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The accuracy of the first- and second-order rational parabolic approximations of the “vertical”
slowness and the nature of the artifacts associated with them in the space-time solutions to the
acoustic wave equations in a fluid medium are investigated. In particular, the reflection of an
impulsive, point-source generated, spherical wave against the boundary with a medium with a
higher wave speed is analyzed. From the space-time Green’s functions in the relevant two-
media configuration, evaluated with the aid of the modified Cagniard method, it is found that,
instead of generating the real, physical head wave, the approximations generate artificial head-

wavelike arrivals. The analysis makes explicit in which regions of space and in which time
interval the artifacts show up and of what nature they are. Numerical results are presented.

PACS numbers: 43.20.Dk, 43.20.Px, 43.20.Bi, 43.30.Cq

INTRODUCTION

In this paper, we investigate the influence of parabol-
iclike approximations to the acoustic wave equations on the
reflection of an impulsive, point-source generated, spherical
acoustic wave at a plane interface between two different
fluids. The direction of preference in the approximation is
chosen normal to the interface. As such, it is representative
for a seismiclike arrangement of sources and receivers rather
than for wave propagation in an acoustic duct, where the
direction of preference is customarily chosen parallel to the
interfaces. Another difference is that the relevant acoustic
wave guide problem is usually considered in the frequency
domain, whereas our analysis is carried out in the time do-
main and focusses on transient phenomena.

As far as terminology is concerned, the pertaining ap-
proximations are denoted as “Taylor approximants,” “Padé
approximants,” etc., partly depending on the kind of expan-
sion of the wave operator involved. The work of Brezinski'
reveals that Thiele (a Danish astronomer) was apparently
the first to investigate approximations within the framework
of constructing a general continued-fraction counterpart of
the well-known (polynomial) Taylor expansion. For this
reason, it would be appropriate to indicate the rational ap-
proximants as Thiele approximants. It is noted that the first-
order Thiele and Taylor approximants necessarily coincide.
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In the past, the first-order Thiele continued-fraction or
standard parabolic approximation has been applied to var-
ious wave problems, amongst which are the propagation of
waves in random media,>? the downward continuation of
acoustic waves in seismic prospecting,® and underwater
acoustics.>® In recent years, there is an increasing interest in
the use of higher-order approximations (which include the
Padé approximations). Thiele approximations have been ei-
ther arrived at with the aid of a perturbation theory applied
to the wave equation in a comoving frame of reference’ or
carried out on the wave function in the spectral domain.®
They have been compared, in the spectral domain, with ap-
proximants of the vertical slowness obtained through least-
squares fitting by Lee and Suh,” and through interpolation
at a number of abcissa of the horizontal slowness by Halpern
and Trefethen."

The relation between the solutions of the exact (Helm-
boltz) and the first-order approximated (Schrédinger)
equations for the propagation of sound in an acoustic wave
guide has been analyzed, amongst others, by De Santo'' and
Collins.!? Deviations, due to the approximation, in the
phase and group velocities of normal modes in underwater
acoustic ducts have been studied by McDaniel.® A compari-
son between the Green’s functions of the scalar wave equa-
tion and its first- and second-order Thiele approximations in
an unbounded domain has been carried out by De Hoop and
De Hoop."? This paper also contains an extensive bibliogra-
phy on the subject.

As the previous study'® revealed that in an unbounded
medium the Thiele approximation generates nonphysical,
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artificial “head waves,” we presently extend the investiga-
tion to the higher-order approximation’s capability to de-
scribe the real, physical head waves that occur in the wave
reflection against the boundary with a medium with a higher
wave speed. Upon evaluating the space-time Green’s func-
tions in the relevant two-media configuration it is found
that, rather than generating the physical head wave, the
Thiele approximation creates, in the reflection problem, ad-
ditional artificial head-wavelike arrivals. Related approxi-
mations have been introduced by Richards and Frasier'*
and Shuey,'” who combined it with a linearization of the
reflection coefficients in the medium parameter contrasts
across the interface.

The formalism for the first-order parabolic wave theory
pertaining to media with interfaces across which the medi-
um parameters jump by finite amounts has already been giv-
en by Corones'® and McCoy et al.'” Further, Hatton et al.'®
have analyzed the modification of Snell’s law entailed by the
first-order approximation for a two-media configuration (as
represented by a transition zone).

Both the exact space-time solution to the problem and
the solutions arising from the application of the first- and
second-order Thiele approximations to the corresponding
vertical slownesses are obtained with the aid of the modified
Cagniard method.'>'** For canonical problems of the type
at hand, this method is still believed to be the most effective
one as far as the accuracy of the space-time results and the
computational effort involved are concerned. Due to its ex-
act nature, the results also can serve as a check on the accura-
cy of purely numerical procedures by applying the latter to
the configurations to which the modified Cagniard method
applies. The method separates the total wave motion into a
number of constituents each of which is of a particular na-
ture. Also, it shows that the artifacts manifest themselves
more clearly in the transient response than in its continuous-
wave single-frequency counterpart. In addition, the analysis
makes explicit in which regions of space and in which time
interval the artifacts do occur and what their nature is.

I. THE TRANSFORM-DOMAIN WAVE MOTION

Consider linearized acoustic waves in an isotropic fluid
occupying three-dimensional space Z°. The point at which
the wave motion is observed is specified by the coordinates
{x,,%,,x, } with respect to a Cartesian reference frame with
the origin & and three mutually perpendicular base vectors
{i, i,,1, } each of unit length. In the indicated order, the base
vectors form a right-handed system. In accordance with geo-
physical convention, x; (our direction of preference) is tak-
en as the vertical, or depth, coordinate (which increases in
the downward direction), leaving x,,x, as the horizontal
coordinates. The position vector will be denoted by x. The
time coordinate is denoted by z. Differentiation with respect
to x, ,; is denoted by d, ,;; d, denotes differentiation with
respect to ¢.

A. The basic acoustic equations

The acoustic wave motion is governed by the following
system of first-order partial differential equations:
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61,2,31’ +patv1,2,3 =f1,2,3, (1

k3,p+ vy + v, +d30; =4, (2)
where p, the acoustic pressure, and v, , 5, the particle veloc-
ity, are the wave field quantities, p, the volume density of
mass, and «, the compressibility, are the acoustic fluid pa-
rameters, and ¢, the volume source density of injection rate
(which models the action of a monopole transducer), and
fi.2.3> the volume source density of force (which models the
action of a dipole transducer), are the source quantities.

Let the sources generating the wave field be switched on
at the instant ¢ = 0, then causality implies that the wave-field
quantities satisfy the initial conditions p =0 and v,,, =0
for t < 0 and all x. In view of the time invariance of the medi-
um, the causality of the wave motion can be taken into ac-
count by carrying out a one-sided Laplace transformation
with respect to time, taking the time Laplace-transform pa-
rameter s, which is in general complex-valued, to be in the
right half (Re{s} > 0) of the complex s plane and requiring
that the transform-domain wave quantities are bounded
functions of position in all space. To show the notation, we
give the expression for the acoustic pressure

p(x,8) = fm p(x,t)exp( — st)dt. (3)

=0
Employing the translational invariance of the configuration
in the horizontal directions, also a Fourier transformation is
applied in the horizontal plane with real transform param-
eters sa, and sa,. For the acoustic pressure, the relevant
transformation is

blia 3,%3,5) =J b(x,5)
) 26907
Xexp[is(a; x; + ayx,) ]dx, dx,. (4)
The variables ie;, are the horizontal components of the

slowness vector of the wave motion. The transformationvin-
verse to Eq. (4) is given by

2
p(x,5) = (—f—) J plia 5,%5,8)
27T al‘ze.U/?z

Xexp[ —is(a;x; +a,x;)da, da,.  (5)
Under the Laplace transformation, assuming zero initial
conditions, we have d, —s. The Fourier-domain counterpart
of 9, , is given by — isa, ,. With these rules, the first-order
acoustic wave equations (1) and (2) transform into

8yp + 5pb; =fi» (6)
— isay o P + spbs, :]71,2, (7
SKp — is(a, D) + ay,) + 330, =4q. (8)

B. The configuration

The configuration to be considered consists of two con-
tiguous half-spaces, each filled with a homogeneous fluid.
The interface between the half-spaces is located at a depth
x; = h. The half-space x; <4 has the medium parameters
P15 K1 ; the half-space x, >/ has the medium parameters p,,
«,. The source is a monopole point source at the origin; for
this :
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FIG. 1. The configuration of the reflection problem.
q=¢"(08(x), fios =0, 9

in which ¢°(¢) is the source signature and §(x) is the three-
dimensional Dirac distribution operative at x = 0. Accord-
ingly,

§=(9)8(x), fip3 =0. (10)
The receiver that detects the pressure is located at a depth
x; <h (seeFig. 1; R* denote the reflection coefficients and

T* denote the transmission coefficients). Across the inter-
face separating the half-spaces, p and i, are to be continuous.

C. The transform-domain incident field

From Egs. (6)—(8) and (10), the transform-domain
incident pressure field in the half-space x; </ is found as

B = (2Y,) 7 '3°(s)exp( — sy |x5]), (11)
where
=t ad +ad)” (12)
is the vertical slowness and
Yi=n/p (13)

is the vertical acoustic wave admittance. The Green’s func-
tion associated with the incident pressure is then given by

G, = (25°Y,) ~'exp( — sy, |x3|), — oo <x3 <h.

(14)

Note that this function has been chosen to contain a factor
52 that compensates the factor s* in the inverse Fourier
transformation Eq. (5).

D. The iransform-domain reflected field

The transform-domain reflected pressure field in the
half-space x, </ takes the form

B,= 2Y)) 7 'P(s)Rexp[ —sy, (2h—x3)],  (15)
where

R=R*"= — (Y, - Y)/(Y,+ 1)) (16)
is the reflection coefficient with

Y, =v/p, (17)
and

va=(c; *+ai +a3)"” (18)
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The Green’s function associated with the reflected pressure
is then given by

G, = (25Y,) “'Rexp[ — sy, (2h — x3) ],
(19)

The two space-time Green’s functions G, and G, will next be
analyzed in detail, both exactly and in their first- and second-
order Thiele (parabolic) approximations.

— o0 <X <h.

E. The general Green’s tensor

The general acoustic Green’s tensor associated with a
vertically inhomogeneous configuration consists of the
acoustic pressure and the vertical particle velocity due to
both a point source of volume injection (monopole source)
and a vertical point force (vertical dipole source). It con-
tains four elements each of which can be expressed in terms
of G, and G,. We write the transform-domain Green’s tensor

as
- GY G
(72 %)
G uf G vg
where the first superscript refers to the type of observed
quantity (p,0;) and the second superscript refers to the type
of source (f3,3). From Egs. (6)—(8), it is found that, upon

separating into incident and reflected wave field contribu-
tions,

(20)

G=G,+G,, —wo<x;<h (21)
with
~ 0 ~ —~
G’:g’G’+(pf‘s“35(x3) O)’ G, =49,G,,
(22)
in which &, and &, are the operators
gi=(_ffffla3z o )
(pr 57 °35) —p1 T 0 (23)

2 _( pi s 10, 1 )
r (pl‘ls_laB)z pl—ls-la3 :

Il. THE GREEN’S FUNCTIONS IN THE TIME-LAPLACE
DOMAIN

The first step toward the construction of the solution in
the space-time domain with the aid of the modified Cagniard
method consists of carrying out the inverse transformation
Eq. (5). In this integral the variables of integration {a, ,a, }
with {a,e?,a,e#} are transformed into {p,g} with
{p e ,ge#} (here % denotes the real axis and .# denotes
the imaginary axis) through (De Hoop'®)

a, = —ipcos(¢) — gsin(¢),
a, = — ipsin(¢) + q cos(¢), (24)
where {r,¢} is related to {x,,x, } by

x;, =rcos(¢), x, =rsin(é), (25)
with 0 <r< e, 0 <¢ <27. With this

o\ X + a;x, =pr, (26)

ai +ao3 =q —p* (27)
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Next, while g is kept real, the resulting integrand is contin-
ued analytically into the complex p plane. Subsequently, the
integration is carried out along the modified Cagniard path
that follows from a continuous deformation of the imaginary
p axis and changes the exponential function in the integrand
into exp( — s7), where 7is the real and positive travel time
parameter along the path. Introducing in the integral with
respect to p, 7 as the variable of integration and interchang-
ing the integrations with respect to 7 and ¢, we end up with a
Laplace integral with respect to time, the integrand of which
is the desired time-domain result. Lerch’s theorem (Wid-
der®®) ensures that this procedure is unique. Experience
with some exact solutions (see, for example, De Hoop and
Van der Hijden?* ) shows that the nature and the location of
the singularities in the complex p plane are indicative for the
presence of certain constituents in the wave motion. So, open
modified Cagniard paths extending to infinity correspond to
body waves, looplike paths around branch cuts associated
with square-root expressions for the vertical slownesses and
wave admittances correspond to head waves, while poles
correspond to surface waves. Further, in the exact solution
no singularities in space show up in the wave motion, except
at the source point. Now, in the parabolic approximations
the branch points (and the associated branch cuts) will be
shown to disappear, while extra poles show up. This raises
the question, how far the contributions from the poles take
over, in the parabolic approximations, the phenomenon of
the occurrence of head waves in the exact wave motion. In
addition, the second-, as well as all even higher-order ap-
proximations lead to divergent integrals (and corresponding
singularities in the integrand at infinity in the complex p
plane), that somehow must be interpreted and that will be
shown to lead to nonphysical singular points outside the
sources as artifacts in space. In those regions of space where
such drastic artifacts show up, the parabolic approximations
are clearly outside their region of applicability. The associat-
ed phenomena occur at relatively large source-receiver hori-
zontal offsets, which may arise in a surface seismic explora-
tion setting. Further, it will be shown that the approximative
nature of the parabolic approximations is more manifest in
the transient signal than in its single-frequency continuous-
wave counterpart. For this reason, the emphasis in our anal-
ysis is on the time-domain results.

Since through the parabolic approximations the nature
of the singularities in the complex p plane has been changed
(single branch points are replaced by several poles), and,
further, the asymptotic behavior as |p| — «o is modified, the
resulting wave motion is, apart from being approximative in
some sense, also expected to be provided with artifacts that
are totally unrelated to the exact physical wave motion.

Application of the inverse Fourier transformation Eq.
(5) to Egs. (14) and (19) yields

G, (xy50%3,8) = py (47) ™ f

ay €A

2(27/1)—1

Xexp[ —is(a;x, + ay X%, )]

Xexp( — sy, |x;|) da, da,, (28)
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6, (X12,%3,8) = py (4a) ! f

ame.%z

(2y,) 'R

Xexp[ —is(a;x; +ayx,) ]
Xexp[ — sy, (2h — x;)] da, da,.
» (29)
To constryct the time-domain equivalents of &,. and ?;,, and
hence of G, and G,, the modified Cagniard method is ap-
plied.
After transforming the variables according to Eq. (24),
we obtain for the incident and reflected field Green’s func-
tions the expressions

N 1 J«oo J«iw
G =——m d F (0.9
477'21. g= — © q p= —iw pq

Xexp[ —s(pr+ v:|xs])]dp,

A 1 fw jlw
Grz——“ d ?r ) )
47T21 g= — 7 p= —iwo (pq

X exp{ — s[pr+ v, (2h — x3) ] }dp, (30)
in which
Fopg) =— — F(pg)=F,(peR. (1)
2y, (p,q)

Further details of the method are given in Appendices A and
B.

{ll. THE EXACT GREEN’S FUNCTIONS IN THE TIME
DOMAIN

In this section we present the exact Green’s functions in
the space-time domain.

A. The incident field Green’s function

The exact Green’s function for the incident wave has
been determined in De Hoop and De Hoop'® and is given by
G =P

- Lao(e-2)
" 4R ¢, )’

where R = (x? +x2 +x3)"* is the distance from the
source to the receiver.

(32)

B. The reflected field Green’s function

For the exact reflected field the modified Cagniard path
follows from Eq. (A1) with y =y, and H =2k —x,. We
will consider the case ¢, < ¢, ; then, head waves occur in ad-
dition to the body waves. The body-wave part of contour in
the first quadrant is given by (see also De Hoop and Van der
Hijden™*)

PPV = (1/RH{rr+iH[7 — Tiw (@) ] 172}
when

Tyw (@) <7< 0, (33)

while the head-wave part of the contour (loop around the
branch cut) is given by

PV = (1/R){rr — H[T%w (¢) — 7]}
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when
Tuw (9) <7< Tew(q), (34)
where
Taw (@) = R(e; 2+ ¢9)"?, (35)
Taw (@) =r(c; 2+ )"+ Hey > — e )2, (36)
in which
= (P +HH? (37)

is now the distance from the image of the source in the re-
flecting interface to the receiver. The inverse relationships of
Egs. (35) and (36) follow as

Qpw (7) = (1/R) (2 — R*/c2)\?, .

Grrw (1) = [(T—H(Clﬁzwcz—Z)m z—iz]l/z (39)
r =

ité[fizw(O(;bé?ﬁvexirlith that  Qpy (1)<Quw (r)  when

= (R¥H)(c{ > —c; )V o)

QHw(l)
—2
Gr = {77' P f
g=20
Ouw ()
+ {77'_2/71 f
q= Qpw(t)

QBw(t)
(G
9=

in which y denotes the characteristic function. The integrals
are evaluated numerically. In Figs. 2 and 3, a near horizontal
offset (precritical angle of incidence) and a far horizontal
offset (postcritical angle of incidence) trace, corresponding
to the exact Green’s function, are shown (/4= 500 m;
r = 500 m, corresponding to an angle of incidence of about

|50 ()

*10 72

4 exact

00 05 1.0 15 20 25 30 85 40 45 50 55 6.0
—t(s)

FIG. 2. The exact reflected-wave Green’s function when » = 500 m and

# = 500 m. The medium parameters arep, = p, = 1000kg/m’ ¢, = 1500

m/s, and ¢, = 2828 m/s.
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Notice that the situation Tgyw (0) < T only occurs outside
the cone #/H> [(¢c,/¢,)* — 1] ~'/* where the head wave
exists. The one-dimensional Jacobians corresponding to
Egs. (33)-(34) follow as

ap™V —i[2— T2 —1/2 BW
o= 7 —Tiw (@] 1 "V, (41)
Pp™ o P21 HW
e sw (9) 177", (42)
in which
7 (0®V,g) = (I/R){Hr — ir[ 7 — Thw (@) ]},
(43)
when Tyw (¢) <7< x, and
71 (0™,q) = (V/R){Hr + r[T3w (9) — 7]},
« (44)
when Ty (9) <7< Tyaw (@) . It is noted that
7 — Taw (@) =R*[Qiw (7) — ¢*]. (45)

Following the analysis of Appendix A, the exact reflected
field Green’s function is found to be

[( 27/1 ) ( )]p }X[THW(O) Taw(0) ]( )

dg + 7%, J‘Qawu) Im[( )(ap)] dq}X[r 0,7 1(1)
g=0 27 at /] pw e

—é’— dg\H(t —T
)a] q}(r ),

(46)

i
26°, and r = 1750 m, corresponding to an angle of incidence
of about 60°, respectively).

IV. THE RATIONAL PARABOLIC APPROXIMATIONS
FOR THE SLOWNESS AND THE REFLECTION
COEFFICIENT

In this section we give, as a preliminary to the first- and
second-order rational parabolic approximations to the wave

0.20

0.15 exact

0.10

0.05 I

<)
0.00
3

~0.05 +— Tuw(0)

-0.10

-0.15

-0.20 T T T T T T
00 05 1.0 15 20 25 3.0 35 40 45 50 55 6.0

=t (s)
FIG. 3. The exact reflected-wave Green’s function when r = 1750 m and
h = 500 m. The medium parameters are p, == p, = 1000kg/m’ ¢, = 1500
m/s, and ¢, = 2828 m/s.
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motion, the relevant approximations to the vertical slow-
nesses, the vertical wave admittances, and the reflection co-
efficient. The first- and second-order approximations are de-
noted by the superscripts I and I1, respectively. At this point
it is noted that, as has been shown in a previous paper,'® all
higher-order approximations lead to a succession of terms in
¥m» M = 1,2, each of which has the shape of either a first- or
a second-order approximation.

A. The first-order approximation

In the first-order approximation,* we have

J

R'= _ (pzcz)_l_ (plcl)—1+(1/2)[(02/p2) —(01/P1)](q2“P2)

Vi =+ (6n/2) (¢ — PP,
Y = Vm/Pm

= (PnCm) " [1+ (/2)(¢* —p*)], for m=12.
(47)

Due to the occurrence of the factor 1/2y! inboth G and G'%,
these functions contain a simple pole at

po(g) =g +2/c3]1" (48)
With Eq. (47), the expression for the reflection coefficient
becomes ‘

(49)

This contains simple poles at the simple zeros of its denomi-
nator. In the right half of the complex p plane, these are given
by

PR(@) = (¢*+ 2/()D", (50)
in which
<c>r2=%<1+(plc‘/p2%))- (51)
et \ 1+ (picy/pycy)
The following situations occur:
¢, /¢, <1 then {(c); % <ci % (52)
c,/¢c; =1 then {c)y *=¢[ 3 (53)
¢,/c,>1 then {(¢); *>c; > (54)

In the case ¢; = c,, the pole actually vanishes and the reflec-
tion coefficient reduces to the exact expression
R'= —(p; ' —p; /(o7 "+ p;"). (When, in addition,

(026,) " 4 (prc) "+ (L/2) [ (e /ps) + (e /p) [( —p)

|
Due to the occurrence of the factor 1/2y}' in both G'' and

G, these functions contain, in the right half of the complex
p plane, a simple pole at

PR(g) = (* +4/3¢)'”, - (56)
The expression for the reflection coefficient now becomes
R"= —E-/ET, (57)
where
E* = (p,¢;) " '[4/3¢ + (¢ —p*) ][4/ + (¢ —pP) ]
+ (pic) ™ ! [4/30% + (tIz —Pz)]
X [4/¢5 + (" —pD)]. (58)

This contains simple poles at the zeros of its denominator. In
the right half of the complex p plane, these are given by

P = p,, the reflection coefficient vanishes.) Note that in the I s 2 2
first-order approximation no branch points occur. Pri2 _(q) = (g" +4/3(chi2)" 59
in which
B. The second-order approximation
In the second-order approximation,® we have (Dmi=c[@—(Q* =P, (60)
.3 (4/3c3,, + (qz—pz)) a2 2 py12
el s C) 5 =C + ( —P ’ 61
e o e v (s =c¢’[Q+(Q*—P)?] (61)
Yo =7/pm where
2 2 .2
:3(pmcm)_1(4/3cm +(q p ))’ for m=l,2' P= 3(c1/c2)2 (62)
. 4/c;, +(¢° —p*)
(55) and
1
0= ~1_ (1 + 3(p1€1/p202) + (CI/Cz )2[3 + (Plcl/pzcz)]> (63)
2 1+ (pyey/pacy)
r
Notice that Q*> P, since the volume densities of massand ¢, /c, =1 then (c)g’=c; > and {(c)7 =3¢ 3
the wave speeds are real and positive. The following situa- e,/e;>1  then ¢ < (e}l <3ei > (65)

tions occur:

and ¢ 2 < () gy <3¢ %

(64)

¢,/¢; <1 then {(c)yf<er?
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and 3¢ 2 < ()15 (66)

In the case ¢; = c,, the poles actually vanish and the reflec-
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g=0;Im{p} =0
PL=P2
17 ¢ = 1500m/s
oy = 2828m/s

01 0.2 0.3 0.4 0:5 A

- pa a/e

FIG. 4. The real parts of the exact and first- and second-order approximated
reflection coefficients on the real p axis up to the critical angle of incidence;
g = 0. The medium parameters are p, = p, = 1000kg/m>, ¢, = 1500 m/s,
and ¢, = 2828 m/s.

tion coefficient reduces to the exact expression
R"= —(p; ' —pr ¥/ (p7 ' +p; ). (When, in addition,
pP1 = p,, the reflection coefficient vanishes.) Note that in
this approximation no branch points occur. In Figs. 3-7, the
exact and approximate reflection coefficients are shown for
different ranges of the horizontal slowness.

V. THE CAGNIARD PATH CONTRIBUTIONS TO THE
APPROXIMATED GREEN’S FUNCTIONS

In this section, we determine the Cagniard path contri-
butions to the approximated Green’s functions.

A. The first-order approximation

For the first-order approximation, ¥, in Eq. (Al) is .

replaced by ¥} according to Eq. (47). Solving for p from the
resulting equation, it is found that the modified Cagniard

q=0;Im{p} = +0

— Re{R}

5¢i/ca

afe = pcy

FIG. 5. The real parts of the exact and first-order approximated reflection
coefficients on the real p axis from the critical angle of incidence onward;
g = 0. The medium parameters arep; = p, = 1000kg/m’, ¢, = 1500 m/s,
and ¢, = 2828 m/s.
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g =0;Im{p} =+0

N

N

second order) Seo
~

~

~
-
- o]

exact -

— Re{R}

-1 e~

afe ~ pey 5erfes

FIG. 6. The real parts of the exact and second-order approximated reflec-
tion coefficients on the real p axis from the critical angle of incidence on-
ward; ¢=0. The medium parameters are p, =p, = 1000 kg/m’
¢; = 1500 m/s, and ¢, = 2828 m/s.

path consists of p = p'(7,q) in the first quadrant of the com-
plex p plane, together with its complex conjugate
p = p"(7,q) in the fourth quadrant of the complex p plane,
where

P = (r/c,H) +i(2/c, H)'*[7— T (g)1'?

for T(g)<7< oo, (67)
in which
T'(q) =T"(0) + (¢, H/2)¢, (68)
with
T0) = (H/e,)(1 +r*/2H?). (69)

Equation (67) represents a straight line parallel to the
imaginary p axis that intersects the real p axis at p = r/c; H.
Along this path, 7 strictly increases when going from the
point of intersection with the real p axis to infinity. Then, the

¢=0;Im{p} = +0

exact

— Im{R}

~0.5+

c/e — pey 5ci/ce

FIG. 7. The imaginary parts of the exact and first- and second-order ap-
proximated refiection coefficients on the real p axis from the critical angle of
incidence onward; ¢ =0. The medium parameters are p, = p, = 1000
kg/m? ¢, = 1500 m/s, and ¢, = 2828 m/s.
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integral along the imaginary p axis is equal to the integral
along the modified Cagniard path, apart from possible pole
contributions which will be discussed in the next section. In
the resulting integral, 7 is introduced as the variable of inte-
gration. The corresponding one-dimensional Jacobian fol-
lows from Eq. (67) as

I
e S N (70)

-
Proceeding as outlined in Appendix A, we obtain for the
Cagniard path contribution G}, . to the first-order approxi-
mated Green’s functions the expression

ol I
Gle= [fr* | Im[f%,,(p’u,q),q)(—;’t—)] dq]

=0
XH[t— T'0)], (71)

in which ¢ = Q(7) is the (unique) inverse of 7= T''(q)
and is given by

QY1) = (2/c, )7 — TH0)]"?, (72)
where H = |x; | for the incident wave and H = 2k — x; for
the reflected wave. From Eq. (71), itis evident that T1(0) as
given by Eq. (69) is the arrival time of the wave. Through
the substitution given in Eq. (AS5) with Q, = Q" and
Q, =0, the integral in Eq. (71) can be evaluated in closed
form for the incident wave (for the scalar wave problem in

an unbounded homogeneous medium, see De Hoop and De
Hoop'?) and numerically for the reflected wave,

B. The second-order approximation

For the second-order approximation, 7, in Eq. (Al) is
replaced by i according to Eq. (55), which is rewritten as

= (5
21—, 73
" ¢ B*(q) —p* )
with
A?=18/3c%, B?*q) =g+ 4/c. (74)

Before proceeding as in Appendix A, it is observed, however,
that upon replacing 7, in any element of the Green’s tensor
by 74, the inversion integral Eq. (30) becomes divergent
since ¢'-3/c, as a} + a3 — «, and a physically meaning-
ful interpretation of the integral must be found. The asymp-
totic structure of the integrands in Eqs. (28) and (29) as
a? + a2 — w leads to the conjecture that the divergent inte-
gral contains a contribution that could be interpreted as a
Dirac delta distribution operative at the vertical line
{x, =0, x, = 0}. In view of this and of the contour defor-
mation to follow, it is assumed that an interpretation in the
sense of a Cauchy principal value around infinity will lead to
an acceptable result. Adopting this interpretation, the inte-
grals on the right-hand sides of Eqs. (28) and (29) are re-
placed by the limit of the integrals over the rectangle
{a,eZ,0,e%; — A, <, <B,,— A, <a, <A, } with
A, -« and A, — «.Inaccordance with this, the inversion
integral is, after the change of variables Eq. (24), interpreted
as a limiting integral over the rectangle {g €#; — A <qg <A}
and {p e#; — iA <p <iA} with A .
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The contour deformation leading from the integration
along the imaginary p axis to the one along the modified
Cagniard path is next analyzed. The latter path is the non-
real-axis part of the solution to the cubic equation resulting
from Eqgs. (A1) and (73) along which 7 strictly increases.
This part consists of p = p"(7,q) in the first quadrant of the
complex p plane, together with its complex conjugate
p = p™ (7,9) in the fourth quadrant of the complex p plane.
Its explicit form is obtained from Cardano’s formula for the
solution of the algebraic cubic equation; the relevant expres-
sion is given in a previous paper.”* Here, we need some
properties of the modified Cagniard  path
{p =p"(r,q) Up = p"™ (1,q) }. 1t follows that p = p"(7,q)
and p = p"™*(7,q) are finite arcs that leave the real p axis at
p(gq), at which point the value of 7 is denoted by T'}(q),
and return to the real p axis again at p3 (g), at which point
the value of 7 is denoted by T'3'(g). Inspection of the behav-
ior of 7 as a function of p along the real p-axis reveals that
P (q) <B(g) and pi'(q) >B(q). Note that the points
P15 (g) must be double roots of the relevant path equation.
Thus, using the theory of resultants®® to obtain the condition
for the existence of a common root of the path equation fol-
lowing from Eq. (A1) and the equation d7/dp =0, it is
found that

4 3642 )2 ( BY(q)r
~ B @)+ -
(3 T -0 6(T"(g) — &)

+

B2 (q)(T™(q) — &) n §A2)
2r 2r

(75)

X(TH(Q)—§ B*(q)r )20,
6r 2AUT™(g) = &)

where £ = 3H /c,. This equation is quartic in 7"(g).
Now, in view of Cauchy’s theorem, the integral along
the imaginary p axis is equal to the sum of the integrals along
the semi-circle % i = {p €¥;|p| = A, Re(p) >0} and the
modified Cagniard path. (The pole contributions are dis-
cussed in the next section.) On ¥ ; the integrand is asymp-

totically equal to G, =(/DTF ..,
ire 18 the finite limit
F inw =1lim,_
ir e » and carrying out the transformation inverse to
Eqg. (24), it follows that the contribution of € 7 results in
A,
“J
ay = — Aaz
X (—1;) F v exp( — 3SH) da,
s ¢

Xexp[ — s(pr—3H /c,) ] inwhich &
F 1 (p,g). Using the asymptotic inte-
grand G}t
2 As

lim (L) f ] da,

By = o0,8gy= 0\ 20T ay= — A,
exp[ —is(a;x; +a,x,)]
= (1/H)F,, . exp( — 3sH /c;)8(x,,%,).

(76)

iryeo

Proceeding further as outlined in Appendix A, the contour
contribution G }.. to the approximated Green’s functions is
obtained as
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- 3H 3H ero 1 op"
Gilre=%,,. (r - ——) H(t - —) 8(xy,%,) + [w“lfq Im[f i (p“(t,q),q)(—(%—ﬂ dq})(ml(o)jy(m 10

4] 4]

1I

ol op
+ {ﬂ‘zf Im[?‘i‘r (p“(t,q),q)(
PRI, ot

in which ¢ = Q(7) and g = QI(7) are the (unique) in-
verses of 7 = T'1'(g) and 7 = T (q), respectively. They fol-
low from Eq. (75), which is cubic in ¢, with the aid of Car-
dano’s formula and are explicitly given in De Hoop and De
Hoop."* From Eq. (77) it is evident that T%'(0) and T'3'(0)
are the arrival times of two wave fronts.

Through the substitutions in accordance with Eq. (AS),
the inverse square root singularities at the limits of integra-
tion on the right-hand side of Eq. (77) are removed, after
which the integrals are evaluated numerically with the aid of
the trapezoidal rule.

VI. POLE CONTRIBUTIONS TO THE APPROXIMATED
GREEN’S FUNCTIONS

The pole contributions to the approximated Green’s
functions are evaluated along the lines indicated in Appen-
dix B. From the analysis presented there, it follows that first
we have to find the range of the ¢ values for which each pole
contributes, with the accompanying region in space where
the relevant contribution shows up.

A. The first-order approximation

Tkre first-order approximation to the incident wave
Green’s function has only a single pole at p = p}, as given by
Eq. (48). The corresponding vertical travel-time shift is

Tio = %371 (o (9),9) = 0. (78)
The value Q ], of g for which the pole and the point of inter-

section of the modified Cagniard path with the real p axis
coincide follows from

0L 2:( r )zi 2

[xs|/ & o

(79

Since (Q }, )*>0in the region of space where 7/|x, | >V2, the
pole contributes in this region. Its contribution is found as

P1 1 ¥
2mey [12— (Tl )] !

Glo= ot 1 (s (80)

in which
T§;0,1 = ﬁ(“r‘), Tﬁ;o,z = (__r_) (’r‘> .
¢y %3]/ \¢ey

(81)

I

)] dq]H[f— T3 O],

=0

(77)

{

The first-order reflected-wave Green’s function has simple
polesatp = p}, as given by Eq. (48) and at p = p% as given by
Eq. (50). If ¢, >c¢,, we have p§ <py; if ¢, <c,, we have
Po >pr- If¢; = ¢, and p, #p,, there is only a single pole at
ps, with multiplicity 1. For the first pole the corresponding
vertical travel-time shift is

e = (2h — x3) 71 (P (9),9) =0 (82)

and the value Q |, of ¢ for which the pole and the point of
intersection of the modified Cagniard path with the real p
axis coincide follows from

I <2 ¥ 21 2
1y = =, 83)
(Qro) (2h—x3) a (
Since (QL,)*>0 in the region of space where

¥/ (2h — x;) »V2, the pole contributes in this region. In view
of the fact that at p = p; we have R = — 1, its contribution
directly follows from the contribution to the incident wave
as

1 P1 1
_ — 1 1 t b
0 277'6'1 [tz_ (Tvé’1 )2]1/2 X[To,hTo.z]( )
(84)
in which now
rh=(L), Th=(570)(5) @9
' ¢ ' 2h—x3/ \¢,)
For the second pole the vertical travel-time shift is.
Tr = (2h — x3)71 Pk (9),9)
= (2h —x3)¢, (ef > —{e)?) (86)

and the value Q% of ¢ for which the pole and the point of
intersection of the modified Cagniard path with the real p
axis coincide follows from

(Q}az:( (87)

r )2_ 2
(2h — x3)¢y (N
Since (Q%)*>0 in the region of space where

¥/ (2h — x3) >V2(c,/{c); ), the pole contributes in this re-
gion. Its contribution is found as

(chz)‘1 - (Plcl)"l - [(Cz/Pz) — (ey/py )]<C>Ik2

1 pl 1
GR = -2 _2
2me; (e} *—¢ (c2/p2) + (e /py)
1
= = T, — Ay i) (88)
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in which

;,1—((< . )w,

o= (o) ()

B. The second-order approximation

(89)

The second-order approximation to the incident wave
Green’s function has only a single pole at p = pif as given by
Eq. (56). The corresponding vertical travel-time shift is

Tio = 1% |15/ (9).9) = | (90)
The value Q 1, of ¢ for which the pole and the point of inter-

section of the modified Cagniard path with the real p axis
coincide follows from

QL) = 16 (_L)Z_L_i
% | ¢ 3 '

Since (Q 16 )2>O in the region of space where r/|x5 | >3V3, the
pole contributes in this region. Its contribution is found as

(91)

2p, 1
Glo = w15, (92)
i 97re, [t2 %) ]1/2 [T T ]
in which
T;I(,J:(_%_)(_’_) and TH, = ( 4r )(L)
Y3/ \a 9x5]/ \¢,

(93)

The second-order reflected-wave Green’s function has
simple poles at p = pl! as given by Eq. (56) and at p = pq,

and p=ph, as given by Eq. (59). If ¢ >c,, we
have p51<pg;1<B(q) <Prs. If ¢ <c,, we bave

DPra <Dy <PRa <B(q) If ¢, = ¢, and p, #p,, there is only
a single pole at p{' (¢) of multiplicity 1. For the first pole the
corresponding vertical travel-time shift is

X[lel;l,l»Tlig;l,z] (0,

Tho = (2 — x3) 7108 (9),9) = (94)

and the value Q' of ¢ for which the pole and the point of
intersection of the modified Cagniard path with the real p
axis coincide follows from

16 r 21 4

I \2

S R A 95
(Qro) 81 (2h—x3) & 3 )
Since (Q1)*>0 in the region of space where

¥/ (2h — x3) >33, the pole contributes in this region. In
view of the fact that at p = p{l we have R = — 1, its contri-
bution directly follows from the contribution to the incident
wave as

no_ 2p, 1
Ome, [ (TH,)?] 72 X178

no T

W10
(96)

in which now

2 r | 4r r
TH — (= A TII —_ —
o (ﬁ) (c) o2 <9<2h —x3>) (cl)

97
For the pole py, , the vertical travel-time shift is
Rl = (27 — x3)71'(Pr.1 (9),9)
2
_(Zh_x3)icl___(£)_"; (98)
¢ 3¢ — <C>II 1
and the value Q %, of g for which the pole and the point of

intersection of the modified Cagniard path with the real p
axis coincide follows from

2 c 4 4
et ) T
Qi (2h —x3)¢, 3<C)%1;1 3<C>III
(99)

Since (Q%,)>>0 in the region of space where
r/(2h — x, ) > (46'1/3<C)11 1 )'2/(1 — C%/3<C>%1;1 )2 the
pole contributes in this region. Its contribution is found as

1
> [(chz) 1[ - <C>111 ](Cl 2 _? (C)Iilz) —(p1¢1) _1[01_2 - <C>1?12]

(100)

a

1
n _ P16 3e” 2 <C>III
Rl =
3 <C>IIl —Cp
><<cz—2 Y (C>IY;12>}{[(P262 "+ (pier) ] [{daz — Dt ]}
1
X T N2 Il T y2711/2
[(t—Tr1) — (Tru ’—7{2;1) ]
in which

(101)

2 ¥
TII‘ - _)( )+7JI ’
bt (\[5 <C)11;1 il
2
(T )[( i ) 1] (L) A (102
1.2 (Zh—x3 3N I + 7 (102)

Upon replacing {c)y,; by {(¢)y, in the factor preceding
(1), the contribution from the pole pg, is

X[TH;I.I'T%;I.Z]
found.

31 J. Acoust. Soc. Am., Vol. 93, No. 1, January 1993

Vil. THE GREEN’S FUNCTIONS IN THE FIRST- AND
SECOND-ORDER RATIONAL PARABOLIC
APPROXIMATIONS

By combining the constituents derived in Secs. V and
VI, the first- and second-order rational parabolic approxi-

mations of the incident- and reflected-wave Green’s func-

tions are obtained. The results are summarized below.
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A. The first-order approximation (incident wave)

For the first-order approximation to the incident wave
the constituents given in Egs. (71) and (80) lead to

G!=Gl.+Gl,, (103)
which can be combined to
( £
{2H(t - T}
e, [t2— (T%,)?] ( o1)
—H[t—T"0)]}, if #/]x|>2,
Gl={ ) a2 (104)
1
Ht—TY 0],
dare, [t? — (T4, )* ] [ (0]
L i /x| <42,
where -
Thos =ﬁ(ci) (105)
1

is the arrival time of the artificial head wave. Upon applying
the operator &, to this function, it is found that the artificial
head wave disappears in the other elements of the Green’s
tensor.

B. The second-order approximation (incident wave)

For the second-order approximation to the incident
wave the constituents given in Eqs. (77) and (92) lead to

Gl=Gi:+G. (106)
The relevant expression cannot be further simplified. Upon
applying the operator & to this function, it is again found

that the artificial head wave disappears in the other elements
of the Gireen’s tensor.

C. The first-order approximation (reflected wave)

For the first-order approximation to the reflected wave
the constituents given in Egs. (71), (84), and (88) lead to

*10 2

4 first order —

T T T T T T
00 05 10 15 20 25 3.0 35 40 45 50 55 80
— t(s)

FIG. 8. The first-order approximated reflected-wave Green’s function
when »=500 m and ~2=500 m. The medium parameters are
P =p, = 1000kg/m3, ¢, = 1500 m/s, and ¢, = 2828 m/s.
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FIG. 9. The first-order approximated reflected-wave Green’s function

when r=1750 m and A =500 m. The medium parameters are
P =p; = 1000kg/m>, ¢, = 1500 m/s, and ¢, = 2828 m/s.

GizGic‘*‘Gio‘}‘G;- (107)

The relevant expressions cannot be further simplified. In
Figs. 8 and 9, a near and a far horizontal offset trace are
shown.

D. The second-order approximation (reflected wave)

For the second-order approximation to the reflected
wave the constituents given in Eqgs. (77), (96), and (100)
lead to

GP: L,Ic;f‘GL,Io‘}‘Gg;l +Gg;2- (108)
The relevant expressions cannot be further simpliﬁed'. In
Figs. 1012, a near and a far horizontal offset trace are
shown.

To illustrate the near offset results in a typical seismic
bandwidth, the Green’s functions were also convolved with

*10®
i |
4 : second order —
3
o I\
1 ——— —~
~
e
O o \ ]

. \f

T T T T T Ll
00 05 10 1.5 20 25 3.0 35 40 45 50 55 60
—t(s)

FIG. 10. The second-order approximated reflected-wave Green’s function
when r=500 m and A=500 m. The medium parameters are
p1 =p, = 1000kg/m? ¢, = 1500 m/s, and ¢, = 2828 m/s.
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FIG. 11. The second-order approximated reflected-wave Green’s function

when 7= 1750 m and 4 = 500 m (#<6s). The medium parameters are
py =p, = 1000 kg/m? ¢, = 1500 m/s, and ¢, = 2828 m/s.

the second-order time derivative of a Blackman—Harris win-
dow function;?®?’ the results are shown in Figs. 13-15.

VIIl. DISCUSSION OF THE RESULTS

For the incident wave, the analysis shows that only for
sufficiently “large” horizontal offsets the nonphysical artifi-
cial “head waves” do occur. For a restricted source-receiver
geometry, the accuracy of the rational parabolic (Thiele)
approximations is sufficient, but in a restricted time window
only. Further, outside the source plane, the fastest approxi-
mate wave will converge toward the physical body wave by
increasing the order of approximation though artifacts will
remain. .

The analysis of the reflected wave shows that the phys-

*107°
20
15 second order —|
10
N )
O I
T . \//
A
-15
~20

1] T T 1 T T
60 85 70 75 80 B5 9.0 95 100 10.5 11,0 11.5 120
— t(s)

FIG. 12. The second-order approximated reflected-wave Green’s function
when 7= 1750 m and A = 500 m (z>6s). The medium parameters are
1 = py = 1000 kg/m’, ¢, = 1500 m/s, and ¢, = 2828 m/s.
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FIG. 13. The Green’s function of Fig. 2, after convolution.

ical head wave cannot be generated in the rational parabolic
approximations, while additional nonphysical artifacts are
introduced at “large” horizontal offsets. After the convolu-
tion of the Green’s functions with a source signature (the
example of the second-order time derivative of a Blackman—
Harris window function is shown), the discrepancies be-
come even more pronounced than the differences in the step
discontinuities in the Green’s functions at the arrival of the
wave would suggest. This means that the inaccuracy of the
tail of the Green’s function due to the Thiele approximations
is certainly observable in a seismic setting in the case of a
“shallow” reflecting interface. This effect has been studied
by Krail and Brysk,”® In principle, by applying a Thiele ex-
pansion about an oblique direction of propagation, the anal-
ysis can be extended to the case of a dipping interface.

3
2 first order —]
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FIG. 14. The Green’s function of Fig. 8, after convolution.
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FIG. 15. The Green’s function of Fig. 10, after convolution.

APPENDIX A: THE PATH CONTRIBUTION IN THE
MODIFIED CAGNIARD METHOD

The path contribution to the wave motion in the half-
space x; < & is found by solving p from the path equation

pr+rH=r, (A1)

in which y, is, in the exact solution as well as in the rational
parabolic approximations, a function of p?>—g* and
H = |x,| for the incident wave and H = 2k — x;, for the re-
flected wave, while 7 is to be real and positive (in order to be
identifiable as a time delay). Since the expressions in Eq.
(A1) arereal on (at least part of the) real p axis, they satisfy
Schwarz’s reflection principle of complex function theory
and the resulting path is symmetrical with respect to the real
p axis. Since, further, 7 is positive, the path is also located in
the right half of the complex p plane. This confines the path
to the first and fourth quadrants of the p plane. In addition,
the transform-domain quantities only depend on ¢°. Now,
introducing 7 as the variable of integration, taking the parts
arising from the first and fourth quadrants together, and
combining the parts for positive and negative values of g, the
inverse transformation Eq. (6) for a typical wave constitu-
ent whose transform-domain counterpart is # is obtained as

L (g
f(x,s) = F'—Zf dqf exp( — s7)
g=0 =T

cols(2)] o

where 7 =T, (g) and 7= T, (¢), with T, (¢) < T, (g), cor-
respond to the begin and end points of the path, respectively.
Interchanging the order of integration leads to

(A2)

T,(0) {
(x,8) =f exp( —st)dr 2

= Tl (0)

Q|(T)
7wl
g=0 ar
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0

+ exp( — sT)dr o~

7= T,(0)

Q\(T)
%, g [ 50) | o
4= 0y(D or

in which ¢ = Q, (7) and g = Q, (7) are the unique inverses
of 7 =T, (q) and 7 = T, (q), respectively. Applying Lerch’s
theorem?® leads to the space-time domain result

2

(A3)

Q) (1)

- )
u(xt) =m 2J;=0 Im[u(i)] 49 X (1,0, 1300 1 (1)

(1) ap .
+77'“2J Im[ﬁ(—)] dq .
q=Q (D at

XH[t—T,(0)], (A4)

where X103, 7300y 1 (1) is the characteristic function of the
interval T, (0) <t< T, (0), which is defined as the value 1
on the indicated interval and the value O outside it.

The integrands in Eq. (A4) can have inverse square-
root singularities at the lower and/or upper limits of integra-
tion. These are removed by the substitution

q* = Q3 (1)cos*(P) + Q3 ()sin’*(¢), (A5)

which changes the interval of integration to O < < 7/2,
after which the integrals are evaluated with the aid of the
trapezoidal rule. The corresponding Jacobian is

dg _ (@5 —Q7)sin()cos(y)
Y  [Q3F cos*(¥) + Q2 sin*(P) ]2

In some integrals to be encountered in the main text,

Q,(1)=0.

These results are repeatedly used in the main text.

(A6)

APPENDIX B: THE POLE CONTRIBUTION IN THE
MODIFIED CAGNIARD METHOD

A pole contribution to the wave motion results from the
residue of the integrand in the complex p plane at that pole.
Such poles always arise from zeros in the denominator of
expressions that contain as variables only p* — ¢* in their
arguments. Let a zero in this argument be denoted by ¢; 2
and let the corresponding value of p be given by p,. Then,

PP—g=cs? or py=py(q) =(¢*+c5 »)"*>0.

(B1)
In view of this, the pole values of the vertical slownesses ¥,
and ¥, areindependent of ¢ and this property carries over to
all transform-domain wave constituents (that contain the
excitation coefficient ;' and the reflection coefficient R),
since in them the variables p and g only occur through 7, and
¥,. Using this in the inverse transformation Eq. (6), the

" corresponding residue contribution is obtained as

o)
o= ——1 expl—s[p(r+70]}
27T qg=0
{ap) [P* = ¢ —c5 1}, -
% [ 0 ] p=polq) dq, (Bz)
Po(q)

in which
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To = Yo H, (B3)
with
Yo =71 [P0 (9)54], (B4)

can be interpreted as a vertical travel time. In Eq. (B2), we
have taken into account that during the contour deforma-
tion the departure from the imaginary p axis is to the right
and that the pole is, in general, only passed for a finite range
0<q<Q, of g values, in which Q, follows from the condi-
tion that the pole coincides with a point of intersection of the
modified Cagniard path with the real p axis. These points
follow from the contour equation by requiring
3P|y = poiey = 0, since 7 reaches a minimum at such a point
of intersection. Replacing the variable of integration g by 7
according to

Pol@)r+ 19 =1, (B5)
ie.,
e 2 1/2
g(r) = [(—T——%—) = iz] : (B6)
r Co
Eq. (B2) takes the form
N 1 ,.
By = ———{2(p.) [7* ~ o (D ]}, = pio
T,
xf exp( — s7) Mdﬂ (B7)
=T Po(Q(T)) '

in which

T, =15+ (r/cy) and T, =7, +r(Q3 +c5 )"

(B8)

In view of Lerch’s theorem, the corresponding time-domain
result is ;

U, = — {u(p,q) [P2 — (o (Q))Z]Hp:po(q)
X L
2r[(t—17)> — (T} —19)°]

172 X[TvTZI(t)'Y
(B9)

This contribution is only present for those positions in space
where during the process of contour deformation the pole is
passed. The latter condition is equivalent to the requirement
Q035>0 ‘

This result is repeatedly used in the main text.
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