)agl’) _ 1, (24)
for a wave that is outgoing as x; — — oo, and
ﬁ”))lj;”) +1~)(I’)-§§l’) — 1, (25)

for a wave that is outgoing as x; — «. Here, the overbar is
used to denote the transform-domain counterpart of a time-
reversed space-time quantity; i.e.,

{ﬁ,ﬁ;}(ia/,,x3,s) :{pyf)}}(ia/,’x3y _S)~ (26)

Under these conditions, [L ] ‘[c?}z ] indeed has zero-val-
ue diagonal elements, while [L] ' follows, upon inter-
changing in the transpose of [L] the pressure and the parti-
cle velocity parts, and changing the sign of the row that
corresponds to an outgoing wave as x; — — o, while keep-
ing the sign of the row that corresponds to an outgoing wave
asx, — . Since Egs. (24) and (25) are local conditions, the
decision whether a wave is outgoing as x; —» — o Or as
X, — oo can be made locally at each depth level by observing
the sign of the real parts of the vertical propagation coeffi-
cients at that depth level (see Appendix B). The proof of the
properties of [L] is given in Appendix A and is based on a
certain reciprocity theorem for the transform-domain
acoustic wave field. Related procedures have been employed
by Kennett* and by Fryer and Frazer.** With the normali-
zation thus introduced, the system of differential equations,
Eq. (20), truly reflects the physical picture of vertically up-
and downgoing waves that travel independently in a homo-
geneous region (where [é?JZ ] = [0]) and that couple in a
region of inhomogeneity (where [d;L ] #[0]). \ N

In Appendix B, it is shown that the elements of [L] can
be expressed in terms of the vertical acoustic wave admit-
tance

Y= (2141/2141)]/1»

a quantity that, for @, €R *, is real and positive. (Note that
this wave admittance is the same for up- and downgoing
waves, even in the case of an anisotropic fluid.) The relevant
expressions are

(27)

2379 J. Acoust. Soc. Am., Vol. 88, No. 5, November 1990

L,=QY) ' L,=(QQYy) '~

(28)
Ll.l — (Y/2)'/2,
Furthermore, the elements of [Z] are; using the proce-
dure discussed in Appendix A, found as

L,,=(Y/2)""

1

(L Y, =@/ (L H.=-—-02n "
_ (29)
(L ., =(Y/2)" (L =02n '~
With this,~ the. elements of the coupling matrix
[L]1 '[d,L ] are obtained as
(L '8,L),, =0, (L 'd,L),, = —3,Y/2Y,
(30)
(L '9,L),, = —a.Y/2Y, (L '4,L),,=0.

Using these results and writing the elements of the wave
matrix [ W] as

W,=W , W,=W", (31)
where W is the local amplitude of the upgoing wave and

W ' is the local amplitude of the downgoing wave, the sys-
tem of differential equations, Eq. (20), leads to

W +sy W =X + @YW', (32)

W' sy W' =X (8, Y2HW ,  (33)
where [cf. Egs. (B7) and (B8)]

Yy = (21.1 +4,,)/2— (4,4, (34)

v =y, + 45,02+ (4,457, (35)
and

X =L 'N),, X'=(L 'N). (36)

Note that Re(y = ) <0, Re(y ¥ ) >0 (cf. Appendix B), and
that the right-hand side of Eq. (32) contains, apart from the
coupling to the source, only a coupling, due to inhomogene-
ity, to the downgoing wave, while the right-hand side of Eq.
(33) contains, apart from a coupling to the source, only a
coupling, due to inhomogeneity, to the upgoing wave. The
coupling coefficient is, in both equations, equal to d, Y /27,
which is half of the local relative change in the vertical acous-
tic wave admittance.

In Sec. ITI, the coupled wave propagation problem is
recast in an integral-equation formulation that is equivalent
to Egs. (32) and (33).In Sec. IV theseintegral equations are
solved iteratively, and, for the transform-domain acoustic
pressure and particle velocity, the expansion equations (75)
and (76) are obtained. The zero-order term in this expan-
sion is representative for the direct wave generated by the
source; the subsequent terms are representative for the
waves that are successively reflected at the inhomogeneity
levels. The general scheme for the transformation back to
the space-time domain is illustrated for a typical general-
ized-ray constituent. The waves of order zero are discussed
in detail in Sec. V, the waves of order one in Sec. VI.

. INTEGRAL-EQUATION FORMULATION OF THE
TRANSFORM-DOMAIN COUPLED WAVE PROBLEM

The integral-equation formulation of the transform-do-
main coupled wave problem follows from Egs. (32) and

Adrianus T. de Hoop: Source in layered fluid 2379




(33) upon introducing appropriate one-sided Green’s func-
tions for the differential operators occurring at the left-hand
side of these equations. These Green’s functions are defined
through the differential equations [note the change in sign in
the second term in the left-hand side as compared with Egs.
(32) and (33)]

ENY (37)
AT+ —sy+tT+ =8(x, —x}), (38)

where §(x, ) denotes the one-dimensional impulse function
(Dirac distribution) operative at x, = 0, together with the
condition that ' and T' ' remain bounded as |x;|— co.
The relevant expressions follow as

r (x_;,x;):exp<th; N (§)d§)H(X3—x§),
' (39)

r (x5,x5) = —exp(sf: ! (§)d§)H(x; —X3),
’ (40)

where H(x,) denotes the unit step function (Heaviside
function): H(x,) = {0,},1} for {x, <0,x;, = 0,x; ~0}. In
Egs. (39) and (40), the dependence of ' andT" ' ona,
a,, and s has not been indicated explicitly. Multiplying Eq.
(32) by r , Eq. (37) by W, adding the results, and inte-
grating this result over all x,, it is found that

[T GxDW (x)]2

— Sy r =68(x, —x3),

4

:fl r (x],x;){/—i’ (x3)

+ [3:Y(x)2Y(x) W ' (x)3dxy + B (7).
(41)

The contribution from x; = — o to the left-hand side van-
ishes since I'  (x;,x}) =0 when x; <x}. At X, = oo, the
condition T (x3,x%) w (x;) —0 is enforced; this condi-
tion is certainly satisfied if the fluid is homogeneous in some
lower half-space x; > x,.,..., since, in the latter, W =0in
view of the condition of causality. With this, Eq. (41) leads
to

v (x;)zf G E ()

+ [0, Y(x,)/2Y(x;) ] 7 (x;)}dx,, (42)
where

G (x)x) = —T (x,x})

— —exp(wsJ; y (§)d§)H(xr\—x_§).
| ' (43)

Similarly, multiplying Eq. (33) by T' ' , Eq. (38) by W ',
adding the results, and integrating this result over all x,, it
follows that

[THOaxDW° (x)]s

S R e aNey
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+ [ Y(x:)2Y(x) | W (xy)dx,} + W+ (x3).

(44)
The contribution from x, = oo to the left-hand side vanishes
since I ' (x,,x4) = Owhenx;>x}. Atx, = — o, the con-

dition T * (xx,,x5) W * (x,) —0is enforced; this condition is
certainly satisfied if the fluid is homogeneous in some upper
half-space x; < X300 WIth X300 < X100, SiNCE, in the lat-
ter, W ' = 0inview of the condition of causality. With this,
Eq. (44) leads to

X

W (x,;):f G ' (xpx )Xt (xy)

+ [8,Y(x3)/2Y(x,) | W (x3)}dx,,
(45)
where

G ' (x5x) = — L ' (xy,x5)

ZCXP<~SI; 7 (§)d§)H(x§ —X3).

(46)

Equation (42) expresses W~ at depth level x} in terms of
the primary and secondary source distributions, associated
with the generating sources and the inhomogeneities, respec-
tively, in the half-space below x}. Equation (45) expresses
W+ atdepth level x/ in terms of the primary and secondary
source distributions, associated with the generating sources
and the inhomogeneities, respectively,' in the half-space
above x}. The integration over the primary source distribu-
tions is, at most, extended over the vertical support of the
generating sources; the integration over the secondary
source distributions is, at most, extended over the vertical
range of the region of inhomogeneity, i.e., over
X3min <X3 <X3may. The quantity d;Y/2Y acts, at each
depth level, as a local reflection coefficient, and it is appar-
ently the same for reflection from down- to upgoing and
from up- to downgoing waves, even in the case of an aniso-
tropic fluid. For x;. i, <X} <X3ma» Egs. (42) and (45)
constitute a system of integral equations of the second kind
from which W~ and W * in the region of vertical inhomo-
geneity can, in principle, be determined. Once this has been
achieved, Egs. (42) and (45) can be reused to determine
W~ and W for any x}.

IV.ITERATIVE SOLUTION TO THE SYSTEM OF
INTEGRAL EQUATIONS

To elucidate the structure of the system of integral equa-
tions and investigate the possibilities for their iterative solu-
tion, Eqs. (42) and (45) are written in the operator form

W =W, +K W+, (47)
Wi=w, +K'W , (48)

where
o= [ T a0k @odx, (49
W (x1) =J G ' (x5x)X ' (xy)dx,, (50)
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and the operators K ~ and K * are defined through

(K qunzj G

Xy ooy

(x5,%3)

X [0y Y(x3)/2Y(x3) | W ' (x3)dxs,

(51)
(KW )(x;):Jﬁ @’(xﬁ,xx)
X [0, Y(x:)/2Y (x) W (x,)dx;,
(52)

respectively. Equations (47) and (48) suggest the possibil-
ity of an iterative solution of the Neumann type by repeated
substitution of Eq. (47) in Eq. (48) and vice versa. After
carrying out N steps (N = 1,2,...), the result is

W =W, +K W,)+K K'W; ++A4A,,
(53)
W'i=W,+K' W, +K'K W+ +A,
(54)
where

if N is even,

Ai B [(K fK + )N/Zﬁ/f’
YTl K )W 2R ) f N s odd,
(55)
AL :[(K‘K YWOW ~ if N is even,
: (K 'K )Y Y2k @ ifN is odd.
(56)

To investigate the convergence of the procedure, it is ob-
served that, for x,,, <x}<xi,,.. (note that s is real and
positive),

X WKMﬂMfwkmyﬂﬂ%—muw}

- A(S)M 1— exp[ - 57/('x1;mu\ - x; ) ]
sy
<A(s)M /sy, (57)
and
K I7V|<A(S)Mf ‘ exp[sy(x; —x}) dx,
:A(S)M 1 — exp[ - SV(X; — Xamin )]
sy
<A(s) M /sy, (58)
where \
A(s) =max, \{|I7V |,’17V Y (59)
M=max, . . [0,Y/2Y], (60)
y=min, . [Re(—7 )Re(y")]>0.  (61)
On account of Egs. (57) and (58),
Ay <A (M /sp)?, (62)
and
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[AS [<A() (M /sp)™. (63)

To draw further conclusions from Eqgs. (53) and (54), the
real, positive time Laplace-transform parameter is taken in
the semi-infinite interval

s>M/y, (64)

which can always be done since M is independent of s, posi-
tive and bounded, while ¥ is independent of s, positive and
bounded away from zero. Under the condition of Eq. (64),
the limit N— o is taken in Eqgs. (53) and (54). Since A(s) is
independent of N, |A; | -0 and |A{ | -0 as N— . Upon
summing the remaining convergent infinite series, the in-
equality

A(s)<A, (8)/[1 — (M /sy)] (65)
results, where
Ay () =max, . .. .. (] W() s Wr)# ). (66)

Hence, A(s) is a bounded function of s in the interval of Eq.
(64) if A, (s) is so. The latter condition is satisfied if the
source is taken to be a point source in space with, at most, a
delta function (Dirac distribution) time dependence as Eqgs.
(49) and (50), with the use of Egs. (3), (17), (18), and
(36), and the property {|G  |,|G ' |}<1 [cf. Eqgs. (43) and
(46) ], show. This choice does not restrict the applicability
of the method, since an extended source in space can be tak-
en care of by an appropriate weighted integration of the
point-source result over the spatial support of the source,
and different time dependences of the source can be handled
by a time convolution of the source signature and the Dirac
impulse result. Without loss of generality, it is, therefore, in
the further analysis, assumed that

gt (x,,.0 = {F/\';S’Qs}(l‘)é(-xt XauXy — X35)3 (67)
i.e., the point source is located at x, =0, x, = 0, x; = x,.
Under the conditions indicated, Egs. (53) and (54) define a
convergent iterative process that leads to bounded values of
W and W for values of s in the interval of Eq. (64) and
real values of @, and «;. In view of Lerch’s theorem,* any
procedure of transforming back to the time domain after the
inverse spatial Fourier transformation of Eq. (6) has been
carried out then leads to the unique space-time expressions
for W and W * . It will be shown that the modified Cag-
niard method is an appropriate tool in this respect. To apply
the method, the expressions for the transform-domain wave
amplitudes resulting from Egs. (53) and (54) are written as

o)=Y W, (x), (68)
n—0
Wi =S W, (x), (69)
o )
with
Wy (x5) =G (x},x,5)X (70)
W, (x5) =G ' (x},x, )X *, (71)
Wwwﬁ>:0“fé ummkuanuan

XH(X3 0, —Xx5), for n=0,1,2,..., (72)
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é ‘ (x;,x3 )jé(xj.)ﬁ/,, (X3 )dx3>

R

— Xamin )y for n=0,1,2,..., (73)

where
R=1[d,Y(x,)/2Y(x:)] (74)

is the local reflection coefficient due to inhomogeneity (see
Fig. 2). In Egs. (68)—(74), the dependence on ¢, and s has
not been indicated explicity.

Note that the kind of reasoning employed here cannot
be used when a Fourier transformation, with respect to time,
with a real angular frequency transform parameter, is car-
ried out and the inversion back to the time domain is based
on the Fourier inversion integral. The latter employs, in fact,
imaginary values of the time Laplace-transform parameter s,
to which values Lerch’s theorem does not apply, and for
which, most importantly, the estimates of Egs. (57) and
(58) are lost.

Equations (68) and (69) entail, via Eq. (19), the fol-
lowing transform-domain representations for the acoustic
pressure and the vertical component of the particle velocity:

p(xy) = [2Y(x5)] '

x(i W+ S W, (xg)), (75)

n=0 n=0

by (x5) = [Y(x4)/2]"”

><( - > W, D+ D W )) . (76)
n=20 n=20

Furthermore, for the two cases of practical importance of a

point source of volume injection (acoustic monopole trans-

ducer, explosion source) and a vertical point force (vertical

acoustic dipole transducer, vertical mechanical vibrator),

the excitation terms are [cf. Egs. (36) and (67)]

X = [Y(x15)/2] " Frg (9)8(xy — X)

C[2¥(x)] 0498k, — xy)) (TT)
X = [Y(x05)/2] 7 F s ()80, — Xg)
+[2Y ()] 0 ()8 —xyg). (78)

As a congequence, a typical term of order # in the right-hand
sides of Egs. (75) and (76) consists of an n-fold repeated
integration in the vertical direction, the limits of which are
the successive interaction levels of multiple reflection. In
them, the exponential functions, which contain in their argu-
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ments additional integrations from the source level to the
receiver level are gathered to a single one. The factor that
remains in the n-fold integral is the product of one of the
source signatures [F s (8)or QS (s) ] that depends only ons,
on an s-independent coupling coefficient [ ¥(x;)] """
that describes the coupling of the source to the wave, on the
s-independent reflection coefficients R at the successive in-
teraction levels of multiple reflection, and on an s-indepen-
dent coupling coefficient [ ¥Y(x})] * /? that describes the
coupling of the wave to the receiver (hydrophone for the
acoustic pressure, geophone for the vertical component of
the particle velocity).
For further analysis, such a typical term is written as

U :§(s)ﬁ(iaﬂ)exp(—sf v~ (ie,.5)ds

JeZ

—sf ! (l‘a“,g‘)dé‘).
e/ !

Here, S stands for the source signature, I1 for the product of
coupling coefficients and reflection coefficients, Z — for the
accumulated vertical travel path traversed by the upgoing
waves, and Z * for the accumulated vertical travel path tra-
versed by the downgoing waves, Both Z ~ and Z * may, in
part or entirely, be multiply covered. In accordance with the
property Re(y~ ) <0 and Re(y ™ ) >0, the vertical travel
paths can be written as Z — = {{eR;x, <& <x; } for some
x;',and Z ¥ = {{eR;x; <{ <x,} for some x;, and, con-
sequently, the signed vertical path lengths satisfy the in-
equalities [, d0<0 and §. . d5>0, respectively. Ex-
pressions of the type (79) Wlll just as in the case of dis-
cretely layered media, be denoted as generalized-ray con-
stituents.”'" Their transformation back to the space-time
domain with the aid of the modified Cagniard method is
discussed in Appendix C. The final result is

(79)

U:c?ff S(t—7m)g(x,7)dr, (80)
1,
where
W, (x,7) c?p
g= — (2m")" ‘f (H(p W)p )dw
=W\ (x,7)
XH(r—1,), (81)

in which T, is the arrival time of the generalized ray con-
stituent, H(7) is the Heaviside unit step function, and p is
related to ¢ and 7 via the equation of the modified Cagniard
path

pdeos)+ [y (o
ez
+f Y (ph$)dE =7, with Im(r) =0. (82)
el

In going from Eq. (79) to Eq. (80), the x, axis of the
Cartesian reference frame is chosen along the horizontal line
joining the source and the receiver, and d is the horizontal
offset.

It is to be noted that for obtaining the correct early time
asymptotic expressions for the total wave amplitude at and
immediately behind the wave front, all contributions that
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travel in a particular direction (up or down) must be added,
since they all arrive at the same instant as the direct wave, be
it with decreasing initial amplitudes. This kind of asympto-
tics is investigated in Refs. 21 and 36. Our decomposition
yields expressions for the successively reflected waves at al/
times; we have not yet been able to sum up these contribu-
tions analytically, for example, at the wave front.

In the two subsequent sections, the waves of orders zero
and one are discussed in more detail for the case of the acous-
tic pressure due to a point source of volume injection. The
expressions for the particle velocity, and the expressions for
the acoustic pressure and the particle velocity of the waves
transmitted by a force source follow in a similar manner.

V. THE WAVES OF ORDER ZERO

In this section, the acoustic pressure of the waves of
order zero transmitted by a point source of volume injection
is discussed in more detail (see Fig. 3). For this case, Eq.
(75) yields

P=Dy +[~70+! (83)
where, in view of Egs. (43), (46), (70), (71), (77), and
(78),

5

Da (xz)ﬁQs(S‘)[éi-Y(_x )Y(xls)] 12
Xexp(

Bo (x3) = 0 (5) [4Y(x1) Y(x, )]

Xexp(—.sfﬂ 7! (§)d§>H(Xﬁ — Xpy)-
T (85)

The theory of Appendix C leads to the following time-do-
main results:

py (X',1) = (8,2 f Qs (t— 78y (x’,T)dT)
r=T,

7/ (g)d§>H(X\ —Xx}),
(34)

XH(x;. —x3), (86)
where
I(x.m) :
g8, = — (47) 'f Re{[ Y(p,¥h,x})
O U G ]
1 {0p
X Y(phx )] pl—=—|dY, (87)
or
—————————— T3:min T
recelver
source
source
I3
o TECEET rpiax mmmmmmmm e

FIG. 3. The waves of order zero.
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in which p is related to ¢ and 7 via the equation of the modi-
fied Cagniard path

pd cos(¥) +j

&= Xy

X4

Yy (ph,0)de =7, with Im(7) =0

(88)
and

})()Jr (X,:t)
= (aff Oy (t—1)gy' (x',T)dr)H(xg — Xys)s
=1
(89)

where
W, (x,7)

g(¢=—(4ﬂ2)*’f
i

=W (x,7)

Re{ [Y(p.xi)

K¥phxs)] (L) aw, (90)
T

in which p is related to ¢ and 7 via the equation of the modi-

fied Cagniard path

pd cos()) +J rt(p,,6)ds =7, with Im(r) =0.

£= X3y

€29)

Equations (84) and (85) have some resemblance to the
corresponding WKBJ-result in the frequency-angular-
wave-number analysis. Note, however, that, in the present
analysis, they are the first step in a convergent iterative pro-
cess, and that Eqs. (86) and (87) and (89) and (90) hold
exactly for all observation times after the arrival of the wave
and not just asymptotically behind the wave front, as the
seismograms of Singh and Chapman?' and Garmany?**
do. Furthermore, observe that no difficulties with turning
points occur, since the latter simply to not arise in the s-
domain treatment of the problem.

receiver

N

source source

receiver

Z3:min
receiver

source source

receiver

FIG. 4. The waves of order one.
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VI. THE WAVES OF ORDER ONE

In this section, the acoustic pressure of the waves of
order one, i.e., the waves that have undergone a single con-
tinuous reflection associated with the transmission by a
point source of volume injection, is discussed in more detail
(see Fig. 4).
|

B (X)) = Qs () [4Y(x}) Y(x,0)]

For this case, Eq. (75) yields

13:[71 +1~71" (92)

where, in view of Eqs. (43), (46), (70)-(73), (77), and
(78),

xU ie(x;)exp(—sf y ds—s [ 7/*<§>d§)dx3]
N mandxhae ) SN P

XH(X_;”"“\ - -x‘,l )H(‘xl:mu\ - x3:.§‘)’

min(xiy, )

B (x)) = Oy () [4¥(¥) Y(xys)] 7 U
XH(X2 — Ximin )H(xx;_s‘ — X3.min )

(93)

AW

f(’(x})exp(—sf' | y! (g)dg—sf ‘ ¥ (§)d§>}

(94)

The theory of Appendix C leads to the following time-domain results:

P, (xX,1) = (3,2 f Qu(t —7)dr
T i

><f 8 (X,T)dx1>
X man{aixg )

XH(X}:mu\ _ X; )H('x}:nmx - x}:S)9 (95)

where

g = — (47)

Wax.r)
X f Re[ [Y(pox)Y(pihxis]
Yoo (KT

Y R(pothx, )p(@)]d;@ (96)
or

in which p is related to  and 7 via the equation of the modi-
fied Cagniard path

534

pd cos(i)) +f v (ph)dS

O= X3

ASY
—'_ J
=Ny

Y (p,$)YdE =7, with Im(7) =0 (97)

and
Pﬁ (x',0)

i min(xLy, )

:‘(aff QS(I—T)de g (x,r)a’x;)
T 1, XU N
XH(X; — Xzmin )H(XJ:S — Xamin )7 (98)

where \
gl‘ [ (477_2) i

Wa(x.r)
Xf Re[ [ Yo, x ) Y(p.hxss) | .
=\ (X7)

X R (p,ih,x; )p(a—")}dw, (99)
or

in which p is related to ¢ and 7 via the equation of the modi-
fied Cagniard path
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r

v (p$)dS

X%
Iy

pd cos() +f

Sy

+f Yy (p,$)dé =1, with Im(7) =0. (100)

VIi. THE CASE OF AN ISOTROPIC FLUID

For an isotropic fluid, p, . = pd, ,, where p is the scalar
volume density of mass. In this case,

vy = —yandy’ =y, (101)
where

y=("*+a,a,)'? (102)
in which

c= (pK) ~ 172 (103)

in the acoustic wave speed. Furthermore, the vertical acous-
tic wave admittance becomes

Y=1v/p. (104)

For the isotropic case, the version of the modified Cagniard
method, where the variable of integration i, is replaced by
the complex variable p and «, = ¢ is kept real, seems most
appropriate (see Ref. 3, and Ref, 12, Secs. 4.4, 5.4.2).

VIil. CONCLUSION

A convergent time-domain iterative scheme has been
developed for computing exact transient responses from im-
pulsive acoustic sources present in a continuously layered
fluid. It employs the modified Cagniard method. The nu-
merical effort involved for a Dirac impulse source signature
consists of carrying out certain integrations in the depth co-
ordinate, the determination of the modified Cagniard paths
for given positions of a source, receiver, and reflection levels,
and a final integral over a finite range. For other source sig-
natures, the impulse response has to be convolved with the
relevant source signature. To demonstrate the generality of
the method, the fluid has been taken to be anisotropic by
introducing a tensorial volume density of mass. The time
Laplace-transform parameter is kept strictly real and posi-
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tive (as Cagniard did). Thus causality is ensured, while it
gives rise to a new result on the convergence of the associated
time-domain ‘‘Bremmer series.”
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APPENDIX A: THE TRANSFORM-DOMAIN TIME-
CORRELATION TYPE RECIPROCITY RELATION

In this Appendix the transform-domain time-correla-
tion type of reciprocity relation pertaining to an anisotropic
continuously layered fluid is derived and some of its conse-
quences are discussed. A reciprocity relation interrelates, in
a specific manner, two states of a field that can occur in one
and the same domain in the space where the relevant field is
defined. The reciprocity relation that is needed in the present
analysis is the one pertaining to the transform-domain
acoustic pressure and vertical component of the particle ve-
locity; general space-time reciprocity relations are discussed
in Refs, 45 and 46. Let { p",0y} and { p”,5%5} denote the two
states; then, the interaction quantity to be considered is

a] (ﬁ”v‘( p lvf) - (a —B)UA: _*_p'li(ax {)1,)

+ (:pH08 + p'(3,7Y), (AD)
where

{p" 08} e, x;,8) = {B" 08} G, x5 — 5). (A2)

Using Egs. {7)—(9) on the right-hand side of Eq (Al),itis
found that

a (pliv!_}_plvéi)
=s(p? —plory! + s(e” — k)P
FRF AL T (A

Bl

Equation (A3) is the desired reciprocity relation. To derive
from it the relations for the acoustic wave field that are need-
ed in the main text, it is assumed thatp”, = p}, and 1P =i,
If these relations hold, the fluids in the two states are denoted
as each others’ adjoints. If the relations hold for one and the
same fluid, such a fluid is denoted as self-adjoint. In the main
text, a self-adjoint fluid is considered, but the analysis of this
Appendix is kept more general. Under the conditions indi-
cated, the terms associated with the fluid properties on the
right-hand side of Eq. (A3) vanish and only the terms asso-
ciated with the sources remain. In particular, the right-hand
side of Eq. (A3) then vanishes at a source-free level in the
layered fluid. In terms of the acoustic field matrix [cf. Eqgs.
(11) and (12)1, the interaction quantity is expressed as

BB + B0 =F(C B 7 (A4)
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in which the elements of the matrix [C] are given by

C¢,,=0 C,L=1 (C,=1 C6,=0 (A5)
Substituting Eq. (A4) in Eq. (A3), and applying this equa-
tion to a source-free level, the following relation is obtained:
d; (_FQCL‘P?;’) = (aRF‘ﬁ)CL,QFJQI +FZCK.1’(53F}£) =0.

, (A6)

Subsequent use of the source-free versions of Eq. (10) for the
two states leads to

S_F;\g (Z flx CL.Q - CKZI’Z I‘Q )FZ) =0. (A7)
Since Eq. (A7) hgs to hold for any two linearly independent
choices of both [F*] and [F "], it follows that

Z fA CL‘Q = C.’\'ZI’Z '}l{Q’ (A8)
arelation that also gollows by direct inspection of Egs. (13)—
(16). (Note that [ 4] is independent of 5.} Equation (A8) is
equivalent to

Z fl\ = CI\".PZ }l’.QCQ.I}' (A9)

Since under a transposition and a similarity transformation
the eigenvalues of a matrix are invariant, the eigenvalues of
[4"]7, where* T means “transpose,” are the same as those
of [A']. For the rest of the analysis, they will be numbered
in the same order. With [cf. Eq. (22)]

ALy =Ly (L) k (A10)
and

Ao =Ly (L (Al1)
Eq. (A9) leads to

LEyy"CroLl py =LiuCarLljxy™.  (A12)

Assummg that all eigenvalues of [A] are different, Eq.
(A12) implies that [L?]"[C][L"] is a diagonal matrix,
the values of the elements of which depend on the normaliza-
tion of the eigencolumns of [4]. For waves that are outgoing
as x, —» — oo, the normalization is taken such that

pli(A\')i*).}!(A\') +ﬁ.'1(:\')5§1‘( Ny 1, (A13)

while, for waves that are outgoing as x; — oo, the normaliza-
tion is taken such that

pli(\) 1(\)+p (N5 Ii(\):L (A14)

With this, the elements of [Z 2]17[C ][L "] have the value

— 1 on the diagonal at those positions that correspond to
waves that are outgoing as x; -» — o« and the value 1 at
those positions that correspond to waves that are outgoing as
X4 — o0. Owing to the structure of [4], [L2]7[C]hasasits
rows the columns of [L ], but with the acoustic pressure
and particle velocity parts in the adjoint fluid interchanged.
Hence, the inverse of [L] for a particular fluid is found by
interchanging in its transpose, applying to the adjoint fluid,
the acoustic pressure and particle velocity parts, and chang-
ing the sign in the rows that apply to outgoing waves as
X, — — oo, but keeping the sign in the rows that correspond
to outgoing waves as x — . Matrix inversion is, therefore,
not needed for this. Observe that, in this whole procedure, it
has been used, and that [ 4], and therefore [ L], are indepen-
dent of s. With the normalization thus carried out, it also
follows that
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d, (Z ﬁ’.M C/(.pz ‘)IA,\') = (0"32 ﬁ;w )C,\;pz ,i\
+ L 2;\1 Cyp (a}Z '1‘>.A\' ) =0.
(A15)

Application of Eq. (A15) to a self-adjoint fluid and taking
M = N, the two terms in the middle of the result are equal
and, hence,

Ly s CxpOiLpy =0, for M=N, (A16)

which implies that, for a self-adjoint fluid, [LZ] '[d;L ]
has zero values on its diagonal. These properties have been
used in the main text.

Another consequence of the normalization is that

d, [L—Vfl],wu\' W\‘ ] =0 (A17)

in any source-free subregion of the configuration. Here, [J]
is the matrix with elements

Jyo=-1 J,=0 J,, =0, J,=1 (A18)

Equation (A17) follows from Eqgs. (A6) and (19) and the
properties of [ L] derived thus far. F urthermore, it is under-
stood that W, applies to upgoing waves and W, to downgo-
ing waves. As a result, [W2]7[J]1[W"] is a propagation
invariant in source-free regions; its value can most profitably
be calculated in the homogeneous outer regions of the con-
figuration.

APPENDIX B: THE VERTICAL PROPAGATION
COEFFICIENTS AND THE VERTICAL ACOUSTIC WAVE
ADMITTANCE

The columns of [ L], normalized as in Appendix A, for a
self-adjoint fluid can conveniently be expressed in terms of
the acoustic wave admittance of the up- and downgoing
waves. For a column that refers to a wave that is outgoing as
Xx; —» — oo (upgoing wave), the vertical acoustic wave ad-
mittance is introduced through

v, = —Y p (B1)

and for a column that refers to a wave that is outgoing as
x; — oo (downgoing wave) through

o =Y *phl. (B2)
The orthogonality property

Py +p 0 =0 (B3)
that follows from Eq. (A3) leads to

Y =YY" =7, (B4)

where Yis the common vertical acoustic wave admittance of
up- and downgoing waves. The normalization conditions
Eqgs. (A13) and (A14) next lead to

pr=p =02V (B5)

To express Y in terms of the fluid properties and the trans-
form parameters, it is observed that the vertical propagation
coefficients ¥ and ¥ ' of the up- and downgoing waves,

respectively, are the eigenvalues of the matrix [4]. Hence
they satisfy the quadratic equation

7’2“ (21.1 +Zz,2)7/+21.122‘2 _21.222«1 =0. (Bo)
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Now, for the self-adjoint fluid under consideration,
ZL] = ;4-3‘2, as Egs. (13) and (16) show, while the positive
definiteness of the tensorial volume density of mass ensures
that4,, >0and 4, , > 0. [For the former, this follows upon
taking in v o, .0, > 0,0, = — (p; '), .P.0:; for the latter,
it follows from the observation that @, (p; '), ., >0. The
two solutions of Eq. (B6) are given by

Yy = (;11.1 +Zz‘z )/2 — (21,222.1 )", (B7)
7! (21.1 +Zz.z )/2 4+ (214223.1 )2 (B8)

Obviously, ¥ and y' are complex with the same imagi-
nary parts, while Re(y ) <0 and Re(y " )>0; further-
more, ¥ and ¥+ are independent of 5. Next, it is observed
that the first equation of Eq. (10) in a source-free domain
yields

—sy P +5(ZL11~7 ‘*‘214353 ) =0. (B9)
Using Egs. (B1), (B2), (B4), and (B7), it follows that
Y=(4,,/4,,)", (B10)

where the property A, , = 4, , has been reused. Note that ¥
is real and positive, and independent of s.

APPENDIX C: THE MODIFIED CAGNIARD METHOD
APPLIED TO A GENERALIZED-RAY CONSTITUENT

In this Appendix, the transformation back to the space-
time domain of the generalized-ray constituent Eq. (79)
with the aid of the modified Cagniard method is discussed.
Using Eq. (6), the s-domain expression corresponding to
Eq. (79) is given by

~ s \2 A~ ~
U= (-) S(s)f fiie,)
21 a“ERl

Xexp[ — s(ia/,x,, + J vy~ (ia, NaY/s
seZ

+j y*(z’au,é‘)d§>]da“. (ChH
LeZ !

So far, the orientation of the horizontal axes of the chosen
Cartesian reference frame is arbitrary. This arbitrariness is
now exploited to simplify the further analysis. A convenient
choice is to take one of the axes, the x, axis, for example,
along the straight line joining the projections of the source
and the receiver, respectively, on the horizontal plane. Ac-
cordingly,

x;, =d, x,=0, (C2)

where d > 0 is the horizontal offset between source and re-
ceiver. (Note that, as a consequence, the components of the
different tensors and vectors, with respect to this reference
frame, occur in the wave-field expressions.) For the present
case of an anisotropic medium, the most appropriate version
of the Cagniard method seems to be one where the variables
of integration i, in Eq. (C1) are replaced by

ia, =pcos(y), ia,=psin(yh), (C3)

where p is positive imaginary and 1 is real in the interval
(0,27). With this, Eq. (C1) changes into

A PN 27 fom
U=— (i) S(s) dwf (p.¥)
27 =0 p=0

Adrianus T. de Hoop: Source in layered fiuid 2386




><exp[ —s(pd cos + [ v s
weZ

T (p,¢,§>d§)]pdp, (C4)

LeZ !
where ﬁ(p,l//) stands for ﬁ[pcos(t//), psin(y)] and

' (phC) fory ! [pcos(¥),psin(¢¥),{]. Next, the period-
icity of the integrand in ¥ is used to replace the interval

(0,27) of integration by ( — 7/2, 37/2), the integrals over .

the intervals ( — 7/2, 7/2) and (w/2, 37/2) are taken to-
gether, and the property is used, such that, for imaginary
values of p, we have [ (p,yf + ) = I1( — p,) = IL(p,h)*
and r YT =y (=phl) =7 (o),
where * denotes the complex conjugate. This procedure
leads to

> ~ /2 i .
U= - (S_) S(s) f dy ReU (p.)
27 = /2 p-0

XCXP[ - S(Pd cos(¥) -+ J y (pg)ds
Jel

+J 7' (p,¢,§)d§>]pdp} ~ (Cs5)
el

The essential feature of the modified Cagniard method
consists of replacing the integration with respect to p along
the positive imaginary axis, through continuous deforma-
tion, with one along a modified Cagniard path that follows
from

pd cos () +J- ¥ (pg)dé
el

[ v wwpde=r, (08)
weZ
with 7 real and positive. The admissibility of the contour
deformation rests on the applicability of Cauchy’s theorem
and of Jordan’s lemma, according to which the contribu-
tions from joining circular arcs at infinity vanish, provided
that the contour deformation takes place into the right half
of the p plane. The only singularities of the integrand are the
branch points due to the occurrence of 4 17 in the expres-
sions for IT and y ' , i.e,, the zeros of 4, ,. These zeros can
easily be proved to reside on the real p axis. (This would not
be the case if the de Hoop? version of the modified Cagniard
method had been used; see also Ref. 12.) From Eq. (C6), it
follows that the part of the real axis from the origin to the
branch point nearest to the origin, as well as the complex
path that satisfies the equation and has a straight asymptote
as 7— o, is a candidate for a modified Cagniard path. As to
the complex part of the modified Cagniard path, two possi-
bilities exist: (a) It intersects the real p axis at a regula¥ point
of the left-hand side of Eq. (C6), in which case 7 reaches, at
that point, a minimum that follows from equating to zero the
expressions for dr/dp that follows from Eq. (C6); (b) the
modified Cagniard path touches the real p axis at the branch
point of 4 }/? nearest to the origin [i.e., a singular point of the
left-hand side of Eq. (C6) ]. The two cases are shown in Figs.
C1 and C2, Which of the two cases applies depends on the
vertical profiles of the constitutive parameters, the mutual
positions of source and point of observation, and the reflec-
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Im(p)'

FIG. C1. Complex part of
modified Cagniard path
where 7 reaches a minimum
at a regular point.

tion levels of the generalized ray. Note that, in the latter case,
the modified Cagniard path must, in the immediate neigh-
borhood of the branch point under consideration, be re-
placed by a circular arc around that branch point since the
branch point of 4}/ is a simple pole of R = d, Y /2Y. If the
latter situation occurs, one can therefore expect a relatively
large contribution from such a generalized ray to the total
wave motion. A generalized ray of this type is the time-do-
main counterpart of a turning ray in the asymptotic frequen-
cy-domain treatment of the problem. Along the modified
Cagniard path, 7is introduced as the variable of integration,
and the integrations with respect to 7 and ¢ are inter-
changed. The final result can be written as

U= s°S(5)G(x,5), (CT)
in which
(A}’(x,s) = f exp( — sT)g(x,7)dT, (C8)
T
with
W(x.) - a
glx,7) = — (27) 'f Re[II(p,zﬁ)p(——p—)]d;//.
do- W (x.T) ar
(C9)

For details of the procedure, in particular of the composition
of the y-integral in the different 7-intervals, we refer to van
der Hijden,'* Secs. 4.6, 6,4, and 7.4.

The time-domain counterpart of Eq. (C7) is

!
U:é?,lJ‘ St — mg(x,7)dr, (C10)
soT
in which, in view of Lerch’s theorem,** applied to Eq. (C8)
1

g= — (2m)

WX -
X U Re[ﬂ (p,;/f)p(a—p)dl/f}
Yoo W (x.T) or

XH(r—1), (C11)

where H(7) denotes the Heaviside unit step function:
H(r) =1{0,4,1} for{r <0, 7 =0, 7> 0}. Obviously, 7, is the

Im(pﬁ

FIG. C2. Complex part of
modified Cagniard path
where 7 reaches a smallest
value at the leftmost branch
point of 4 17,

O
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arrival time of the generalized ray constituent under consi-
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