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Abstract

Field reciprocity theorems can be considered to be the most basic relations
that exist in the theory of classical fields and waves. In them, two field
states occur that could exist in one and the same time-invariant subdomain
of configuration space. A specific interaction quantity, when integrated over
the boundary of the relevant domain, is then related to an integral over
the interior containing the contrast in medium properties and the source
distributions associated with the two states. Upon choosing for the two
states two physical ones, a number of interesting reciprocity relations can
be derived. Another aspect of the field reciprocity theorems is that with the
aid of them the different field problems, such as the direct source problem,
the inverse source problem, the direct scattering problem, and the inverse
scattering problem, can logically be classified, together with their solution
schemes.

The time-convolution reciprocity theorem for electromagnetic fields will
be discussed, together with a number of its consequences. In particular, Os-
een’s extinction theorem will receive attention, and its relation to Huygens’
principle will be elucidated.
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1 Introduction

The present contribution aims to show how Huygens’ Principle [1] for elec-
tromagnetic wave fields follows from the electromagnetic reciprocity theorem
of the time-convolution type and the principle of causality of the generated
wave motion. This line of approach enables one to include into the analy-
sis the action of media that are inhomogeneous and anisotropic, and that
show arbitrary dispersion (or relaxation) effects as well. Thus, an exten-
sion is reached over the classical treatments that apply to homogeneous,
isotropic and instantaneously reacting media. For the latter, Baker and
Copson [2] is the standard monograph on the subject. The only remaining
restriction is that the media in the configuration are linear, time invariant
and spatially locally reacting in their electromagnetic behavior. For such
media, the time-convolution electromagnetic reciprocity theorem has been
extensively discussed by De Hoop in an earlier paper [3]; this paper also
discusses the related reciprocity theorem of the time-correlation type and
gives a survey of the literature on the subject.

A field reciprocity theorem interrelates, in a specific manner, the field
quantities that characterize two admissible states that could occur in one
and the'same domain in space-time. In electromagnetic theory, Lorentz [4]
is commonly credited as the first to derive a reciprocity theorem. Later de-
velopments include contributions by Rumsey [5], Welch [6,7], Geurst [8], Ru
Shao Cheo [9], Kong [10], and Bojarski [11], while applications to scattering
configurations were given by De Hoop [12], to radiation by apertures by Van
Bladel [13], to multiport antennas by De Hoop [14], and to inverse scattering
by Fisher and Langenberg [15].

For the present analysis we need the time-convolution reciprocity theorem
for electromagnetic fields in time-invariant configurations that are linear and
locally reacting in their electromagnetic behavior. Asregards the space-time
geometry in which the two admissible states that occur in the reciprocity
theorem are present, this implies that this geometry is the Cartesian product
D x R of a time-invariant spatial domain D C R3 and the real time axis
R. Further, the constitutive parameters of the media present in the two
states are time invariant and independent of the field values. No further
restrictions are imposed. The position of observation in R3 is specified by
the coordinates {z1,z2,z3} with respect to a fixed, orthogonal, Cartesian
reference frame with origin O and the three mutually perpendicular base
vectors {21,12, ¢3} of unit length each. In the indicated order the base vectors
form a right-handed system. The subscript notation for Cartesian vectors
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and tensors in R3 is employed and the summation convention applies. The
corresponding lowercase Latin subscripts are to be assigned the values {1, 2,
3}. Whenever appropriate, the position vector will be denoted by = = z,1,.
The time coordinate is denoted by ¢. Partial differentiation is denoted by 0;
0, denotes differentiation with respect to z,, while 0; is a reserved symbol
that denotes differentiation with respect to ¢t. The International System of
Units (SI) is used.

The reciprocity theorem is first given for a bounded domain D. In the
analysis also the boundary 8D of D occurs, as well as the complement D’
of the union of D and 8D in R3. The unit vector along the normal to D
is denoted by v,,; it points away from D. An application of the theorem to
unbounded domains (in particular, to the entire R?) will always be handled
as a limiting case where the theorem is first applied to the ball interior to
the sphere Sa of radius A and center at the origin of the chosen coordinate
system, and next the limit A — oo is taken.

By choosing, in the reciprocity theorem, for one of the two states appro-
priate point-source solutions (Green’s functions), source-type integral repre-
sentations for the electromagnetic field quantities are derived that causally
relate the generated field to the action of its sources. Further, through the
introduction of appropriate contrast volume source densities of electric and
magnetic current, the problem of the (direct) scattering by a contrasting do-
main of finite extent, present in an unbounded embedding, can be reduced
to solving a system of integral equations of the second kind, by invoking the
condition of field reproduction in the interior of the scatterer. Next, it is
briefly indicated how the reciprocity theorem of the time-convolution type
leads, in an elegant manner, to the formulation of inverse source and inverse
scattering problems.

Subsequently, the reciprocity theorem is applied to a, bounded or un-
bounded, subdomain of space and, again, one of the states occurring in it is
associated with causal point-source solutions. Then, the theorem gives rise
to contributions from the volume sources present in the domain of applica-
tion and equivalent surface sources on the boundary surface of that domain.
For points of observation in the domain of application, the sum of the two
types of contributions reproduce the values of the field, while in the exte-
rior domain the two types of contributions cancel each other. The former
property lies at the basis of the Kirchhoff theory of diffraction [16] (see also
Kottler [17,18] and Stratton and Chu [19]). The latter property is known as
Oseen’s extinction theorem [20]. Both properties together can be regarded as
the mathematical formulation of Huygens’ Principle (Baker and Copson [2]).
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2 Some properties of the time convolution of space—time
functions

In this section we present the properties of the time convolution of space-
time functions as far as they are needed in the derivation of the reciprocity
theorem. Let fi = fi(z,t) and fo = fa(@,t) be two transient space—time
functions. By this we mean that the functions are absolutely integrable on
the entire ¢t € R. Then, time convolution of f; and f; is defined as

Clfrs fai@,7) = /teR Fu(@,1) folw, T — ) dt
= / fi(z, 7 —1) fa(z,t)dt (1)
teER

= C(fZ,fl;w’T)'

Equation (1) shows that time convolution is symmetrical in f; and fa. For
the time derivative of time convolution the rules

3:C(f1, fo;2,7) = C(f1,0:f2;2,7) = C(8cf1, f2; 2, 7) (2)

apply. For the incorporation of dispersive media in the reciprocity theorem
we also need the time convolution of three space-time functions. For this,
either of the definitions

C(f1, f2, f3;2,7) = C(f1,C(f2, fa)s &, 7) = C(C(f1, fo), fas2,7)  (3)
holds.

3 Properties of the electromagnetic field in the
configuration

In each subdomain of the configuration where the electromagnetic proper-
ties vary continuously with position the electromagnetic field vectors are
continuously differentiable and satisfy Maxwell’s equations

—Gk,m,pame-I—atDk = —J, (4)
€mrOnEr +0:B; = —Kj, (5)
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where -

E, : electric field strength [Vm™],

H, : magnetic field strength [Am™1],

Dy : electric flux density [Cm™?],

B; : magnetic flux density [T,

Jr : volume source density of electric current [Am™?],
K; : volume source density of magnetic current [Vm"2],

€kmp is the Levi-Civita tensor: €gmyp = +1if {k,m,p} is an even permuta-
tion of {1,2,3}, €xmp = —1 if {k,m,p} is an odd permutation of {1,2,3},
and €, = 0 in all other cases. Equations (4) and (5) are supplemented
by the constitutive relations. For a linear, time-invariant, locally reacting
medium these are

o0
Di(,t) = €0 / X (2,7) Ey (2t — 7)dr, (6)
T=—00
(o0}
Biw,1) = po [ Hiple,r) Hylmt=1)dr, (7)
T=—00
where
€9 : permittivity in vacuum [Fm—l],
Xkr - electric relaxation function [s"l],
fto : permeability in vacuum [Hm™],
Kjp magnetic relaxation function [s™'].

In SI, we have o = 47 X 1077 Hm™! and e = 1/pocd, with co = 299792458
ms~!. Using the notation of eq. (1), egs. (6) and (7) can be rewritten as

Di(z,t) = eoC(Xksr,Er;,t), (8)
Bj(z,t) = /‘OC(Rj,P’HP;w?t)> (9)
respectively. In egs. (8) and (9), inhomogenéity, anisotropy and dispersion.

of the medium are included.
If {x&r,Kjp}{®,7) = 0 Wwhen 7 < 0, the medium at @ is causal. If

SOXk,r(maT) = 5k,’r(w) 5(7-)7 (10)
pokjp(@, ) = pjp(@) 8(7), (11)

where 6(7) is the unit impulse (Dirac distribution), the medium is instan-
taneously reacting, and €y, and p;, are its permittivity and permeability,
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respectively. If {xks,%;p}(®,7) = 0 when 7 > 0, the medium is anti-
causal or effectual. From an energy point of view, a medium for which
{Xk s K5 p}(x,7) # 0 when 7 > 0is dissipative, a medium for which egs. (10)
and (11) hold is lossless, and a medium for which {xx,r,&;jp}(@,7) # 0 when
T < 0is active. A medium that is either dissipative or lossless is also denoted
as passive. For the reciprocity theorem itself no specific type of relaxation
function is presupposed; in our applications only causal media are consid-
ered.

It is assumed that Xk, and k;, are piecewise continuous functions of
position. At an interface between two different media they jump by finite
amounts. Across such an interface the tangential components of the electric
and the magnetic field strengths are continuous. If an impenetrable object
is present, either the tangential components of the electric or the tangential
components of the magnetic field strength have zero values at its boundary.
Through the relevant boundary conditions, the presence of either interfaces
or impenetrable objects is accounted for.

The two states that occur in the reciprocity theorem are denoted by the
superscripts A and B, respectively. It is noted that the two states can apply
to different source distributions and to different media, but they must be
present in one and the same domain in space-time.

4 Reciprocity theorem of the time-convolution type

The reciprocity theorem of the time-convolution type follows upon consider-
ing the interaction quantity e, x;[C(EL, HP ;,1) —C(EP,Hf;z,1)]. Using
eqs. (4) and (5) for each of the two states, we obtain
em,k,j(?mC'(E;f, HJB; x,t)
= —C(&B + K, HP 2,t) — C(E{,0,DF + JF; ,1), (12)
and
€m,k,jamC(Els;Ba H]A1 wat)
= —C(0,B? + KB, H 2,t) — C(EP,8,Df + ' 2,1). (13)
Now, in view of egs. (8) and (9), we have
C(8;BB, Hf;=,t) - C(0:Bf', H} ; 2,1)

= uo(?tC’(nfp — nﬁj,Hf,Hf;m,t) (14)
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and
C(EP,0:Df;2,t) — C(E{,8,DP;x,t)
= e00:C(xtx — Xbm EfH EE; 2, 1), (15)

where eq. (2) has been used. Subtracting eq. (13) from eq. (12) and employ-
ing egs. (14) and (15), we arrive at

em,k,jam[C(E;c4>H.iB;m9t) - C(EE,Hf;a‘,,t)]
= poatC(nfp - nﬁj,Hf,Hf;w,t)
— £00:C (X, — X, Ef, EP 2, 1)

—C(I(;faHpB;mvt) _C(EkA,Jl?;mat)

+C(KE, B 2, t) + C(ER, TH = 1), (16)

Equation (16) is the local form of the time-convolution reciprocity theorem.
The first two terms on the right-hand side are representative of the differ-
ences in the properties of the media present in the two states; they vanish
at those locations where X;‘%k(m,T) = Xﬁr(m,'r) and k2:(z,7) = &P (z,7)
for all 7 € R. In case the latter conditions hold, the two media are denoted
as each other’s adjoints. Note in this respect that the adjoint of a causal
(effectual) medium is causal (effectual), too. The last four terms on the
right-hand side of (16) are associated with the source distributions; they
vanish at those locations where no sources are present. Upon integrating
eq. (16) over the subdomains of D where both sides are continuously dif-
ferentiable, applying Gauss’ divergence theorem to the resulting left-hand
sides, and adding the results, we obtain

/ €m,k,ij[C(Elf’HjB; Cl},t) - C(EE,H}A;OJJ)] dA
xedD

= /mep[:uoatc(mfp - K’ﬁ,jaHfaHpB;m,t)

- 806150()0’3,1- - X;'%kaEl‘?a E?;wat)] dv

+/ [_C(K1§47H£;m7t)—C(EI‘?7JI¢B;m,t)

zeD

+C(KP, B 2, t) + C(EP, JA; =, 1)) dV. (17)
Equation (17) is the global form, for the bounded domain D, of the time-
convolution reciprocity theorem. Note that the contributions from interfaces
between different media present in D have cancelled and that the contribu-

tions from the boundaries of impenetrable objects present in D vanish in
view of the boundary conditions stated in section 3.
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To extend the validity of eq. (17) to an unbounded domain, it is assumed
that outside some sphere of finite radius and center at the origin of the
chosen Cartesian reference frame the medium is homogeneous, isotropic and
lossless. Let, now, Sa be the sphere of radius A and center at the origin
of the chosen Cartesian reference frame and let Bo be the ball interior to
Sa. Then, eq. (17) is first applied to the bounded domain D N Ba and
next the limit A — oo is taken. From a certain value of A onward, then
the far-field source-type representations of the field on Sa pertaining to the
homogeneous, isotropic and lossless exterior medium apply, and if the two
states A and B are chosen to be causal ones, the contribution from 0D NSa
can be shown to vanish in the limit A — oo.

5 Point-source solutions (Green’s functions) and their
properties

In this section, the infinite-medium causal point-source solutions to the elec-
tromagnetic field equations and their properties are investigated. As in sec-
tion 4, the medium occupying R3 is assumed to be homogeneous, isotropic
and lossless outside some sphere of finite radius. In this manner, the property
of causality can be enforced by prescribing an explicit asymptotic behavior
at infinitely large distances from the sources. Point-source solutions are also
denoted as Green’s functions (after G. Green [21], who introduced them in
the theory of electrostatic and magnetostatic fields). Since in conjuction
with the introduction of the Green’s functions also their reciprocity prop-
erties will be investigated, we shall distinguish between the media in the
States A and B in which they occur. In all cases, it is assumed that the
media in the States A and B are each other’s adjoints.

Four point-source solutions will be introduced. The first is the electro-
magnetic field {E}c];A,H JJ Y (z,a',t) that is causally related to the action
of a point source of electric current that is situated in medium A, at the
position z’, has the strength a2 and a unit impulse (Dirac distribution) time
behavior. The associated volume source densities are

{74, K (1) = {af, 0} 6(z — 2',1), (18)

where § denotes the four-dimensional unit impulse operative at @ = @’ and
t = 0. In view of the linear relationship between the generated field and the
source strength a* we write

(B B Y (@, 1) = {0, 65 Hw, o 1) o (19)
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The second point-source solution is the electromagnetic field {EJ iB  H? 7By
(x,2",t) that is causally related to the action of a point source of electrlc
current that is situated in medium B, at the position ", has the strength a?
and a unit impulse time behavior. The associated volume source dens1t1es
are

(JB, KB} (2,1) = {aB,0}8(z — 2",1). (20)

In view of the linear relationship between the generated field and the source
strength a? we write

. . EJ;B ~HJ;B
{E;c]’BaH}I’B}(w,OB//,t) = {Gk,r an,r }(m,a}",t) a?‘ (21)

The third point-source solution is the electromagnetic field {E,‘z";A,H JK 4y
(z,2',t) that is causally related to the action of a point source of magnetic
current that is situated in medium A, at the position ', has the source
strength b;} and a unit impulse time behavior. The associated volume source

densities are
{J,‘fl,I(f}(a:,t) = {O,bﬁ} §(z — o', 1). (22)

In view of the linear relationship between the generated field and the source
strength bA we write

(B4, B Y2, ,1) = {GEEH, GE Y (=, 2, 1) by (23)

The fourth point-source solution is the electromagnetic field {E,‘:{;B, HJK;B }
(z,2",t) that is causally related to the action of a point source of magnetic
current that is situated in medium B, at the position ”, has the source
strength bf and a unit impulse time behavior. The associated volume source
densities are

(7B, KB} (2,) = {0,68} 6(= - 2”"1) (24)
In view of the linear relationship between the generated field and the source
strength bf we write

(B8, B N2 1) = {Gj 7, 63 P Hw, 2, 1) by (25)

The four Green’s tensors GFJ ks forj , GFE and Gpr fully characterize the
generation and propagation of electromagnetic waves in the medium under
consideration. Between them, certain reciprocity relations exist. They fol-

low upon applying the reciprocity relation of eq. (17) to the entire R3. In
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view of the causality condition, there is no contribution from the “sphere
at infinity”. Further, we take @’ # 2", while the media are each other’s
adjoints. For the combination of the fields according to egs. (19) and (21),
eq. (17) leads to

B G (2", 2! 1) af = af Gl P (2", 1) aP. (26)
Since af- and af are arbitrary, it follows from this result that
GEJ A( "ot t) EJ B(m " t) for =’ :,é 2" (27)

For the combination of the fields according to egs. (23) and (25), eq. (17)
leads to

B ~HK;A A _ 1 A~HK;B B
b7 Gy, (@2l )by = b7 G, (a',2",1) b . (28)
Since bﬁ and bf are arbitrary, it follows from this result that

Gpr A2, 2 ,t) = G;{f(;B(m',m",t) for @' # =". (29)

For the combination of the fields according to egs. (19) and (25), eq. (17)
leads to-

bBGHJ A(:I:” z t) GEK B(ml’ .’B”,t) bf (30)
Since a? and bJB are arbitrary, it follows from this result that
GfrJ;A(m”,m',t) = —G;E’f;B(m',m”,t) for ' # a”. (31)

For the combination of the fields according to egs. (21) and (23), eq. (17)
leads to

EI‘ A(m” z',t) bA bngTJ;B(a:’,m”,t) ab. (32)
Since bA and a? are arbitrary, it follows from this result that
GER A( "a't)= HJB( ‘2" t) for z' # " (33)

Note that eq. (33) is in accordance with eq. (31).
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6 The direct source problem

In the direct (or forward) source problem, given source distributions {JT,
Kg } with a bounded support DT generate in a medium with known con-
stitutive coefficients an electromagnetic field {E;{,HJT} the values of which
are to be expressed, in all space and in a causal manner, in terms of the
relevant source distributions. It is expected that the point-source solutions
introduced in section 5 will, through the principle of superposition, be in-
strumental in this respect. In the present section, it will be shown how the
reciprocity relation of section 4 leads to the desired representation. To this
end, the field in state A is identified with the actual field generated by the
source distribution, i.e.,

(B¢, 'Y = {E, H }(=,1), (34)
and
{JA, K8 = {J7, K, Yz, t). (35)

Further, state B is first identified with the field generated by a point source
of electric current situated in the medium adjoint to the actual one, i.e.,

{EE,HF} = {E]®, H]"}(z,2',1) (36)
and
{JB, KB} = {aP,0} §(= - 2',1). (37)

Now, eq. (17) is applied to the entire R®. Using eq. (21) and invoking the
condition that aP is arbitrary, the representation of the electric field strength
follows as

E{(a',1)
= [ ACIGE @), 7] (@), + CIGE} (@', 2), K} (@), 0} AV
for all 2’ € R?, (38)

where egs. (27) and (33) have been used to rewrite the Green’s tensors in
terms of the ones applying to the medium in which the actual radiation
takes place. Secondly, state B is identified with the field generated by a
point source of magnetic current situated in the medium adjoint to the
actual one, i.e.,

(s K;
{EP,HP} = {EF® H] P}z, 1) (39)
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and ’
(7B, KB} = {0,868} 8(z — 2, 1). (40)

Again eq. (17) is applied to the entire R3. Using eq. (25) and invoking
the condition that bf is arbitrary, the representation of the magnetic field
strength follows as

H] (2',1)
= /mEDT{C (G (2!, 2), I (=), 8] + CIGEK (o', ), KT (), ]} AV
for all ' € R3, (41)

where eqgs. (31) and (29) have been used to rewrite the Green’s tensors in
terms of the ones applying to the medium in which the actual radiation
takes place.

Equations (38) and (41) express the field values at any point in space
as a superposition of the fields radiated by the elementary volume sources
out of which the distributed sources can be envisaged to be composed. In
view of the singularity of the Green’s tensors at # = @', the integrals at
the right-hand sides have, for ' € DT and @’ € D7, to be interpreted as
their Cauchy principal values, i.e., they are, when necessary, calculated by
a limiting procedure that excludes the singularity of the integrand by the
ball 0 < |& — @'| < é of radius é about the singular point ', after which the
limit & | 0 is taken. The same procedure applies to points of observation on
an interface of discontinuity in electromagnetic medium properties, where
the right-hand sides yield, at each point where the interface is smooth, half
the sum of the limiting values of the relevant field quantity on either side of
the interface.

7 The direct scattering problem

In the direct (or forward) scattering problem, the situation is considered
where in some bounded domain D* in space the electromagnetic medium
properties differ by a given amount from the ones of a given background
medium (“embedding”), the Green’s tensors for the embedding being as-
sumed to be known. The “scattering domain” D? is irradiated by some
known electromagnetic field and the problem is to calculate the resulting
total electromagnetic field in all space. Let {x,,%;jp} be the medium pa-
rameters of the embedding and let {Axy r, Ak;jp} be the contrasts in electric
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and magnetic properties, respectively, that the scatterer shows with the em-
bedding. Let, further, {E}C,HJ’} denote the incident field (i.e., the field in
the absence of the scatterer) and let {E, H;} be the total field. Then, the
scattered field {E}, H!} is introduced as

{Bf, H3} = {E) — Ej,H; - H}} forall @ € R’ (42)

It is assumed that the sources that generate the field are located in D,
where D*' is the complement of the closure of D* in R3. Then, the total
field is source-free in P?* and we have from egs. (4), (5), (8) and (9)
_Ek,m,pame + 8tC(Xk,ra Er>w7t)
= — 0;C(Axkyr, Er,2,t) for €D, (43)

€jmupOmEr + 0:C(Kjp, Hp,2,1)
= —0;C(AKjp, Hp,z,t) for @ €D’ (44)

Since the incident wave is sourcefree in D?® as well and travels in the embed-
ding, we have

—ek:ﬁ,pamH;; + BtC(xk,r,E,’:,w,t) = 0 foraz € D%, | (45)
Gj’m,ramEi + atC(Hj,p,H;;,m,t) =0 fora c D (46)

Subtracting eq. (45) from eq. (43) and eq. (46) from eq. (44), and using
eq. (42), it follows that

_ek’m’pamH; + 8tC(Xky"'7E’Ib“7m)t)
€mrOm By + 01C(Kjp, Hy, 1)

—J; for @ € D°, (47)
—-K; for z € D°, (48)

1l

where
{J8, K3} = {0.C(AXkyrs Ery 2,1), 0:C(AKjp, Hp, 1)}
for x € D° (49)

are the contrast volume source densities of the scattered field; they have the
support D°. Since the sources that generate the field are held fixed, the
scattered field is sourcefree outside D® and hence

—hmpOm HE + 0,C(Xkyr, ES,2,t) = 0 for z € DY, (50)
€;mrOm B2 + 0:C(Kjp, HS,®,t) = 0 for x € D*. (51)
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If {J, K3} were known, egs. (47) — (51) would constitute a direct source
problem of the type discussed in section 6; as yet they are, however, un-
known. To construct a system of equations through which the problem can
be solved, we use the relevant source-type integral representations, viz. (cf.
eqs. (38) and (41))

Ej(z',1)
= AEDS{C[G;?,{(:B’, z), J2(z),t] + CIGEX (2, x), K3 (), 8]} AV
for all 2’ € R?, (52)
Hi(z',t)
= /m L JCIGH (@ 2),72(2), 1+ CIGT (@', @), K3 @), 0} 4V
for all ' € R>. (53)

Using the known incident field values, combining these for ' € D?® with the
values of the scattered field as represented by egs. (52)-(53) and requiring
field reproduction, a system of linear integral equations of the second kind
is obtained from which {J7, K Js} can be solved. Using, subsequently, these
values in the right-hand sides of egs. (52)—(53), the scattered field in all
space can be determined and, hence, the total field in all space is known.
The relevant integral equations are usually solved by numerical procedures;
the first step in their iterative Neumann solution is known as the (first)
Rayleigh—-Gans—Born approximation. (For applications of the latter, see
Quak and De Hoop [22].)

8 The inverse source problem

In the inverse source problem, unknown volume source distributions {JI,
K E } with a bounded support DT that is either known or guessed, radiate an
electromagnetic field {EF, HJT} into a known embedding. In some bounded
domain D¢ of observation the radiated field is accessible to measurement.
In general, the domains DT and DY are disjoint. The source distributions in
DT are now to be reconstructed from appropriate measurement operations
carried out in DY, Since this requires an interaction of the “remote-sensing
type”, Lorentz’s reciprocity theorem provides a basis for this interaction.
In eq. (17) we take

(A, KM = IF K ), (54)
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and correspondingly,
{Ef, B} = {E[,H]}. (55)

Further, we take the medium in state B to be the adjoint of the known
embedding and for the electromagnetic field in state B a “computational”
or “observational” one with volume source distributions

{77, K7} = {2, K3}, (56)
with support D, and field values
{EIJ?’H_iB}:{EI?’H?}’ (57)

that are causally related to them. The two states are substituted in eq. (17)
and the reciprocity relation is applied to the entire R3. The result is

Ty¥r e

/ [C(ER, T, 2,1) ~ C(HY, K, 2,0)] AV
TeD
- /w olOEL TR,0) ~ O(H]  Kf 0] av. (58)

In eq. (58), the left-hand side contains the unknown quantities, while the
right-hand side contains known quantities. As far as the “computational”
or “observational” state ) is concerned, one can say that it is representative
for the processing of the measured data. As eq. (58) shows, it makes, for the
data processing represented by this equation, no sense to make the support
of {J?,Kg} larger than D, since no information on the radiated field is
available outside D,

Commonly, a solution to the inverse source problem is constructed by
discretizing in eq. (58) both DT and D as well as the source and field distri-
butions, and solving the corresponding system of linear algebraic equations
for the coeflicients in the expansions of the unknown source distributions.
A discussion of the details of this procedure, which is in the category of
ill-posed problems, is beyond the scope of the present paper.

9 The inverse scattering problem

In the inverse scattering problem, a contrasting domain of bounded support
D*, which is either known or guessed, is present in a known embedding with
constitutive parameters {xkr,&jp}. The contrasts in medium parameters
{Axkr,AK;jp} have the support D°, but are otherwise unknown. The con-
trasting domain is probed by irradiating it with an incident electromagnetic
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field {E}C,HJ’} that propagates in the embedding. Due to the presence of
the contrasting domain, scattering takes place which manifests itself through
the presence of a scattered field {EZ, H?}. In some bounded domain DY of
observation, the total field (and hence the scattered field) is accessible to
measurement. In general, the domains D° and D% are disjoint. The contrast
medium parameters in D° are now to be reconstructed from the measured
data in D¥. As in section 8, the Lorentz reciprocity theorem provides a
basis for this “remote-sensing type” of the problem. In eq. (17) we take

{Jf71(pA} = {J:7I(;}, (59)
where {J¢, K} is given by eq. (49), and correspondingly,
{Eﬁ’ﬂf} = {Ez’H;} (60)

Further, we take the medium in state B to be the adjoint of the known
embedding and for the electromagnetic field in state B a “computational”
or “observational ” one, with known volume source distributions

{JB, K2}y = {77, K3}, (61)
with support D, and field values
{EkB’HJB}z{EI?"HJQ}’ (62)

that are causally related to them. The two states are substituted in eq. (17)
and the reciprocity relation is applied to the entire R3. The result is

C(E®, J?, @,t) — C(HS, K2, @, )] dV
L JCWER T2, 0) — CUHE, 1, )
- / (C(E$, IR, @,t) — C(H?, K®, z,1)]dV. (63)
zeDo J J

In eq. (63), the left-hand side contains the unknown quantities, while the
right-hand side contains known quantities. As far as the “computational”
or “observational” state is concerned, one can say that it is representative
for the processing of the measured data. As eq. (63) shows, it makes, for the
data processing represented by this equation, no sense to make the support
of {J§, K{} larger than D9, since no information on the scattered field is
available outside D%.

Commonly, a solution to the inverse source problem is constructed by
discretizing in eq. (63) both D* and D9 as well as the source and field




Reciprocity, causality, and Huygens’ principle 187

distributions and contrast medium parameters and solving the unknown ex-
pansion coefficients from the resulting equations that are nonlinear because
in (cf. eq. (49))

(I3, K2} = {0.C(AXkyrs Er, 2, 1), :0 (At p, Hp, m, 1)}
for # € D?, (64)

both the contrast medium parameters and the total field values are unknown.
A discussion of the details of the relevant procedures is beyond the scope of
the present paper.

10 Electromagnetic field representations in a subdomain of
space. Equivalent surface sources. Huygens’ principle
and Oseen’s extinction theorem

As has been shown in section 6, source-type electromagnetic field repre-
sentations can be obtained that express the electric and the magnetic field
strengths at all points in space in terms of the volume source distributions
that generate the field, provided that the relevant Green’s tensors can be
constructed. In a number of cases, however, one is only interested in the
field values in some, bounded or unbounded, subdomain of R3, and a field
representation for the relevant domain would suffice. In the present section
it is shown how the Lorentz reciprocity theorem of section 4 leads to such a
representation, be it that now, in addition to the volume integrals contain-
ing the volume source distributions in the domain of interest, also surface
integrals over the boundary of this domain occur. Let D be the relevant
subdomain of R3 and let 8D be the boundary surface of D. Further, the
complement of P U 8D in R? is denoted by D’. To arrive at the relevant
representation, we apply eq. (17) to the domain D and take state A to be
the actual electromagnetic field

{E¢, H'} = {E}, Hj) (65)

present in D. The corresponding volume source distributions are identified
with the actual ones insofar these are present in D, i.e.,

JA ={J,,0}, K#={K,,0} forze{D,D'}. (66)

Further, state B is first identified with the field generated by, and causally
related to, a point source of electric current situated in a medium adjoint to
the actual one, i.e.,

{ER, HP} = {E]" H]"}(z,a',1) (67)
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and
{JB,K}} = {JB, KN (e,2',t) = {aB,0}é(x — 2, 1)
for ' € R3. (68)
Now, eq. (17) is applied to the domain D, while it is taken into account that
| clEt@), @), 0av
xeD )
= [ Bu@0afb(e - )V = xo(@) Eu(e',D)af,  (69)
xeD
where

xo(a') = {1,1/2,0} for 2’ € {D,8D, D"} (70)

is the characteristic function of the set D. Using eq. (69) and invoking the
condition that af is arbitrary, we end up with

/w eaD{C[GE{(m’,m),BJT(w),t] + CIGEK (a!, ), 0K, (=), 4]} dA

+ LED{C[GE’:i(w’,m), Jr(x),t] + C’[Gﬁf(m', z), Kp(z),t]}dV
= xp(z)E(2',t) for 2’ € R, (71)
where
0Jr = —€rmunVmH, for @ € 9D (72)
is the equivalent surface density of electric current on 0D, and
0K, = €pmnVmEn for @€ 0D (73)

is the equivalent surface density of magnetic current on D, while v, is the
unit vector along the normal to 0D pointing away from D.

Secondly, state B is identified with the field generated by, and causally
related to, a point source of magnetic current situated in a medium adjoint
to the actual one, i.e.,

K:B KB
{EP,H]} ={E,;",H " }(z,a',1) (74)
and

{JB, KD} = {77, K N, 2',1) = {0,b;} (= — ', ). (75)
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Now, eq. (17) is applied to the domain D, while it is taken into account that
/ C[Hf(m),Kf(cc,m'),t] dv
xeD
- / Hi(z, )08 8(z —2') AV = xp(«') Hy(',t)b?,  (76)
xeD

where yp is given by eq. (70). Using eq. (76) and invoking the condition
that bf is arbitrary, we end up with

/m (O @, 2),07,(), ] + C[GHK (2!, x), 0K (=), 1]} d A
+ / (CIGH (', &), Jn(2),1] + C[GTE (2, 2), (), ]} AV
xreD

= xp(a')H;(z',t) for 2’ € R?, (77)

where 8J, and 0K, are given by eqgs. (72) and (73), respectively.

The results for 2’ € D and @' € D' in egs. (71) and (77) are obvious; the
ones for @’ € 8D hold at points where dD has a unique tangent plane, and
follow from a detailed analysis. The latter also reveals that the integrals in
the left-hand side have to be interpreted as their Cauchy principal values,
i.e., the integrals are, when necessary, calculated by a limiting procedure
that excludes the singularity in the integrand by a ball 0 <| = — z' |< § of
radius § > 0 about the singular point @', after which the limit § | 0 is taken.

When 2’ € D, eqgs. (71) and (77) express the value of the electric and the
magnetic field strengths in some point of D as the sum of the contributions
from the volume source densities of electric and magnetic current as far as
these are present in D, and the equivalent surface source densities of electric
and magnetic current on dD. Evidently, the latter yield, in the interior of D,
the contributions to the field values insofar these arise from sources located
in D’ (i.e., outside D).

Another property of egs. (71) and (77) is that the field emitted by the
volume sources in D and the field emitted by the surface sources on 9D
cancel each other for ' € D’. This property is known as Oseen’s extinction
theorem [20].

When egs. (71) and (77) are used in a domain in which no volume source
distributions are present, it expresses Huygens’ principle [1] which states
that an electromagnetic field due to sources “behind” some surface that
divides space into two disjoint regions, can in front of the relevant surface
be represented as due to equivalent surface sources located at that surface,
while that representation yields the value zero “behind” that surface.
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Equations (71) and (77) have been the basis for the analysis of numerous
diffraction problems. This development has started with the Kirchhoff the-
ory of the diffraction of scalar light waves by apertures in “black” screens [16]
(see also Baker and Copson [2]) and was further extended by Kottler [17, 18]
to the diffraction of electromagnetic waves by apertures in “black” screens
(see also Baker and Copson [2]), while Stratton and Chu [19] derived equiv-
alent formulas as general solutions to the electromagnetic radiation problem
(see also Stratton [23]).

11 Conclusion

It has been shown how the time-domain electromagnetic reciprocity theo-
rem of the time-convolution type leads to source-type representations for the
electromagnetic field quantities that can be used to analyze electromagnetic
direct source, inverse source, direct scattering, and inverse scattering prob-
lems. Further, the source-type representations for a bounded domain are
shown to be mathematical formulations of Huygens’ principle and Oseen’s
extinction theorem.
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