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For the simple case of the scalar wave motion generated by a point source in an unbounded homogeneous medium, it is
investigated what the consequences of the first- and second-order Thiele approximations in the spectral domain are in the
space-time domain. To this end, the corresponding spectral domain Green’s function is transformed back to the space-time
domain with the aid of the modified Cagniard method. The exact solution to the problem is a spherical wave with the same
wave shape as the source signature and a single wave front. The first-order Thiele, or parabolic, approximation has a wave
front in the shape of a double oblate spheroid, combined with a head-wave-like precursor having a cylindrical wave front. The
second-order Thiele approximation contains two wave fronts, one associated with a fast body wave and the other with a slow
body wave, in combination with a head-wave-like precursor, the latter again having a cylindrical wave front. From the results,
it can be concluded in which regions below or above the source the approximations have sufficient accuracy for application
in inversion and “true amplitude” depth migration procedures in geophysical prospecting.

1. Introduction

The first-order Thiele continued-fraction (or parabolic) approximation was introduced in the analysis of
wave phenomena by Leontovich and Fock [1]; their field of application was the propagation of electromag-
netic waves near the surface of a convex conducting body [2]. Higher-order approximations were considered
by Bremmer [3] in the asymptotic evaluation of the integrals that occur in the theory of diffraction of
waves by an aperture in a screen. Since then, the parabolic approximation has been applied to various wave
problems, amongst which are the propagation of waves in random media 4], the downward continuation of
acoustic waves in seismic prospecting [5], and underwater acoustics [6, 7].

. In recent years there is an increasing interest in the use of higher-order Thiele-type continued-fraction
approximations (which include the parabolic and Padé approximations) in the application of seismic
modeling, migration and inversion techniques. We mention the papers by Ristow [8], Ma [9], Lee and Suh
[10], Kelamis and Kjartansson [11], and Graves and Clayton [12]. The motivation of the Thiele approxima-
tion is the following. For one-dimensional wave propagation it is known that the wave operator can be
factorized into two partial differential operators that can be identified as to apply to waves propagating in
opposite directions. For wave propagation in more dimensions such a factorization can again be carried
out, be it that the factors contain pseudo-differential operators. The latter have no simple discrete coun-
terparts which are sparse in their matrix representation. For a simple and sparse matrix representation of
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the desired so-called “one-way” wave operator we need an intermediate partial differential operator. The
Thiele approximation, when carried on the slowness in the spectral domain, i.e., after having transformed
the actual space-time wave motion to the time Fourier transform (or time Laplace transform) domain and
the spatial Fourier transform domain as far as the horizontal coordinates are concerned, about a preferred
direction of propagation, yields such a tool. The preferred direction will be identified as the vertical direction.
(A Taylor-type approximation leading to such a factorization has been discussed by Corones and Krueger
[13].) The resulting partial differential equations, which are denoted as one-way wave equations, are usually
solved with the aid of finite-difference techniques carried out in the time Fourier-transform domain [12].
In this respect, it is noted that the stable two-level implicit finite difference integration of a one-way wave
equation along the direction of preference leads to a problem of solving a matrix equation. To fully exploit
the freedom in the structure of the matrix equation a rational approximation of the vertical slowness as a
function of the horizontal slowness is wanted, which is provided by Thiele’s formula.

Thiele approximations have been either arrived at with the aid of a perturbation theory applied to the
wave equation in a comoving frame of reference [11] or carried out on the wave function in the spectral
domain [14, 15]. The properties of the waves in the first-order approximation have, to a certain extent,
been studied by Joly [16] and Bamberger et al. [17]; higher-order approximations have been considered by
Bamberger et al. [18]. Deviations, due to the approximation, in the phase and group velocities of normal
modes in underwater acoustic ducts have been analyzed by McDaniel [6]. Approximations of the vertical
slowness were further employed to obtain asymptotic expressions in space-time for the wave constituents
associated with the conical points in an anisotropic elastic medium having cubic symmetry [19].

Although the one-way wave equations are strictly valid only in a horizontally homogeneous medium,
they have nonetheless been applied in arbitrarily inhomogeneous media. Viewed from this perspective, a
Thiele approximation is recognized as a high-frequency approximation that does not suffer from the
singularities at which asymptotic ray theory fails (caustics and foci). Proper extensions of the one-way
wave equations to fully inhomogeneous media have been discussed by Palmer [20], who also includes a
source term in the analysis, and by Fishman and McCoy [21], who employ pseudo-differential operators
to account for the mutual coupling between the different spatial Fourier components. A related approach
has also been developed by Gazdag [22] and Gazdag and Sguazzero [23].

The Thiele approximants have been compared, in the spectral domain, with approximants of the vertical
slowness obtained through least-squares fitting by Lee and Suh [10], through interpolation at a number of
values of the horizontal slowness by Halpern and Trefethen [24], and through the replacement of it by an
integral representation by Zhang Guan-quan et al. [25].

The relation between the solutions of the exact (Helmholtz) and the first-order approximated
(Schrédinger) equations for propagation of sound in an acoustic wave guide has been analyzed by
Polyanskii [26] and De Santo [27] to investigate what consequences the approximation of the equation
has for the solutions.

The purpose of the present paper is to investigate, for the simple case of the scalar wave motion generated
by a point source in an unbounded homogeneous medium, what the consequences of the approximations
are in the space-time domain. In this case all calculations can be carried out exactly in closed form. We
determine the first- and second-order Thiele approximations of the wave function in the spectral domain
and transform the results back to the space-time domain with the aid of the modified Cagniard method as
it has been developed by the senior (second) author (cf. [28, 29] and [30, pages 298-301], [31, pages 302~
314], [32, pages 243-253] and [33]). (An alternative but equivalent method has been given by Petrowsky
[34].) The exact solution to the problem is a spherical wave having the same shape as the source signature
and a single wave front. The first-order Thiele approximation turns out to have a composite wave front
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consisting of an oblate spheroid associated with the body wave, in combination with a head-wave-like
precursor having a cylindrical wave front. The second-order Thiele approximation turns out to have two
non-spherical wave fronts associated with two body waves containing cusps, again accompanied by a head-
wave-like precursor having a cylindrical wave front. The results enable one to judge in which region of
space-time the relevant approximations are accurate enough for use in seismic inversion or migration
procedures. In view of these applications, special attention is paid to a comparison with asymptotic ray
theory in the vertical direction.

The first- and second-order Thiele approximants are basic in the sense that any odd- or even-order
approximation can be written as a summation of terms that resemble the low-order approximants. This
implies that the waves associated with the higher-order approximations applied in a homogeneous medium
are equivalent to the waves in a quasi-multilayer configuration in which the vertical slowness in each
individual layer is given by a first- or second-order-like approximant.

With the aid of Thiele’s formula the theory can be extended to anisotropic fluids.

2. The exact wave equation and its solution in the space-time and spectral domains

To locate a point in space we use the coordinates {x, x>, x3} with respect to the orthogonal Cartesian
reference frame with origin @ and the three mutually perpendicular base vectors {i, i, i3} of unit length
each. In the indicated order, the base vectors form a right-handed system. The subscript notation for
Cartesian vectors and tensors applies and for repeated subscripts the summation convention holds. Lower-
case Latin subscripts are used for this purpose; they are to be assigned the values {1, 2, 3}. The position
vector corresponding to {x;, x», x3} is therefore denoted by x=x,i,. The time coordinate is denoted by ¢.
The symbol d,, indicates differentiation with respect to x,,; 0, is a reserved symbol for differentiation with
respect to time.

The scalar wave function u=u(x, ¢) that is representative of the wave motion generated by a point source
located at {0, 0, 0} and with source signature f=/(t) satisfies the three-dimensional scalar wave equation

(6mam - C—ZatZ)u = _f(t)g(xl s X2 X3), (1)

where ¢ is the wave speed in the medium and &(xi, X2, x3) denotes the three-dimensional unit impulse
(Dirac distribution) operative at the point {0, 0, 0}. The exact solution to this equation is the spherical
wave [30]

u=f(t—[x|/c)/4nx], @)

where [x| = (X,uX.)'/>. Its wave shape is the same as the source signature. Equation (2) can also be written
as

z

u(x, t) =9, jt f(—1)G(x, t') dt, 3)

r'=|x|/c
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where the source is assumed to start acting at the instant =0, and in which
G(x, ty=H(t—[x|/¢)/4n|x], @)

where H(1)={0, 1/2, 1} for {¢<0, t=0, >0} denotes the Heaviside unit step function. Figure 1 shows a
snapshot in space of this Green’s function.

How the well-known result of eq. (2) can be obtained with the aid of the modified Cagniard method is
shown in [28]. For this, as well as for the Thiele approximations of this paper’s subsequent sections, the
spectral domain representation of u is needed. The latter follows by applying to eq. (1) the one-sided
Laplace transformation

i(x, s) =J exp(—sHu(x, t) dt, &)
t=0
followed by the spatial Fourier transformation with respect to the “horizontal” coordinates x; and x;

d(iay,, x3,8)= exp(isa,x, ) (X, 5) dxy dxa, (6)

2
Xy R

where Greek subscripts are used to indicate the horizontal components of vectors and tensors; to them the
values {1, 2} are to be assigned. In accordance with the Cagniard method, s is chosen to be real and
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Fig. 1. Snapshot of the exact Green’s function in space for x;>0; ¢=750m/s, t=0.450 s. (The horizontal offsets are numbered
sequentially.)
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positive, and a and «, are real. The factor s in eq. (6) is introduced for convenience in the transformation
back to the space-time domain. The transformation inverse to eq. (6) is given by

(%X, 5)=(5/27) J exp(—isa,x,)i(ia,, x3, s) da; das. (7)
ayeR?
The spectral-domain counterpart & of u then satisfies the ordinary differential equation
0%l — sy = —f(8)6 (x3), (8)
where §(x;) is the one-dimensional unit impulse (Dirac distribution) operative at x;=0 and
y=(aua,+c >0 9)

is the spectral-domain ““vertical” slowness. The solution of eq. (8) is given by

ii=f(s) exp(—sylxs))/2s7. (10)
To bring eq. (10) into accordance with the form of eq. (3), it is rewritten as
ﬁ=sf(s)(~?(ia,,,x3,s). (11)

Comparing eq. (11) with eq. (10), it is found that
G =exp(—sylxs))/25%. (12)

Upon substituting eq. (12) in eq. (7), the algebraic factors of s cancel and only the s in the exponential
function remains, which property serves as a criterion for selecting a Green’s function in the Cagniard
method.

By differentiating the right-hand side of eq. (12) twice with respect to x3, we can reconstruct the differen-
tial equation that G satisfies. In view of the non-analyticity at x;=0, this procedure leads to the required
volume source density in its right-hand side. Specificially, we obtain

021G —5*y*G=—5""6(x3). (13)

Now, under the transformations of eqgs. (5) and (6), we have 0, —» s and 0, —» —ise, . Applying these rules,
we reconstruct from eq. (13) the partial differential equation that G satisfies as

(amam - cﬁzaf)G: _6(x1 » X2, X3)H(t) (14)

Note that the wave operator on the left-hand side does not admit, in three-dimensional space, a factorization
into space-time differential operators. (Such a factorization is restricted to only one space dimension.)

3. The first-order Thiele approximation

In the first-order Thiele approxir\nation (see Appendix A), ¥ in eq. (9) is replaced by

Y'=1/c+(c/2)aua,. (15)
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It is noted that this approximation is identical to the first-order Taylor expansion about a0, =0. The
resulting spectral-domain wave function is given by

it =s]?(s)G~I(iay , X3, 8), (16)
in which, in view of eq. (12),
G =exp(—sy'xal) /2577, (17)

To reconstruct the latter’s space-time equivalent, we substitute eq. (17) into eq. (7) and apply the modified
Cagniard method. This method consists of transforming the variables of integration {ai, a} with
{a,eRR, a,e R} into {p, q} with {pes, geZ&} (here, # denotes the real axis and # the imaginary axis)
through

a,=—ip cos(8) — g sin(0), (18)

a,=—ip sin{@) + g cos(6), (19)
where {r, 0} is related to {x;, x2} by

x, =r cos(6), Xy =r sin(0), 20

with 0<r < 00, 0< 6 <2m, keeping ¢ real, continuing the integrand analytically into the complex p-plane
and carrying out the integration along the modified Cagniard path that follows from a continuous deforma-
tion of the imaginary p-axis satisfying the equation

pr+yxl=r, (21)

where 7 is real and positive. In view of the condition that the joining paths at infinity must yield a vanishing
contribution, contours only in the right half of the complex p-plane are considered. Solving for p in eq.
(21), we see that the modified Cagniard path consists of p= p'(t, q) in the first quadrant of the complex p-
plane, together with its complex conjugate p= pP™*(7, g) in the fourth quadrant of the complex p-plane,
where

P'=(r/elxsl) +i(2/clxal) e = T for TH(g) <7< o0, (22)
in which

T'(q)=T"(0)+ (cxsl/2)’, (23)
with

T'(0) = (|x3l /) (1 +7°/2x3). (24)

Equation (22) represents a straight line parallel to the imaginary p-axis that intersects the real p-axis at p=
r/clxs). Along this path, 7 strictly increases when going from the point of intersection with the real p-axis
to infinity.

In the process of contour deformation we might possibly encounter the simple pole p= pb of G' at the
simple zero of ¥ in the right half of the p-plane (cf. eq. (17)). From egs. (15), (18) and (19) it follows that

po= (q2+2/c?)‘/2>o. | (25)

This pole contributes to the Green’s function when it lies to the left of the point of intersection of the
modified Cagniard path with the real p-axis. In the case where r < |x3]¢/2 (“small” horizontal offset), the
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¢ = 1000m/s ; r = 1000m ; z3 = 1000m
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Fig. 2. The modified Cagniard contour and the pole location for a “small” horizontal offset in the first-order Thiele approximation.

simple pole lies, for all values of g, to the right of the point of intersection of the modified Cagniard path
with the real p-axis and is not passed in the process of contour deformation (see Fig. 2).

3.1. The body wave

In the integral along the modified Cagniard path, 7 is introduced as the variable of integration. The
corresponding one-dimensional Jacobian follows from Eq. (22) as

dp' /07 =i(2cls)) ™[z = T (]2 (26)

Taking the contributions from p=p' and p=p'"* together (note that the integrand satisfies Schwarz’s
reflection principle), the contribution from the Cagniard path is arrived at through eq. (7):

B (X 8) = () GE(Xm, 5), 27)
in which A
Ge=n"" Im” dg f exp(—s7)[27'(p", )17 (dp'/07) df}- ' (28)
q=0 =T
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Fig. 3. Snapshot of the Cagniard-path contribution to the Green’s function in space for x3 >0 in the first-order Thiele approximation;
c¢=750m/s, t=0.450s. (The horizontal offsets are numbered sequentially.)

Interchanging the order of integration yields
R ' 00 o' (v)
G1c=j exp(—st) dr J 2 Im{[27'(p", ¢)1'(@p'/07)} dg, (29)
r=T(0) g=0
in which ¢= Q'(t), the (unique) inverse of 7= T'(g), is given by
0'(z)=(2/clxs)) [z — T'(0)]'2. (30)

Application of Lerch’s theorem on the uniqueness of the Laplace transform of a causal time function when
taken at positive real values of s [35, pages 61-63] leads to the time-domain results

ar®
GE=U w2 Im{[2y'(p', @)1 (@p'/07)} dq}H [1—T'(0)] €2y

q=0

and

ue(Xp, 1) =0, J F(t—1)GE(m, ) dt, (32)

r=T7%0)
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Fig. 4. The modified Cagniard contour and the pole location for a “large” horizontal offset in the first-order Thiele approximation.

from which it is evident that 77(0), as given by eq. (24), is the arrival time of the wave. The equation for
the corresponding wave front follows from eq. (24) as
(33)

[ls| = eT(0) /2 +17/2=[T'(0) /2T,
which is a double oblate spheroid centered on r=0 and |xs| =cT"(0)/2 with semiminor axis ¢T"(0)/2 and

semimajor axis ¢T"(0)/+/2. Through the substitution
(34)

g=0Q'(?) sin(y),
the integral in eq. (31) can be evaluated in closed form. The result is
1 5 .
sgn(t—r/clx3|)H[t— T (0)]. 35
a2y BT D HIE = T'(0)] (35)

Figure 3 shows a snapshot in space of this Green’s function for x; >0.

Ge=

3.2. The precursor \
When r> |x3lv/2 (“large” horizontal offset), the simple pole pg lies to the left of the point of intersection

of the modified Cagniard path with the real p-axis if ¢° < (gb)%, where gb=[(r/clxs|)*—2/c*]'/>. In this case,
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the pole’s contribution has to be taken into account in the process of contour deformation, as illustrated
in Fig. 4. The relevant contribution is found to be

~ 1 (% exp[—sr(q*+2/cA)"*
Gt =“j ,
*ome ) (¢ +2/cH'? 1 (36)

q=0

which, upon replacing r(g*+2/¢%)'/? by t, takes the form
~ 1 [Tbe exp(—sT1)
Go=— — =, 37
0 27CC T=T(l)‘] (2_2_2’,2/62)]/2 ( )
in which
To1=+2(r/c) and Tj,=(r/Ixs))(r/c). (38)

On account of Lerch’s theorem on the uniqueness of the Laplace transform of a causal time function when
taken at positive real values of s, the time domain counterpart G of G§ then follows as

1_ 1 ol oy s
D L 2

This contribution (see Fig. 5), which is present only if »> |x3)\/2, is to be added to the contribution from
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Fig. 5. Snapshot of the pole contribution to the Green’s function in space for x;3>0 in the first-order Thiele approximation; ¢=
750 m/s, t=0.450 s. (The horizontal offsets are numbered sequentially.)
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Fig. 6. Snapshot of the total Green’s function in space for x3>0 in the first-order Thiele approximation; ¢=750m/s, =0.450s.
(The horizontal offsets are numbered sequentially.)

the modified Cagniard path eq. (35). The corresponding wave front has a cylindrical shape and touches
the spheroid of G¢. It can be interpreted as a head-wave-like precursor. Figure 6 shows a snapshot in space
of the total Green’s function G&+ Gy for x3>0.

3.3. The case x3=0

In the case x;=0, the expression in eq. (22) breaks down; from eq. (21) it follows that the modified
Cagniard contour coincides with the real, positive p-axis. In view of the analyticity of the integrand away
from the pole, the expression for G' reduces to the contribution from the pole only, i.e., (cf. eq. (36))

N 1 w0 _ 2+2 2\1/2
ng_f explosrly *2/¢) 14, (40)
o (gT2/c)

2nc

The space-time counterpart to this expression is found to be (cf. eq. (39))

1
2 —(T61)'?

Gi= H(t—T4y), (41)

in which T, is given by eq. (38).
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3.4. Partial differential equation for G'

By differentiating the right-hand side of eq. (17) twice with respect to xs;, and using that under the
transformations of egs. (5) and (6) we have 9, — s and d, — —isa,,, we can reconstruct the partial differential
equation that G' satisfies, viz.,

¢ 202 (0O — ¢ TN G = (1/4)(8,0,)°G" = —c77075 (x1, x2, x3)H(1). (42)
This equation factorizes as
[c'0:(05+ ¢7'0,) — (1/2)8,0,1[c'0,(ds— ¢ '0,) + (1/2)9,8,]G = —c 208 (x1, X2, x3)H(t).  (43)

The first partial differential operator in brackets on the left-hand side of eq. (43) is the parabolic approxima-
tion to the wave operator for a wave propagating in the direction of increasing xs; the second partial
differential operator in brackets on the left-hand side of eq. (43) is the parabolic approximation to the
wave operator for a wave propagating in the direction of decreasing x3 [5].

4. The second-order Thiele approximation

In the second-order Thiele approximation (see Appendix A), y in eq. (9) is replaced by

n_34/3¢ a0,

c 4/ +a,a, “9
The resulting spectral-domain wave function is given by
"= sf(5)G" (i, X3, 5), (45)
in which
G"'=exp(—sy"Ixal)/25*y". (46)

To reconstruct the latter’s space-time equivalent, we substitute eq. (46) into eq. (7) and apply the modified
Cagniard method. First, however, it should be noted that upon replacing ¥ in eq. (9) by y" according to
eq. (44), the inversion integral eq. (7) becomes divergent, since " —3/c as a,a, — . A physically
meaningful interpretation of the integral must therefore be found. The asymptotic structure of the integrand
eq. (45) as a,a, — oo leads to the conjecture that the divergent integral contains a contribution that could
be interpreted as a Dirac delta distribution operative at {x;=0, x,=0}. In view of this conjecture and of
the contour deformation to follow, it is assumed that an interpretation in the sense of a Cauchy principal
value around infinity will lead to a physically acceptable result. Adopting this interpretation, the integral
on the right-hand side of eq. (7) is replaced by the limit of the integral over the rectangle
{01€R, areR; —Ay <01<Aq,, —Ay,<02<A,,} With Ay, — 00 and A, — co. The corresponding evalua-
tion will be carried out later in this paper.

The modified Cagniard method consists of applying the transformation given by egs. (18) and (19), in
which g is kept real. The resulting integral with respect to p is extended over {pef; —iA<p<iA} with
A — 0. The integrand is continued analytically into the complex p-plane and an integration is carried out
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along the modified Cagniard path that follows from a continuous deformation of the imaginary p-axis
satisfying the equation

prtixly =1, (47)

. " . 1T - .
where 7 is real and positive. The expression for ' is written as

o =% [1 _E%} (48)
with

A*=8/3c (49)

BXq)=4/+¢". (50)

The non-real-axis part of the solution of the cubic equation (47) along which 7 strictly increases, is the
desired modified Cagniard path, In view of the condition that the joining circular arcs at infinity must,
after compensation for the principal value around infinity, yield a vanishing contribution, contours only in
the right half of the complex p-plane are considered. The desired contour consists of p=p"(z, g) in the first
quadrant of the complex p-plane, together with its complex conjugate p=p'*(z, q) in the fourth quadrant
of the complex p-plane. Its explicit form is obtained from Cardano’s formula for the solution of the
algebraic cubic equation; the relevant expression is given in Appendix B. For the moment we only need a
number of properties that can directly be obtained from eq. (47).

The first is that p=p"(z, ¢) and p=p™*(z, q) are finite arcs that leave the real p-axis at p}'(¢), at which
point the value of 7 is denoted by T'1'(¢), and return to the real p-axis again at p3(g), at which point the
value of 7 is denoted by T5(g). Since both arcs leave the real p-axis at the same point and return again to
the real p-axis at the same points, these points are double roots of the cubic equation (47). Consequently,
0t/0p=0 at these points. By differentiating eq. (47) with repect to p, this condition can be expressed as

or 3]s 2174‘12 11 iy
= =0 atp=pi(q) and p=p:(q). (51
op ¢ [BXg)—pT
Inspection of the behavior of 7 as a function of p along the real p-axis reveals that pi'(q) <B(g) and
P5(q) > B(q), which implies that (cf. eq. (47))

T1(q) < B(q)r+3|xs|/c forall g (52)
and
TX(q) = B(q)r +3|x3|/c for all q. (53)

The equality in the latter equation occurs in the exceptional case that =0, which will be discussed below.
It follows that Ti(q) < T5(q) for all ¢, as shown in Fig. 7.

The second property is that along the arcs p=p'(z, q) and p=p"*(1, q),  strictly increases. This is
proved by a reductio ad absurdum.,\Differentiation of eq. (51) with respect to p leads to

0% _ 6l A1B(q) + 3]
op’ ¢ [BAq)—pT

(54)
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from which it follows that

02%c/0p*<0 at p=pi(q) (55)
and

0%r/op”>0  at p=pi(q). (56)

Considering the local Taylor expansions about p= P (g) and p=p5(q), it then follows that along p=
p"(z, g) and p=p™*(z, g), 7 increases away from pi'(¢) and towards p;(g). Now, if somewhere on the arc
p=p'(1, q) there were other points at which 87/dp=0, these points must be even in number with a
minimum of two, while on the arc p=p"™*(z, ¢) there would have to be the same number of such points.
This would imply that the quartic equation (51) in p would have at least six solutions, which is impossible.
Hence, along the modified Cagniard paths no zeros of 97/dp occur and 7 strictly increases. In the limit
|x3//0 and r#0, Eq. (51) implies that both points of intersection, Pi(g) and p5(q), approach the value B(q).
The modified Cagniard contour then contracts to the point p(z, ¢) = B(g). Since, according to eq. (47), in
this limit 7 =pr is real, we have

T1x(9)=B(g)r, (57)
which explains the equality sign in eq. (53). Finally, differentiation of eq. (47) with respect to g yields

07 3wl 24
o ¢ [BXq)-rT

(58)

from which it follows that at p=pt(g) and p=p(q)

0T™(g)/0q>0 and 08TN(g)/d¢>0 for all >0, (59)
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while g=0 is a minimum of both 7=7T1(g) and t=T%(g). To arrive at an equation for 7=7"(q), we
eliminate p from egs. (47) and (51). To this end, eq. (48) is substituted into eq. (47), which leads to

(BX(q) —p*)(pr+{—1)—(4*=0, (60)

where ¢ =3|x;|/c. Differentiating the latter equation with respect to p and substituting the condition for
double roots of eq. (47), i.e., 9,1=0, yields

p2—2p T_C_B ()

=0, 61
3r 3 61

which equation is equivalent to eq. (51). From eq. (61) an expression for p*— B*(g) is obtained, which is
substituted into eq. (60). In this way, it follows that

2, | BAQr (T 304” _
p 2[2@ 0t :|+B (q)+2(r_§) 0. (62)

It is observed that egs. (61) and (62) are equivalent to eqs. (60) and (61). Using the fact that the roots of
eqs. (61) and (62) must coincide, a systematic elimination of the square-root expressions in the resulting
equality leads to the final equation:

[ﬁ B+ A } 4[ B'@)r +BZ<q><T“<q>—§>+g4f}
35 -0) s @-0) 2r 2

X[T”(q)—§+ B (q)r }O, 63)
6 2AT9)~0)

where we have set 7= T"(g). This equation is equivalent to eq. (B.7) in Appendix B. By setting ¢=0, and
substituting ¢, a quartic equation for the arrival times, i.e., the minima 7'1'»(0) of T1,(g), is obtained:

ror-slror- 4 o 4 o
ol

Now that the properties of the modified Cagniard path {p=p"(z, q) up= p™* (7, q)} have been investi-
gated, the contour deformation leading from the integration along the imaginary p-axis to the one along
the modified Cagniard path is further analyzed.

4.1. The body waves \

In view of Cauchy’s theorem the integral along the imaginary p-axis is equal to the sum of the integrals
along the semicircle £ = {pe¥;|p|=A, Re(p)>0} and the modified Cagniard path (Fig. 8). In addition,
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Fig. 8. The modified Cagniard contour and the pole location for a “small” horizontal offset in the second-order Thiele approximation.

we may encounter the simple pole p=pi' of G" at the simple zero of y"" (Fig. 9). From eq. (48) it follows
that

pi=(g*+4/3c¢)"*<B(q) forallg (65)

(cf. eq. (50)). The pole contributes to the Green’s function when pg <pi'; its contribution will be determined
later on. (Since p¥(g) > B(g), the situation pj >p5 can never arise.) On €5 , G'' is asymptotically equal to
(c/65%) exp(—3s|xs|/c). Using the corresponding asymptotic integrand, and carrying out the transformation
inverse to eqs. (18) and (19), it follows that the contribution of € results into

Aa] Aa2
lim (s/2m)* J da, J exp(—isa,x,)(c/65%) exp(—3s|xs|/c) da,

Ag, — 0,Ay, —
o 2 al=_Aa| a2=—Aa2

= (c/6s%) exp(—3slx3l/c)8 (x1, x2). (66)

Furthermore, by taking the contributions from p=p"(z, ) and p= p"*(r g) together (note that the
integrand satisfies Schwarz’s reflection principle), the contour part GC of the expression for G is
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Fig. 9. The modified Cagniard contour and the pole location for a “large” horizontal offset in the second-order Thiele approximation.

obtained
GL=(c/65) exp(—3s|xs]/c)6(x1, X2)

© TH(9)
+rn? Im{f dg j exp(—st)[27"(p", )] (3p" /07) df}, (67)

g=0 t=Tg)

where also the property has been used that the integrand is an even function of g. Interchanging the order
of integration yields (see Fig. 7)

GU = (c/65%) exp(—3slxs|/c)8(x1, X2)

T0) ol()
+ J exp(—st) dr J n 2 Im{[2¥"(p", 917" (0p"/07) dg}

r=TN0) g=0

A

© o)
+ J exp(—s7) dr J o2 Im{[27"(p", )]7'(0p" /07) dg}, (68)

r=70) =0
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in which ¢= Q% (7) and g= Q¥ (z) are respectively the (unique) inverses of 7="T1i(g) and v=T3(g). As
eq. (63) shows, these inverses follow from a cubic equation in ¢*. Application of Lerch’s theorem on the
uniqueness of the Laplace transform of a causal time function, taken at positive real values of s, leads to
the time-domain results :

GE=(c/6)(t—3|xs|/c)H(t—3|x3|/c)8(x1, X2)

ol
+ U n 2 Im{[2y"(p", 9]} (0p"/07)} dq}{H{t— T1(0)] — H[t— T35 (0)]}

ol
+ U n 2 Im{[2y"(p", 917" (0p" /07)} df]}H [t—T3(0)] (69)
g=0¥®

and

t

ue (X, 1) =0, f

I

ft=1)GE(xm, t—1) 7, (70)
=0

from which it is evident that = T1(0) and ¢=T5(0) are the arrival times of the two wave fronts. Through
the substitution

_ 11 . .
g=Q1 () sin(y) with 0<y<n/2, (71)
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Fig. 10. Snapshot of the Cagniard-path contribution to the Green’s function in space for x>0 in the second-order Thiele approxima-
tion; ¢=750 m/s, t=0.450 s. (The horizontal offsets are numbered sequentially.)
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the inverse-square-root singularity at the upper limit of the first integral on the right-hand side of eq. (69)
is removed, while through the substitution

g={[QF (DT cos’(y) +[QT(OF sin’(y)}*  with 0<y <m/2, (72)

the inverse-square-root singularities at both limits of the second integral in eq. (69) are removed. After
these substitutions, the integrals are evaluated numerically with the aid of the trapezoidal rule. Figure 10
shows the result in the form of a snapshot in space for x;>0. The wave with the arrival time T’ T(0) will
be denoted as the fast body wave; the wave wth the arrival time T 1(0) will be denoted as the slow body
wave.

4.2. The precursor

The contribution from the simple pole py to the Green’s function is analyzed next. The location of the
leftmost point of intersection pil of the modified Cagniard path with the real axis satisfies the relation

(cf. eq. (51))
[B*(¢9)—p'T'= 16(|x3l/r)6“{v at p=pi'(q). (73)

Upon substituting pi (cf. eq. (65)) into eq. (73), the value go for ¢ is found at which po and p' coincide,
viz.,

(q0)*=(4/3cA)[(4/2T)(r/1x:)* = 11. (74)

Note that gy is real only if r>3+/3|xs|. Differentiating eq. (73) with respect to g yields

q TI
6!1 = 3 3 3 f =p! ‘ 75
P G By T )
Since pi'(q) <B(q), eq. (75) leads to
0,7 (g) < »

(@)

when g> 0. Further, from eq. (65) it is clear that

q
3,10 (9)= : an
’ o (a)
Hence, when ¢=qu., 8,05(q) >0,p"(), so that the pole py lies to the left of pi' if ¢° <(¢0)* In view of eq.
(74), this inequality cannot be satisfied when r<3./3xs]. Hence, the pole contributes only when
>3 ./3x3|. Evaluating the residue, the relevant contribution is found to be
\

R aff —sH(?+4/3 2y1/2
GII:iJ exp[ Sz’(q 2/152) ] (78)
(g"+4/3¢)

g=0
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which, upon replacing r(¢*>+4/3¢%)'? by t, takes the form
~ 2 (70 exp(—s7)
Go=—" J ————; d7, 79
o 97‘[:6’ rzT}){l (72_4r2/3c2)]/2 ( )
in which
To1=(2/3)(r/c) and Tgr=(4r/9xs)(r/c). (80)
On account of Lerch’s theorem on the uniqueness of the Laplace transform of a causal time function, taken
at positive real values of s, the time-domain counterpart G§ of G then follows as
2
G I _
o[~ (TH)H

[H(t—Tt) — H(t— Too)]- (81)

This contribution (see Fig. 11), which is only present if r> 133 +/3, is to be added to the contribution from
the modified Cagniard path eq. (69). It can be interpreted as a head-wave-like precursor to the fast and
slow body waves.

4.3. The case r=0

For an observation position straight'above or below the source, we need the expression for the Green’s
function at r=0. In view of the occurrence of the Dirac distribution in eq. (68), the limit as »|0 has to be
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Fig. 11. Snapshot of the pole contribution to the Green’s function in space for x; >0 in the second-order Thiele approximation; ¢=
750 m/s, 1=0.450 s. (The horizontal offsets are numbered sequentially.)
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taken with care, since the substitution of the value r=0 in the Fourier representation for the Green’s
function leads to a divergent integral whose interpretation as a Dirac distribution is not obvious. To
circumvent this difficulty, we leave the term in eq. (68) containing the Dirac distribution intact and take
in the subsequent terms in the expression the limit »|0. The corresponding contour then tends, in a non-
uniform manner, to the imaginary p-axis (the points at infinity in the complex p-plane have to be identified
with one another). When r=0, the cubic equation for the modified Cagniard path reduces to a quadratic
one (cf. eq. (47)); the latter is solved by

n 1/2
2r 9) =iB(q>[’—“nT‘—(‘”} (82)
T2 -7

for r=0, T} (g) <t <T}Y, together with its complex conjugate, in which

3|x3||: AZ} -
Ti(g)= ; 7@ (83)

and

3|x3|
c

Tl (84)

For this case, the contour coincides with the imaginary axis and closes at infinity as opposed to the contours
for r#0 at which p" remains bounded. The path of integration intersects the real axis at the origin where
r=T¥(g) and tends to infinity as t]T5. The relation inverse to eq. (83) is ¢= Q1'(r), with

11 =g T—|xsl/c v
21 (®) c[3|x3|/c—'r:] (85)

for |xs|/c < T <3|x3)/c, while eq. (85) implies that only the first integral of eq. (69) contributes. This integral
can be evaluated, and the Green’s function reduces to

11m|:Gc(" x3,f)——(f—3|x3|/C)H(t—3]x3|/C) 5(7)}——1“*X—[H(f—|xal/6’) H(t=3|xsl/)].
rl0 t(3|X31 )

(86)

4.4. The case x3=0

In the case x3 =0, the modified Cagniard contour coincides with the positive real p-axis. In view of the
analyticity of the integrand away from the pole, when x; =0, we have a contribution from the arc at infinity
and a contribution from the pole. The latter is given by (cf. eq. (78))

N 2 =} _ 2+4 3 23 1/2
g2 J expl—sr(g 2/1/c2> 1 4o, -
9 (g"+4/3¢%)

q=0
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Fig. 12. Snapshot of the total Green’s function in space for x; >0 in the second-order Thiele approximation; ¢=750 m/s, t=0.450s.

(The singular part at r=0 is not shown. The horizontal offsets are numbered sequentially.)

The space-time counterpart is found to be (cf. eq. (81))

fm
One[*— (Ton)]"?

H(t—Toy), (88)
in which T'§; is given in eq. (80). The total Green’s function is then (cf. eq. (69))

G“:Gg+§ tH(D)8 (x1, X2). (89)
Figure 12 shows a snapshot in space of the total Green’s function G¢+ Gg for x3>0.

4.5. Partial differential equation for G"

By differentiating the right-hand side of eq. (46) twice with respect to x3, and using that under the
transformations of egs. (5) and (6) we have 8, —» s and 9, — —isa,, we can reconstruct the partial differential
equation that G" satisfies, viz.,

{¢T20(0:+ ") —[(1 /4)63\ +(3/4¢)8,10,0,} {¢ 2045 — ¢'3,) —[(1/4)3:—3/4¢)d,]0,0,} G"
=—[c7%02— (1/4)0:0, 128 (x1, x2, x3)H(?). (90)




M.V. de Hoop, A.T. de Hoop / Thiele approximations 251

The first partial differential operator in braces on the left-hand side of eq. (90) is the second-order approxi-
mation to the wave operator for a wave propagating in the direction of increasing xs; the second partial
differential operator in braces on the left-hand side of eq. (90) is the second-order approximation to the
wave operator for a wave propagating in the direction of decreasing x5 [11].

5. Arrival times as functions of horizontal offset

A Thiele approximation of the vertical slowness is accurate for small values of «, and a, (cf. eq. (7)).
In this sense, it aims to approximate wave propagation in the vertical direction. How the results of this
approximation compare with the ones of the asymptotic ray solution along a vertical ray is the topic of
this and the next sections. In the present section, relations between horizontal offset and arrival time are
derived for the different approximations. We keep |x;| fixed and let r vary. The vertical travel, or intercept,
time is denoted by Tmin=|x3|/c, and the arrival time by 7.

For the exact wave motion only a single body wave is present and its arrival time satisfies the equation

(cf. eq. (4))

T*—(r/c)*=Thn, (o)
which leads to

HT)=c(T? = Trin)'"* for T Tomin. (92)

This is also the relation predicted by ray theory (where straight rays emanate from the source to the point

of observation).
For the first-order Thiele approximation there is a single bodywave whose arrival time satisfies the

equation (cf. eq. (33))

(Twin— T/2)* +12/26* = (T/2)*, (93)
the solution of which is

P(T) = [2Tmin(T— Tomin)]/>  for T Trin- (94)
In addition, there is a head-wave-like precursor whose arrival time is given by (cf. eq. (38)

i (T)=cT/2 for T=2Tmn; (95)
this pfecursor is only present if > R{, where R{=cTminy/2 (see Fig. 13).

" For the second-order Thiele approximation we have eq. (64),

2 2 2 4
T* = 10T T* + 4[9 T2~ 2(5> }TZ - 6Tmin[9 T2+ 4<f> ]T+ 27T +36 T?nin(f) + 16(5> =0, (96)
C C C C

the two real-valued positive solutions of which are

1/2
A%T):[—%z (gf‘—Ai/z)] for T> T .
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for the fast body wave, and

1/2
AT =[—3i2 (5*‘+Ai/2):| for 7> 3Trmin .

for the slow body wave, where

F =—4 2T+ 6 TinT— 9T 7] 2

and
A, =—16*T4n[3 = 4(T/ Trin) 1. (100)

At T=23T,:n, there is a spatial 5-function singularity on the vertical axis, i.e., right at the cusps of the wave

front of the slow wave. In addition, there is a head-wave-like precursor whose arrival time is given by
(cf. eq. (80))

roa(T)=(+/3/2)cT  for T>3Tnin, (101)

which is present only if > R¢ with RN =T33 (see Fig. 14).
It is noted that the vertical travel times associated with the (fast) body wave in the first- and second-
order Thicele approximations are exact. Furthermore, it follows that RI>RS.

¢ =1000m/s ; z3 = 1000m ¢ =1000m/s ; £z = 1000m
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Fig. 13. Travel time vs. horizontal offset (diffraction) curves
associated with the arrivals of the exact and first-order Thiele-
approximated Green’s functions.

Fig. 14. Travel time vs. horizontal offset (diffraction) curves
associated with the arrivals of the exact and second-order
Thiele-approximated Green’s functions.

6. The local behavior of the waves near the wave fronts in the vertical direction

\

In this section we compare the local behaviors of the waves near the wave fronts in the vertical direction
for the exact Green’s function and its first- and second-order Thiele approximations.
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ond-order Thiele approximant; the crosses indicate the branch
points of the exact vertical slowness; the dashes in the exact
case indicate purely imaginary values of the vertical slowness.
(When r is large compared to |xs|, the exact modified Cagniard
path stays close to the real horizontal slowness (p-) axis.)

modified Cagniard path stays close to the imaginary horizontal
slowness (p-) axis.)

The exact Green’s function at {0, 0, x5} reduces to (cf. eq. (4))

G(Oa 09 X3, t) = H(t_ |X3|/C). (102)

4| x3|

The first-order Thiele approximation at {0, 0, x3} yields (cf. eq. (35))
1
G'(0,0, x3, ) =—— H(t—|xs|/c). (103)
4rct

Replacing ¢ in the denominator of eq. (103) by ¢=|x3|/c+ (¢ —|x3|/c), and using a Taylor expansion of the
resulting expression about the arrival time ¢=|xs|/c, yields

c

G'(0,0,x3, 1) =[ 5 (1= x3]/¢) +O[ (1 = IXsI/C)Zl}H(t— /o). (104)

4mixs| 4wxs
The right-hand side is the ray series expansion along a vertical ray. (The ray series expansion of the first-
order Thiele approximation in an arbitrary direction is discussed by Holden and Gorman [36].) The leading
term in eq. (104) coincides with the exact result (cf. eq. (102)), whereas the next-order term already deviates
from it. This result could also have been predicted from the parabolic equation in ray-centered coordinates
occurring in the paraxial ray theory (see, e.g., [37]).




254 M.V. de Hoop, A.T. de Hoop / Thiele approximations

g=0;Im{p} = +0

N
\ g
T exact

AN

secold order '\ { _\

-2t N\

—)’yc

second order

N

-4 L second order\|

cpo=1/2 icgo=0 N

Fig. 17. The exact and second-order Thiele-approximated vertical slownesses along the real horizontal slowness axis for an oblique
direction of propagation. The circles indicate the pole locations of the second-order Thiele approximant; the crosses indicate the
branch points of the exact vertical slowness; the dashes in the exact case indicate purely imaginary values of the vertical slowness.
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In the second-order Thiele approximation at {0, 0, x;} the Green’s function reduces to (cf. eq. (86))

lim [Gg(xl ) X2, X3, 1) —~6c- (1= 3bxsl/e)H(2 —3lx3| /)6 (x, xz):!

(x1,%2) = (0, 0)

1 B [H(t~|xs|/e) = H(t = 3]xsl/e)]. (105)
net (3]xs| —ct)

Replacing ¢ in the denominator of eq. (105) by ¢=|xas|/c+ (¢ —|xs|/c), and using a Taylor expansion of the
resulting expression about the arrival time #=1x3|/c of the fast body wave, yields

T (t—|xsl /e)* +Ol(t — IX3|/C)3]}H(1— xsl/c), (106)

drlxs|  16m|xs]

GII(()’ Oa X3, t) :|:

which shows that now the first two orders are exact (cf. eq. (102)).

The arrival-time curves and the snapshots (see Figs. 1, 6 and 12) show that the accuracy of asymptotic
ray theory is achieved along the vertical ray only; in oblique directions of propagation there is a discrepancy.
In oblique directions a better approximation is found if the vertical slowness is expanded about the actual
direction of the ray trajectory connecting the source and receiver. Such an approach requires an adapted
form of Thiele’s expansion about an oblique direction of propagation, which is discussed in Appendix A.

7. Concluding remarks

The foregoing analysis has revealed the general consequences that spectral-domain Thiele approximations
for the vertical wave slowness have for the corresponding space-time domain wave motion. The most
striking feature is that Thiele approximations lead to a number of non-physical artefacts that do not occur
in the exact wave motion. First of all, for even-order approximants, a singularity in the wave motion is
observed right above and below the source, which is absent in both the exact wave motion and in odd-
order approximants. Further, for horizontal offsets that are large compared to the vertical offset, non-
physical head-wave-like precursors occur. In addition, any Thiele approximant of order higher than one
introduces “slow” waves, which again are absent in the exact wave motion (see also Collins [38]). In the
odd-order approximations, however, they never occur along a direction of propagation which lies interior
to a certain cone centered on the vertical axis.

On the other hand, Thiele approximations reproduce amplitudes along the “vertical ray” as accurately
as the asymptotic ray theory does. However, in contrast to asymptotic ray theory, the Thiele-approximated
wave theory automatically initializes the ray amplitudes in the immediate neighborhood of the source.

In conclusion, one can state that Thiele approximations are sufficiently accurate inside a cone for not
too large horizontal-versus-vertical ‘offset ratios and in a restricted time window, i.e., in the neighborhood
of the arrival of the physical body wave. Further, in view of the associated non-physical singularities
straight above and below the source, the even-order approximants are to be avoided.
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Appendix A. Thiele’s continued-fraction approximations

In this appendix we investigate general Thiele continued-fraction approximations of the vertical slowness.
First, Thiele’s formula is summarized; next, it is applied to the vertical slowness. Special attention is paid
to the higher-order Thiele approximations, which are written as a sum of terms resembling first- and second-
order like approximants. Owing to this property, the waves associated with the higher-order approximations
in an unbounded homogeneous medium can be expressed in terms of waves in a quasi-multilayer configura-
tion, the vertical slownesses in each individual layer being replaced by first- and second-order-like approxim-
ants. Second, Thiele’s formula is extended to two dimensions, which allows for an expansion about an
oblique direction of propagation.

The Thiele’s continued-fraction approximation [39, 40] of a function g(x) about x=X, is given by

X Xg
g(x)=ap+
a;+ XX
(A
X—Xx (A.1)
a2+—0
as
with coeflicients _
%
dpr-1

ao=g(xo), ar=k/ (x0) fork=1,2,..., (A.2)

dx
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where the function p(x) follows from the recursion relation
dpr—
pr)=0,  po(x) =g, Pux)=pe-al®) +k/T () fork=1,2,... (A3)

Notice that a;,= pr(xo) — pr—2(x0). The function py is called the kth reciprocal derivative of g. It is assumed
that all reciprocal derivatives exist. We denote by

X — X
gr(x)=
X— Xy
a; +
X — X
+
X— Xo (A4)
Ap—1 +
1477
for k=1,2, . .. the kth convergent of the continued fraction. Equation (A.1) is the confluent expansion that

follows from the reciprocal-difference interpolation scheme applied to g=g(x) through the limit of k+1
coinciding abscissas. Then, the difference between g and the kth convergent of the fraction g(xo)+gx
vanishes at x, for its first k& derivatives. As such, eq. (A.1) can be seen as an alternative to the Taylor
expansion of g=g(x) about x=x,.

Expansion about the vertical direction of propagation

Applying the expansion to g(x?) = (1 —x?)'/?, as it occurs in the spectral-domain vertical slowness, consid-
ered as a function of x%, about x*=x%=0 (and hence away from the branch points at x*=1), we get

(1+g)—g ask— oo, (A.5)
with
—x2
20=0,  gk+1 =2+gk (A.6)
for k=0,1, 2, .... The resulting continued fraction is classified as an S-fraction [41]. Now, the general

formula for an even-order approximation can be written as

™ (= /4)!

| —
oQ

N

3

I
i3

, formz=1, (A7)

(\
M3

7

It

b (= /4)’
4]
whereas the general formula for an odd-order approximation can be written as

1 cl(m)(__x2/4)i
~ 81" , formz=1. (A.8)
2 A (—x* 4y

j=0 \

K]

i

Equations (A.7) and (A.8) are known as the (m, m) and (m, m—1) entries in the Padé table of g relative
to 0 [42]. (The Padé table also contains more general rational approximations.) The first 2m (for even
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order) or 2m— 1 (for odd order) derivatives coincide with the corresponding derivatives of g at 0. Relying
on the relation

(50

it can be shown by induction that (cf. eq. (A.6))

a = (2"” - ’), (A.9)
i—1
b = <2m._]), (A.10)
J
o = <2m ~1- l>, (A.11)
i—1
2m—1~] :
dj(m) =< m . -]) : (A12)
J

From egs. (A.9)-(A.12), it follows that

ad=1,  B=1, b=,

=1, dP=2, WP=1, bP=3, bP=1,
and

=1, dP=1,

=1, =1, d¥=1, dP=2,

which are all positive. It is observed that the sequence {u,} With tio,—1 =Y. ™ and Uom =D 1o a™ (m=

1,2,...) consists of the Fibonacci numbers [43]. A similar observation holds for the sequence consisting

of the remaining coefficients: uy, =Y.' d{™ and tpme1 =Y bI™.
"The even orders for m>2 can be decomposed into partial fractions as follows:

()

m=(—x>/2 5 —ai-——, A.13
&= (XD X e ) (A1)
so that .
w14 (B + 2ma™) (— /4
Lt gay=t 32 LB 2ma) (/8 (A.14)

m =1 1+ B (=x"/4)
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where

o ’- (A.15)
I1 [oosz< T )—cosz< )}
g=1.q#] 2m+1 2m+1
forj=1,...,mand
(m) = 4 cosz< T ) A.l16
/ 2m+1 ( )
for j=1,..., m. Hence
(2>=5_\/§ (2>:5+\/§ (2):3""\5 (2>=3“\B
aj > @z > Bi > B3 s
10 10 2 2
Each term in eq. (A.14) is of the form'of a second-order Thiele approximation (cf. eq. (44)).
The odd orders can be similarly decomposed into partial fractions as follows:
2 { ORTR i }
ma1=(—x2/ 27+ Y —— L ———— A.17
gom+1 ( / ) Ym+1 igl 1+5,~(”‘)(—x2/4) ( )
for m>1, so that
1 m 146+ 2m+ 1)y (—x7/4)
1+ gpmi1 =——<1+2(m+ Dy (—x*/4) + - d , A.18
gom+1 m+1{ ( )7 +1( / ) ig} 1+5i(m)(__x2/4) ( )
where
11 [cosz< Jr )—cosz( Pr ﬂ
my__P=1 2m+2 2m+1 A19)
J m+1 jTC qTC ’ ’
o ]
g=1.g%j 2m+2 2m+2
forj=1,...,m+1 and
5 =4 cos2< JL ) (A.20)
2m+2
for j=1,...,m. Hence
1 1
Mm_t (=" sh=2,
71 % Y2 5 1

The terms on the right-hand side of eq. (A.18) are of the form of the first- and second-order approximations
(cf. egs. (15) and (44)). In Figs. 15 and 16 the vertical slowness (g=cy ) as a function of horizontal slowness
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(x=cp) along the real (with Im{x} = +0) and imaginary (Re{x}=0) axes are shown for x5=0, together
with the corresponding first- and second-order Thiele approximations.
The asymptotic behaviors of the even- and odd-order approximations are essentially different, viz.,

22, =0(1) as |x] — oo (A.2])
whereas
Zam-1=0(x*) as [x| = c0. (A.22)

Notice that the radius of convergence of the expansion is limited by the branch points of g at x*=1 [44,
pages 59-61]. From the convergence proof in the reference cited, the coefficients in eqgs. (A.15), (A.16),
(A.19) and (A.20) can be obtained.

Expansion about an oblique direction of propagation

To expand the vertical slowness about an oblique direction of propagation, a two-dimensional Thiele
continued fraction approximation is employed. To arrive at the expansion about {xo, yo}, we substitute in
the function g(x, y)=(1—x*>—y*)"*

x—xp=at and y—yo=pt, (A.23)

through which the two-dimensional expansion about {xo, yo} is reduced to a one-dimensional one about
t=0. The truncated continued fraction that results from the application of Thiele’s formula is written as a
rational function. The numerator and the denominator of the latter function are multiplied with ¢ enough
times so that a and § can be eliminated with the aid of eq. (A.23).

As long as (xo, yo) #(0, 0), we get, e.g., for the fourth-order Thiele approximation:

po(t) =[1— (xo+ at)’ = (pot B1)’1'7, (A.24)
_ 1= (ot an)’—(po+ 7T
pi()= wxot fyut (P40 (A.25)

@+ B2+ 2[axo+ Byo+ (> + B — (Bxo— ayo)’

pZ(Z‘):pO(t) (Zz'}‘ﬂz-‘(ﬂXo_ ayo)z ’ (A26)
- 2[axo+ Byo+ (a” + A1)
PO =P S S+ Byo+ (a2 PO~ (Bxoaro) (42D
Hence,
1
(1212
ay=—(1—x0-y0) arat Bra’ (A.28)
(1212 2(ax0+ﬂy0)2
a=(1=x5—0) a2+/3,f-—(ﬁxo—ayo)2’ (A.29)
a=(1 —xE—R)I2 a”+ "= (Bxo—ayo) (A.30)

(axo+ Byo)[a®+ B> = (Bxo— ayo)* —2(axo+ Byo)’] ’
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as=(1—x5=¥)
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12 2[a®+ B — (Bxo— ayo)* = 2(axo+ o)’
[a®+ B>~ (Bxo— ayo)’]’ .

Writing the continued fraction as a rational function leads to

(1= =)= (1 =x3=38) 7+

[a2a3a4 + (a4 + az) f]t
aaxa3a4+ (a1a2 +ajas+ a3a4)t+ t2 '

(A.31)

(A.32)

Substituting the expressions for a;, a,, a; and a, and multiplying the numerator and denominator by £,

then yields

(1 ~x2—y2)‘/2= (1 ‘X%—y%)l/z{l +[A4:1(x0, Yo, x)+ Ax(x0,.Y0, X, ¥) + A1( Yo, Xo, y)+Ax(yo, X0, ¥, X)

+B1(.X0, J’O, x)+B2(x0ay0: X, y)+Bl(y03 X0, y)+B2(y0: X0, ya x)
+ Bs(x0, Yo, X, ¥)1/[Ci(x0, Yo, X) + Cx(x0, Yo, X, ¥) + Ci(yo, Xo, )

+D1(xo0, Yo, X) + DalXo, Yo, X, ¥)+Di(yo, X0, ¥) +Da(yo, Xo, ¥, X)

in which

+ Ei(X0, Yo, X) + Ex(xX0, Yo, X, ) + E1(¥o, X0, ¥) + Ex(yo, Xo, ¥, X) + Es(Xo, Yo, X, ¥)]},

Ai(x0, Yo, X) = 2x0(1 = x5~ ya) (1 = 23 = ¥3) (x — X0)’,

Ax(x0, Yo, X, ) = 290(1 = x5 = y3) (1 = 4x5— ¥8) (= %0)*(¥ — y0),

Bi(xo, Yo, X) =2(1 —3x3—2y5+ 3x3Y3+4xg+ y§) (x — x0)%,

Bs(x0, Yo, X, ¥) = 4x0y0(5x5+y5 — 1)(x — %0)*(¥ = ¥o),

Bi(x0, Yo, X, ¥) =2(2—5x5— 5y + 1828+ 3x6+ 3y0) (x — x0) (¥ — 30)?,

Ci(%o, Yo, X) =4(1 — x5 — ¥3)* x5+ y5— 1) (x — x0)°,

 Calxo, Yo, %, ¥) = 8xo¥o(1 — x5 — ¥8)*(x — x0) (¥ — ¥o),

Di(x0, Yo, x) =2x0(1 — x5 = y3) (1 — 4x53 — ¥3) (x — x0)’,

Ds(%o0, Yo %, ¥) =2y0(1 = x5 y8)(1 — 4x5 — ¥6) (x — x0)*(¥ = ¥0),
Eq(x0, yo, x) = (1= 39)*(x — x0)*,

Es(Xo, Yo, X, y) =4xopo(1 *j;g)(x_xo)3(J’"J’o),

Es(x0, Yo, X, y)=2(1— X% ‘)’<2)+ 3x§y(2,)(x— xo)z(y —J’o)z-

(A.33)

(A.34)
(A.35)
(A.36)
(A.37)
(A.38)
(A.39)
(A.40)
(A.41)
(A.42)
(A.43)
(A.44)

(A.45)
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Through this rational expression the limit {xo, yo} — {0, 0} exists and leads to the previous result obtained
from a second-order Thiele approximation of g as a function of x* about x*=0. In Fig. 17 the vertical
slowness (g=c7) as a function of horizontal slowness (x=cp and y=icg=0) with Im{x} =+0 is shown
for (xo, yo)=(z, 0).

Appendix B. Closed-form expressions for the second-order modified Cagniard contour

In this appendix, we derive closed-form expressions for the modified Cagniard contour in the second-
order Thiele approximation. We assume that r#0 so that the contour equation is cubic in p. For the
solution of a cubic equation, we employ Cardano’s formula [45]. The contour equation (47) is written as

Ap*+ Bp*+ Cp+ D=0, (B.1)

with 40, and the Jacobian as

j
afp=c+—1;&'%, (B.2)
with
A==/,  B=1/Hr—3|xil/c],  C=r[1+(1/4)¢,
D=(|xsl/)[1+(B/4)*¢*] — t[1+(1/4)¢’].
The equation 9,7 =0 (cf. eq. (51)) reduces to
34p*+2Bp+ C=0 (B.3)

as long as the contour stays away from p=2/c. The solution of eq. (B.1) is written as p(z, g), i.e., we omit
the superscript I1.

The discriminant associated with Cardano’s formula follows from eq. (B.1) and eq. (B.3) upon elimina-
tion of p, and is given by

A,=G*—H>, (B.4)

with
H=(1/9)(B*—34C) (B.5)

and
| G=(1/2)(4>D—(1/3)ABC+ (2/27)B’). (B.6)

A, is of fourth degree in 7. First, we analyze the sign of the discriminant as a function of 7 for a given g¢.
To this end, we have to evaluate the roots of the quartic equation 4,=0. As shown in Section 4, this
equation has only two real positive solutions 7= T} »(g), which can be explicitly obtained by the method
of Descartes [46]. However, in the evaluation of the space-time wave, we need the inverse relations g=
012(7). Hence, we rewrite the quartic equation in 7 as a cubic equation in ¢* (up to a factor —127°167'¢*?):

(PP + B+ 4+ D=0, (B.7)
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and analyze the sign of the discriminant as a function of ¢ for a given 7. The coefficients are the following
functions of 7:

o =(1/4)r", B=—(1/2)r*c*t*+ 3|xslr’ct — (9/2)x3r* + 3+,
@ =(1/8)c*t* = 3|xs 3>+ (1/2) (2753 — 8r7) 0 — 3|x3](9x5 — 2r7) e + (81 /4)x3 + 18x3° + 1277,
D =c*1* — 10]x3> > + 4(9x3 — 2202 — 6]x3/(93 + 4r*) e + 273 + 36x317 + 167,

The solutions of this equation in turn can be found with Cardano’s formula. To this end, we have to
introduce another discriminant, A,, given by

A=9"— A, (B.8)
with

H=(1/9)B*—34%) (B.9)
and

G=(1/2)(A*D—(1/3) A BE+ (2/21)B). (B.10)

As has been shown in Section 4, T1(q) < T»(q) for all ¢, and 8,77 ,(g) >0 when ¢> 0. Hence, when 7> T5(0),
there must be at least two real solutions for g. Then A,<0, and we can introduce {#, ¢} according to

(—A)'*=R sin(¢ ) (B.11)
and
—% =% cos(¢ ). (B.12)
That is,
R=#>?>0, P=arccos(—%H# >*)€l0, n]. (B.13)
Using these expressions, we find the real positive solutions czQ%,z(r) of eq. (B.7):
L1 @ ¢+4n
2y=c | —Z+293 cos(—“—ﬂ, B.14
Qi(r)=c Ve 3 (B.14)
L1 2 !
Q%(r)=c 2,5-2{; L—§+2%1/3 cos(—?)_, (B.15)
when 7> T5(0). When T1(0) <7 <T5(0), we have
L1l 2 o\ ]
A)y=c2—|-=+2%"" co (—) B.16
QI(T)C%L3 3] (B.16)
if A; <0, and
Q?(T)=C_2é{**?Jr[*‘5+(Aq)1/2]1/3+[—g—(Aq)l/Z]m} (B.17)

if A,>0, taking real cubic roots; 0,(7) fails to be real in this case. We take positive real square roots to
obtain Q) (7). By analyzing the sign of the discriminant of the contour solution, we find that A,>0 when

Ti(q) <t <Txq).
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We restrict ourselves to contours with Re{p}>0.When T(g) <7 <T3(q), A,>0 and we get

plr, q)=i—[—§+uw*+ijl, (B.18)
as well as its complex conjugate p*(7, q). Here,

u=[—G+A4,*1'" (B.19)
and

v=[-G-A})*"?, " (B.20)

whereas w=exp(57i) is the primitive cubic root of 1. In egs. (B.19) and (B.20) we take the real roots.
The shape of the wave front follows from eq. (B.7) upon substituting g=0. The resulting equation, 2 =
0, is written as

16+ Fv*+ A4 =0. (B.21)

At a “snapshot” time 7 the solutions are given by
r 72

1 :
ri(xs) =] —— (F — A% (B.22)
| 32 i
for the fast wave, and
T 172
ra() =| o (7 +4,7%) (B.23)
for the slow wave. Here,
F =—4[2c7* + 6|xs)cT — 9x3], (B.24)
whereas the discriminant, A,, is given by
- 3
A,=f2—64%=—16x§[3—4c—} : (B.25)
||
in which
A = (ct—|x3]) (et — 3]xa))>. (B.26)

The discriminant is always positive when 7 >|xs|/c. This is the minimum arrival time of the fast wave
occurring at ¥=0. The slow wave front contains cusps at r=0, |x3]=c7/3. The fast wave front contains
cusps at r=c7/2, x3=0. The different wave fronts are shown in Figs. 18 and 19. They show similarities
with the wave front of a hyperbolic differential equation of a different nature considered by Courant and
Hilbert [47, pages 588-589].




