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A convergence criterion is derived for the iterative Rayleigh-Gans-Born approximation (or Neumann expan-
sion) applied to the time-domain integral equation for the scattering of transient scalar waves by an inhomoge-
neous, dispersive object of bounded extent, embedded in a homogeneous, nondispersive medium. The criterion
is independent of the size of the object and contains only a bound on the maximum absolute value of the
contrast susceptibility of the object with respect to its embedding. Three types of contrast susceptibility
relaxation function are considered in more detail: one for an instantaneously reacting (i.e., nondispersive)
material, one for a dielectric with a Lorentzian absorption line, and one for a dispersive metal. For the last two
cases the convergence proves to be unconditional if the object is embedded in vacuum. The proof makes use
of the time Laplace transformation with a real, positive transform parameter and Lerch’s theorem on the
uniqueness of the one-sided Laplace transformation, which implies that causality of the wave motion plays an

essential role.

1. INTRODUCTION

One of the standard procedures used to calculate the wave
function associated with the scattering of waves by a
penetrable, inhomogeneous object of bounded extent, em-
bedded in a homogeneous medium, is to solve the domain
integral equation of the second kind that results from con-
sidering the object as the source domain of the scattered
wave field. We shall use the source-type integral repre-
sentation for this wave field, relate the contrast volume
source distribution in the object to the total local wave
field through the constitutive relation of the material oc-
cupying the object, and require field reproduction through-
out the object. An analytic procedure used to solve the
relevant integral equation is to employ the Neumann ex-
pansion (also known as the iterative Rayleigh-Gans-Born
approximation), a procedure that is expected to converge
for not-too-large contrasts and not-too-large-sized objects.
In the frequency-domain analysis of the problem (i.e., for
time-harmonic waves) a convergence criterion containing
a combined sufficiency bound on the maximum contrast,
the size of the object, and the wavelength of the incident
radiation can relatively easily be found. For reference, a
derivation of this criterion is included.

The major part of the paper is devoted to the time-
domain aspects of the problem, which occur when the inci-
dent radiation is considered to be transient in nature. It
is shown that a sufficient condition for the iterative proce-
dure to converge is that the maximum value of a properly
defined relative contrast of the object with respect to its
embedding is less than one; the size of the object does not,
contrary to what one would expect, occur in the criterion.
The proof makes use of the one-sided Laplace transforma-
tion with respect to time and Lerch’s theorem on the
uniqueness of this transformation, so causality of the wave
motion plays an essential role.
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Arbitrary inhomogeneity and dispersion properties of
the object are taken into account. The embedding me-
dium is taken to be homogeneous and dispersion free.
Three types of contrast susceptibility relaxation function
are considered in more detail: one for an instantaneously
reacting (i.e., nondispersive) material, one for a dielectric
with a Lorentzian absorption line, and one for a dispersive
metal. It is shown that, for the instantaneously reacting
material, the iterative Rayleigh-Gans-Born approxima-
tion is convergent if the maximum of the absolute value of
the contrast of the object with respect to its embedding is
less than one, while for the dielectric and for the metal the
procedure is unconditionally convergent if the object is
embedded in vacuum.

2. FORMULATION OF THE
SCATTERING PROBLEM

In three-dimensional space R?, a scattering object is pres-
ent that occupies the bounded domain D. The domain ex-
terior to D is denoted by D’. To specify position in the
configuration, we shall use the coordinates {x,y 2z} with
respect to an orthogonal, Cartesian reference frame with
the origin O and the three mutually perpendicular base
vectors {i,,1,,1,} of unit length. In the indicated order
the base vectors form a right-handed system. When ap-
propriate, the space coordinates are collectively denoted
by the position vector r = xi, + yi, + 2zi,. The time co-
ordinate is denoted by £ In the configuration, scattering
of waves whose physical effects are characterized by the
scalar wave function u = u(r, ) takes place.

The domain D’ is occupied by a homogeneous, dispersion-
free medium, which for some applications will be taken to
be vacuum. In this medium, the waves propagate with the
wave speed ¢o. In any source-free subdomain of D', u sat-
isfies the homogeneous three-dimensional wave equation
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a%u + 8%u + 8,%u — cg7%9,%u = 0, 1)

where 9 denotes partial differentiation. The scattering
object shows a contrast in optical properties with respect
to its embedding D’. This contrast is characterized by
the scalar, causal contrast susceptibility relaxation func-
tion y = x(r,z). Then, in D, u satisfies the scalar wave
equation

a:%u + 8,%u + 38,%u — co"%,2
x [u(r, 8+ f X, )ulr, £ — t’)dt’] -0. @
§'=0

Here, x = x(x,?) represents the (causal) time response at
position r in the object if the local wave function were a
unit impulse (Dirac delta function) in time. For a homo-
geneous substance, y is independent of r. The general
analysis will be carried out for arbitrary contrast sus-
ceptibility relaxation functions. Three types of contrast
susceptibility relaxation function of separate physical im-
portance are considered in more detail.

x =0 forr € D'. In the exterior domain D' sources
are present that generate the irradiating incident wave
field u’ = ui(r,#). The scattered wave field u° = u*(, ¢) is
defined as

v =u— u. V 3)

In view of Egs. (1)-(3) the scattered wave field satisfies
the inhomogeneous scalar wave equation

32w + 9,%u’ + 8% — ¢ %0, = —¢°, 4)

in which

©

X, )u(r,t — £)de,0|,

t'=0

g(r, 1) = [*%"2332
re{D D} (5)

is the contrast volume source density of the scattered
wave. The scattered wave function can be expressed in
terms of its contrast volume source density through the
retarded potential

wiey = [ TEZ v = rlfen) gy ®)

reD 41T|l' bl l‘ll

It is now assumed that the sources that generate the

wave field start to act at the instant # = 0. Then, causal-
ity requires that u(r, £), u'(r, t), and u*(x, £) vanish at all r
for ¢ < 0. - Taking a one-sided Laplace transformation ac-
cording to

a(r,s) = I ioexp(—st)u(r, t)yde v (7

transforms Eggs. (4) and (5) into
axZﬁs + ayZﬁs + azzﬁs _ (sz/coz)ﬁs = _ﬁs, (8)
¢ = [~(s*/®)R4,0], re{DD}, )

where the rule 9; — s and the product rule for the Laplace
transformation of a convolution integral have been used.
For our further analysis, s is taken to be real and positive.
Then, Lerch’s theorem (see Widder!) ensures that there is
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a one-to-one correspondence between a causal time func-
tion and its Laplace-transform-domain counterpart,
provided that the time function is continuous and is, at
most, of exponential growth as ¢ — « and that equality
in Eq. (7) is invoked at the real set of points {s, =
s + nh;n = 0,1,2,...}, where s, is sufficiently large posi-
tive and 4 is positive. (At these points, the corresponding
transform integral is then absolutely convergent.) Now,
the physically acceptable wave and relaxation functions
are bounded functions of the space and time variables,
with, as a limiting case, an impulse (Dirac delta function)
time behavior. Under these conditions, their time
Laplace-transform-domain counterparts are bounded
functions of r and s for all real s > 0.

In view of Eq. (6), the scattered wave function admits
the source-type integral representation

2, s) = f G - r,8)§°(r, s)dv, (10)
rebD

in which

é(r, s) = exp(—sjr]/co)/dmx|, [r] >0 (11)

is the Green’s function (point-source solution) of the modi-
fied Helmholtz equation [Eq. (8)]. Together with

4=2a+ 4, (12)

Egs. (9)-(11) constitute, for points of observation r € D,
an integral equation of the second kind from which
& = G(r,s) for r € D is to be solved. Once this has been
done, the result is inserted in Eq. (9) to yield, from
Egs. (10) and (11), the value of 4° in all space. Then, the
subsequent use of Eq. (12) determines the value of  in all
space.

3. ITERATIVE SOLUTION TO THE
TIME LAPLACE TRANSFORM DOMAIN
INTEGRAL EQUATION

To investigate the convergence of the iterative solution to
the integral equation for the scattering problem, we write
the equation in the operator form

=14+ K, rebD, (13)
where the integral operaitor K ig defined by '

Ki(r,s) = —(s—zz) G(r — v, )%, )i(r, )V, (14)
r'eDd

Co

The Neumann expansion (also denoted as the iterative
Rayleigh-Gans—Born approximation, see Jones?) of &, as it
follows from Eq. (13), is defined as the iterative procedure

By = 1, (15)
ftn = Kfl,y = K"y, n=123,.... (16)

From Egs. (13), (15), and (16) it follows that if one carries
out N steps, the following identity results:

N
> b, =10 — KN, 17
n=0

Hence, if [K¥i| — 0 as N — «, the procedure is conver-
y
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gent, and # is given by
&=3a,= > K%, (18)

where K° = I is the identity operator.
To investigate under which conditions Eq. (18) holds, let

X(s) = maxyep|£(r,s) (19)

be the maximum of the absolute value of the time Laplace-
transform-domain contrast susceptibility relaxation func-
tion in the scattering object and let

O(s) = suprenl(r,s)| (20)

be some upper bound of the absolute value of the time
Laplace-transform-domain wave function in it; then it fol-
lows from Eq. (14) that

2
|Kar, )| < (S—Z-))‘c(s)ﬁ(s) J G - vsdv, (21
Co repD

since & is real and positive as Eq. (11) shows. (Note that
s is real and positive.)

To estimate the remaining integral at the right-hand
side of formula (21), it is observed that, again since G is
real and positive,

f G - r9)dv = G — r,5)dv, (22)
reD €B
where B is the smallest ball in which the scattering object
is contained. The integral at the right-hand side of
formula (22) can be evaluated analytically. Let R, be the
radius of B and let r be the distance from the center of B
to the point of observation; then the result is

/ 2
J G - v,5)dV = (%) [1 - (H—sﬂ) (9)
r'eB 8 Cy sr

X exp( “CSRO)sinh(g)}, r< Ry, (23)

0 Co

G(r —r,s)dV = ( )(co)exp(_—sr)
reEB S sr Co
X [(SRO) sh( 5B ) - s1nh(SR0)], r=Ry. (24)
Cp Co Cy

Carrying out the necessary differentiations verifies that
the right-hand sides of Egs. (28) and (24) do satisfy the
inhomogeneous modified Helmholtz equation with a uni-
formly distributed volume source density equal to unity
throughout B, while the corresponding wave function and
its normal (radial) derivative are continuous on crossing
the spherical boundary of B. Further, the right-hand
sides of Eqgs. (23) and (24) are real and positive throughout
space, as they should be, while their radial derivative is
negative for all 7 > 0. As a consequence, the maximum
value of the integrals at the right-hand sides of Egs. (23)
and (24) for fixed s is reached at r = 0, where it is found
from Eq. (23) to be

max,ERsJ é(r —r,s)dV

rEB -
2 -—
- ("Siz) [1 - (——1 +C:R0)exp( zj%)] (25)
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Using formulas (22) and (25) in formula (21) gives, for
fixed s,

max,eRa|Kﬁ(r: S)I
< X061 - (L + sRofecexp(~sRofea)]. (26)

Now, considered as a function of s, the expression in
brackets at the right-hand side of Eq. (26) is less than one
for any finite, real, positive value of s, while it reaches the
limit unity as s — «. Hence

|Ki(r,s)| < X(s)0(s), @7)

for all r € R® and all real, positive values of s, and,
consequently,

|KY(r,s)| < [X(s)]V0(s), 28)

for all r € R? and all real, positive values of s. From
formula (28) it is concluded that |[K"%| — 0 as N — «, and
hence the Neumann expansion of Eq. (13) is convergent if
X(s) <1and U(s) is bounded. The latter condition is al-
ways satisfied if the behavior of the incident wave field is
no more singular in its time dependence than that of an
impulse function (Dirac delta function), while the former
condition puts a restriction on the maximum absolute
value of the time Laplace transform of the contrast sus-
ceptibility relaxation function. Note, however, that this
restriction is independent of the size of the scattering ob-
ject, a result that could not be expected from the corre-
sponding frequency-domain convergence analysis (see
Section 6). [The shape of the object has been eliminated
from the discussion already with the use of formula (22).]
If the procedure is convergent, it follows from Egs. (17)
and (18) that the bound on the error after one carries out
N steps is given by
2 K"ﬁi

n=N+1

Iﬁ - ﬁNl =

< { > [ﬁs)]”}l‘f’
n=N-+1
[ A

=1-%e7 (29)

where
0'(s) = max,ep|2i(r, s)| (30)

is the maximum of |#/| over the scattering object.

4. TIME-DOMAIN ITERATIVE
RAY LEIGH-GANS-BORN APPROXIMATION

In view of Lerch’s theorem all results of Section 3 directly
carry over to the time domain, Hence the time-domain
Rayleigh-Gans-Born approximation is convergent pro-
vided that the time-domain counterpart of the conver-
gence condition

maxyep|¥(r;s) <1 (31)

is satisfied at the real set of points {s,;n = 0,1,2,...},
where

s, =80+ nh, s >0,k>0. (32)




Adrianus T. de Hoop

Note that in this condition sy can still freely be chosen,
provided that it is positive and, in view of applications be-
low, the freedom can be exploited to take it as large as
needed. Of course, the larger the value of s, that must be
chosen in order for the procedure to converge, the more
accurately the early time behavior of the incident wave
function must be known. Also, the closer the contrast
properties of the object are to the convergence bound, the
slower the rate of convergence will be. Some specific
cases of the contrast susceptibility relaxation function
will be considered in more detail in Section 5.

The numerical implementation of the method requires,
for the first-order approximation, an integration over the
scattering domain. For the next and higher orders, the
relevant space-time integral equation has to be solved
- numerically. In the corresponding frequency-domain
analysis, recent research in this respect includes the gen-
eralized overrelaxation method discussed by Kleinman
et al® and the discrete-dipole approximation discussed
by Flatau and Stephens.* Also of importance to the
numerics of the problem is the convergence analysis of the
scattering-order formulation of the coupled-dipole method
discussed by Singham and Bohren.® ,

For some results on the time-domain far-field scatter-
ing of plane waves in the first-order approximation by ob-
jects of various shapes, see de Hoop.®

5. THE CONTRAST SUSCEPTIBILITY
RELAXATION FUNCTIONS CONSIDERED

Three types of contrast susceptibility relaxation function
of direct importance to optics will be considered in more
detail below.

Instantaneously Reacting (Nondispersive) Material

For an instantaneously reacting (i.e., nondispersive) mate-
rial the contrast susceptibility relaxation function is of
the form

x(x, ) = x1(r)8(2), (33)

where 8(¢) is the temporal unit impulse (Dirac delta func-
tion). Then,

x(®,s) = x1(r) (34)

is independent of s. For this class of materials the condi-
tion for the convergence of the iterative Rayleigh—-Gans—
Born approximation is [ef., formula (31)]

maxyep|xi(r)| < 1. (35)

Dielectric Object with a Lorentzian Absorption Line

Embedded in Vacuum \
The susceptibility relaxation function of a dielectric with
a single absorption line, according to the classical Lorentz
model, is given by (Born and Wolf” and Jones®)

X = xa = (0,*/Q)exp(~T¥)sin(Q)H(t), (36)

with ‘
0, = (Ng*/meo)'?, (37)
Q = (o + w,?/3 — TH2, (38)
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In Egs. (36)-(38) the symbols have the following meaning:

N, number density;

g, absolute value of electric charge;

m, mass;

€9, permittivity in vacuo;

wo, angular resonance frequency associated with the
restoring force (Coulomb force);

wp, angular plasma frequency;

I, phenomenological damping coefficient;

), natural angular frequency;

all associated with the atom’s moving electric charge
distribution. H(¢) is the Heaviside unit step func-
tion: H() = {1,1/2,1} for {t < 0,¢t = 0,¢ > 0}. In the
model, the spherical-cavity Lorentz correction has
been taken into account. The s-domain counterpart of
Eq. (36) is

- wp’ )
T8+ 2T + wo? + w,2/3

A

Xd

(39)

Equation (39) shows that %, is real and positive for all real,
positive s, and is monotonically decreasing toward zero as
s — . Hence, from a certain value of s onward, the con-
dition for convergence is always satisfied. Taking s,
greater than or equal to this value, it is concluded that, for
a scattering object of bounded extent, embedded in vac-
uum and consisting of a collection of polarizable atoms
within Lorentz’s classical theory of electrons, the time-
domain iterative Rayleigh-Gans-Born approximation is
unconditionally convergent.

Dispersive Metal Object Embedded in Vacuum
The susceptibility relaxation function of a dispersive
metal is given by (Born and Wolf?)

X = Xm = (0,7 /ve)[1 — exp(—v.)]H(?), (40)

in which o, is again the angular plasma frequency given
by Eq. (37) and v, is the collision frequency of the conduc-
tion electrons with the atomic lattice. The s-domain
counterpart of Eq. (40) is

R = (@,9)/s(s + vo). (41)

Equation (41) shows that %, is real and positive for all
real, positive s, and is monotonically decreasing toward
zero as s —> . Hence, from a certain value of s onward,
the condition for convergence is always satisfied. Taking
s greater than or equal to this value results in the conclu-
sion that, for a scattering object of bounded extent,
embedded in vacuum and consisting of a collection of elec-
trically charged particles with inertia properties and
subject to collisions with an atomic lattice within
Lorentz’s classical theory of electrons, the time-domain
iterative Rayleigh—Gans-Born approximation is uncondi-
tionally convergent.

6. FREQUENCY-DOMAIN ITERATIVE
RAYLEIGH-GANS-BORN APPROXIMATION

For completeness, the frequency-domain bound on the
convergence of the iterative Rayleigh—Gans-Born approxi-
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mation will be derived in this section. In the frequency
domain the estimates of Section 3 have to be redone for
s = —iw, where w > 0 is the real angular frequency of the
oscillations and the complex time factor exp(—iwt) is un-
derstood. For s = —iw, formula (22) is replaced by [note
that |exp(—iowlr — v'|/co)| = 1]

f Gor - v, —iw)dV < f 1 (42)
reD r

ep dmr —v]

where again B is the smallest ball in which the scattering
object is contained. The integral at the right-hand side of
formula (42) can be evaluated analytically; also, its value
directly follows from Eqs. (23) and (24) by putting s = 0.
The result is

J —————L———dV = R02/2 - 7'2/6, r < R,, (43)
b4

ep djr — 1|

f L 4 =R#sr, r=R. (44)
;] 47T|l‘ - r[

From this result it follows that

2
max; e g* j L dv = i (45)

reB 47Tl1' - 1"| 2

With the use of formulas (42) and (45) in the frequency-
domain counterpart of formula (21), the result

|Ki(r, —io)| = (0*/ed)| X(—iw)||U(-iw)|RE/2, (46)

for all r € R? and all real, positive values of o, is obtained
and consequently,

|EVi(r, —iw)| < [(@°Re/2¢)| X(~io)|]N|0(=iw)|, (47)

for all reR?® and all real, positive values of », which implies
that the Neumann expansion of the frequency-domain
counterpart of Eq. (13) is convergent if

(@*Ro*/2¢)| X(—iw)| < 1. (48)

In terms of the free-space wavelength Ao = 2m¢o/w in the
embedding, formula (48) can be rewritten as

@m?Re2 /A% X(—iw)| < 1. (49)

As formula (49) shows, the convergence condition for the
frequency-domain iterative Rayleigh-Gans-Born approxi-
mation is dependent on frequency (or the wavelength) and
on the size and the maximum of the absolute value of the
contrast susceptibility of the scattering object. *
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7. CONCLUSION

The convergence criterion for the time-domain iterative
Rayleigh—-Gans-Born approximation to the scattering of
scalar waves by an object of bounded extent embedded in
a homogeneous, dispersion-free medium is investigated.
The object may be arbitrarily inhomogeneous and may
have arbitrary dispersion properties. The convergence
condition contains only the maximum absolute value of
the contrast susceptibility relaxation function of the ma-
terial out of which the object is composed and is inde-
pendent of the size of the object. It is shown that, for an
instantaneously reacting material, the iterative Rayleigh—
Gans-Born approximation is convergent if the maximum
of the absolute value of the contrast of the object with re-
spect to its embedding is less than one, while for dielectric
and metal objects the procedure is unconditionally conver-
gent if the object is embedded in vacuum.

For reference, also the frequency-domain convergence
criterion for the iterative Rayleigh—-Gans-Born approxi-
mation is derived. The relevant convergence criterion de-
pends, in addition to the maximum absolute value of the
contrast susceptibility, on the frequency (or the wave-
length) of the incident radiation and on the size of the
scattering object. From the frequency-domain result
the time-domain convergence condition could, as far as
the author can see, in no way be deduced.

*Permanent address, Laboratory of Electromagnetic
Research, Faculty of Electrical Engineering, Delft Uni-
versity of Technology, PO. Box 5031, 2600 GA Delft, The
Netherlands.
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