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Closed-form expressions are obtained for the transient acoustic pressure in a borehole, due to the
action of a volume injection (acoustic monopole) source in another borehole in a typical
cross-well seismic setting with a homogeneous isotropic solid formation. At the relatively low
frequencies involved the acoustic wave motion inside a fluid-filled borehole, which may be
surrounded by a structure of perfectly bonded circularly cylindrical solid shells, is dominated by
tube waves. The excitation and propagation properties of the tube wave are modeled by
regarding the borehole as an acoustic waveguide with a compliant inner wall. The corresponding
elastic wave-field quantities at the outer borehole wall are evaluated through a plane-strain
elastostatic transfer of the stress and the elastic displacement across the shell structure. For the
radiation of the wave-field quantities into the formation, the elastodynamic Kirchhoff-Huygens
integral representation is used. The acoustic pressure on the axis of the receiving borehole is
evaluated with the aid of the fluid/solid acoustic reciprocity theorem. Various physical
phenomena are described by the resulting expressions, including pre- and postcritical
phenomena (conical waves) for slow formations, and tunnelinglike phenomena for proximate

boreholes in fast formations.

PACS numbers:

INTRODUCTION

White and Sengbush! were the first to recognize that
the measured acoustic signals obtained from cross-hole
seismic experiments involving volume injection sources
and/or acoustic pressure receivers contain strong tube-
wave-related phenomena. For instance, in so-called slow
formations where the tube-wave speed exceeds the shear-
wave speed in the solid formation, a tube wave propagating
along a borehole excites strong conical S waves in the for-
mation. With the recent advances in the area of cross-well
seismic data acquisition, strong conical waves have repeat-
edly been reported. De Bruin and Huizer® have presented
perhaps the most striking experimental observations of this
phenomenon. Cheng et al. 3 observed conical waves in a
controlled laboratory experiment. Other examples of the
strong influence of tube waves on the cross-hole transfer of
acoustic s1gnals are glven by Albnght and Johnson,*
Worthmgton, Lines et al.,’ and Krohn,” who observed a
notable mode conversion from tube waves along vertical
boreholes into guided channel waves along horizontal lay-
ers in the solid formation.

To model the acoustic radiation from a fluid-filled
borehole, various techniques have been presented, which
may roughly be categorized by discerning between direct
and hybrid modeling methods.

In the direct modeling methods one solves the differ-
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ential equations governing the acoustic wave motion in the
borehole fluid and in the solid formation simultaneously.
For example, Lee and Balch® used the frequency axial-
wave-number integration technique. By considering a low-
frequency approximation, they retained the dominant tube-
wave terms only and performed the wave-number
integration using the method of steepest descent, so as to
obtain a far-field asymptotic representation for the space-
time-domain particle displacement in a fast formation.
Meredith® performed the frequency axial-wave-number in-
tegrations numerically. He also derived a uniform asymp-
totic representation for the frequency-domain far-field par-
ticle displacement. From this asymptotic representation,
which is valid for both slow and fast formations, he ex-
tracted qualitative information about the behavior of con-
ical waves.

Many authors have generalized the technique of Lee
and Balch.? For instance, Lee et al.!° incorporated the sec-
ondary radiation from totally reflected tube waves at the
bottom of a borehole; the far-field radiation patterns for
fast formations they thus obtained agreed with the primary
and secondary radiation patterns observed in a VSP exper-
iment. Lee!! investigated nonaxisymmetric solutions for
the acoustic wave motion in fast formations, while
Winbow!? modeled the influence of different source types

-and the presence of a borehole casing.

Finite difference methods have been implemented by
Track and Daube,'> who addressed the full cross-borehole
wave propagation problem in slow and fast formations and
by Cheng et al.®> who focused their investigation on the
coupling of the acoustic wave motion in the borehole fluid
to conical P and S waves in a slow formation.
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In the Aybrid modeling methods one treats the acoustic
wave motion in the borehole fluid and in the solid forma-
tion separately, by applying some a priori knowledge about
the problem. For instance, White and Sengbush' recog-
nized that, at low frequencies, the tube wave dominates the
acoustic wave motion in the borehole fluid. Subsequently,
they introduced the notion of moving sources to model the
acoustic tube-wave radiation into the formation, using
Heelan’s!* far-field expressions for the acoustic radiation
due to a transient pressure applied on a circular cylinder of
finite extent, They considered the acoustic wave radiation
into fast formations only.

Ben-Menahem and Kostek!® employed a fixed system
of equivalent seismic sources to mimic the influence of the
borehole on the acoustic wave motion, by matching its
far-field radiation characteristics to the far-field radiation
characteristics of a fluid-filled borehole in a fast formation
obtained by Lee and Balch.? Kurkjian and co-workers!®!
generalized this approach by replacing the radiating source
borehole by a moving system of effective seismic sources so
as to account for the conical S-wave radiation into slow
formations. Furthermore, they employed a frequency lat-
eral wave-number integration code to determine the seis-
mic wave-field quantities in the formation. Gibson'® also
employed a moving system of effective seismic sources and
calculated the wave-field quantities in slow and fast forma-
tions using ray asymptotics.

As to the calculation of the acoustic wave motion in-
duced in the fluid-filled borehole by incident seismic waves,
we may again distinguish between direct and hybrid mod-
eling. Schoenberg!® directly determined the total acoustic
wave motion inside the borehole and in its vicinity as it is
induced by the passage of a plane elastic wave incident on
the borehole from the surrounding slow or fast formation.
Boelle, Dietrich, and Paternoster?’ combined Schoenberg’s
formulation with the asymptotic theory as it was described
by Meredith® to obtain expressions for the cross-borehole
coupling of acoustic waves, valid in both slow and fast
formations. Kurkjian and co-workers!®!” used a hybrid
technique, invoking the principle of reciprocity to calculate
the space-time-domain acoustic pressure inside a receiving
borehole due to seismic waves that emanate from a source
borehole. Their technique effectively comes down to super-

" imposing the contributions of effective seismic sources and
receivers and describes the cross-borehole coupling of
acoustic waves for slow and fast formations.

In this paper, we present a method by which the trans-
fer of transient tube-wave signals in cross-borehole exper-
iments can completely be calculated in closed form. These
solutions can serve as an independent check against the
results obtained with the aid of alternative methods in
which a larger part of the analysis is carried out numeri-
cally. One of the advantages of the method presented here
is that physical phenomena such as conical refraction and
tunneling can be attributed ‘to specific terms in the final
closed-form expressions.

The basic assumption in the present method is that the
travel times of the elastic waves in the formation over dis-
tances of the order of a borehole diameter may be neglected
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or, equivalently, that the characteristic wavelengths in-
volved are considerably longer than a borehole diameter.
No further assumptions are made and, hence, our analysis
is not restricted to far-field effects. As a consequence, near-
field tunnelinglike phenomena are included. Furthermore,
both cased and uncased boreholes are considered.

We first perform the analysis in the complex-frequency
or time-Laplace-transform domain and use the a priori
knowledge that in the low-frequency regime the axisym-
metric wave motion in the borehole fluid is dominated by
tube waves. After that we perform a closed-form inversion
to the time domain by inspection. Consecutively, we dis-
cuss the propagation properties of the tube wave, which
depend on the radial stiffness of the inner borehole wall,
the excitation of a tube wave by a point source of volume
injection, and the influence of the presence of a concentric
shell structure surrounding the borehole fluid on the radial
stiffness of the inner wall and on the resulting wave-field
quantities at the outer wall.

Next, we'let the values of the wave-field quantities at
the outer wall serve as the surface sources that generate the
acoustic wave field in the homogeneous solid formation
according to the Kirchhoff-Huygens representation theo-
rem,

We employ a fluid/solid reciprocity theorem to evalu-
ate the acoustic pressure as it is induced inside a receiving
borehole by an incident seismic wave field. Combining
these results, we obtain an analytical expression for the
acoustic pressure on the axis of a receiving borehole, due to
the action of a point source on the axis of a source bore-
hole. After the transformation back to the space-time do-
main, we arrive at the transient Green’s function for the
cross-hole transient signal transfer. The resulting expres-
sions are set against the corresponding far-field asymptotic
expressions and illustrated with the results of numerical
simulations. We conclude this paper with a discussion
about the ramifications of the presented theory and results.

I. DESCRIPTION OF THE CONFIGURATION AND
FORMULATION OF THE PROBLEM

We investigate theoretically the signal transfer
through a configuration consisting of two parallel, circu-
larly cylindrical, fluid-filled boreholes embedded in a per-
fectly elastic, homogeneous, isotropic solid formation. To
specify the position in the configuration, we employ the
coordinates {x;,x,,x;} with respect to a fixed, orthogonal,
Cartesian frame of reference, with the origin & and the
three mutually perpendicular base vectors {i;,i,,i;} of unit
length each. In the indicated order, the base vectors form a
right-handed system. In accordance with the geophysical
convention, iy points vertically downward. The subscript
notation for Cartesian vectors and tensors is used. Lower-
case Latin subscripts are used for this purpose; they are to
be assigned the values 1, 2, and 3. Whenever necessary,
lowercase Greek subscripts are used to indicate the hori-
zontal components of the Cartesian vectors and tensors;
they are to be assigned the values 1 and 2. For the vertical
component the subscript 3 is then written explicitly. To all
repeated subscripts, the summation convention applies.
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FIG. 1. Depiction of the configuration.

The subscripts 7, ¢, and z are reserved ones to be used in
local circularly cylindrical coordinate systems in the bore-
holes, with the z axes coinciding with the pertaining bore-
hole axes. Whenever appropriate, the position is also spec-
ified by the position vector x=x,i,. The time coordinate is
denoted by ¢. Partial differentiation with respect to x, is
denoted by d,; J; is a reserved symbol denoting partial
differentiation with respect to time. Integration with re-
spect to time is denoted by the symbol I,.

At the instant =0, a point source of volume injection,
located at x=x> on the axis of the source borehole, starts
to generate the acoustic wave motion, which is measured
by an acoustic pressure point receiver located at x=x% on
the axis of the receiving borehole. The domains occupied
by the fluid columns inside the source and receiving bore-
holes are denoted as #g and Hg, while bgp and Qg
denote the pertaining radii and cross-sectional areas, re-
spectively. In between the fluid columns and the solid for-
mation a finite system of concentric circularly cylindrical
shells, representing casing, cementing, etc., may be present.
The domains occupied by the source and receiving holes,
including these shells, are denoted as Z§ and Z §, while
bir and Q}p denote the pertaining radii and cross-
sectional areas, respectively. The different layers in the
shell structure are assumed to be perfectly bonded to one
another and to the solid formation. The fluid/solid inter-
faces in the source and receiving boreholes are denoted as
A5 and % g, respectively; the interfaces between the
outermost shells of the source and receiving holes and the
formation are denoted as % ¢ and A}, respectively.
The unit vector v is oriented along the outward normal to
the interfaces, i.e., into the formation. Further, .¥ ¢ and
# g are used to indicate the borehole axes of the source
and receiving boreholes, respectively. The configuration is
shown in Fig. 1.

The vector (xX—x5) has the components((d,O,z), in
which d and z are the horizontal and vertical offsets of the

receiver with respect to the source, respectively. Further,
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we employ the spherical polar coordinates R and 6, where
d=R sin(0) and z=R cos(0), in which 0 is the angle be-
tween the vector (x®—x%) and the vertical.

The method that we employ consists of the following
steps. First, we investigate the acoustic wave motion in the
fluid. To this end the transmitting borehole is considered as
an acoustic waveguide with a compliant wall. In this bore-
hole a point source of volume injection, i.e., an acoustic
monopole source, generates an impulsive wave, which, in
the borehole is assumed to be dominated by the tube wave.
The transfer of the radial traction and particle velocity
across the cylindrical shell structure surrounding the bore-
hole, is calculated via a plane-strain quasistatic stress anal-
ysis. The propagation through the formation is accounted
for by considering the outer wall of the transmitting bore-
hole as covered by known, radiating moving surface
sources and employing the corresponding Kirchhoff-
Huygens integral representation, which, in principle, is ex-
act. The transfer of the radiated elastic wave to the tube
waves in the receiving borehole is calculated with the aid of
the acoustic reciprocity theorem for fluid/solid configura-
tions. The intermediate steps in the analysis are carried out
in the complex-frequency domain; the final answer in the
time domain follows by inspection. '

The linearized equation of motion and the deformation
rate equation governing the acoustic wave motion in the
borehole fluid in the presence of a point source of volume
injection are given by '

I+ p’ dw=0, (12)

w1 Ap=0(1)8(x—x5),

in which p is the acoustic pressure (Pa), w,, is the particle
velocity (m/s), pf is the volume density of mass (kg/m3),
! is the compressibility (Pa~1), and Q is the time rate of
volume injection of the point source (m3/s). The linear-
ized source-free equation of motion and the deformation
rate equation governing the wave motion in the solid for-
mation are given by

(1b)

- Akmpq amqu+ p’ Ow=0, (22)
Aijmk amvk—-S,-qu 3,7'M=O, . (2b)
in which 7, is the dynamic stress (Pa), vy is the particle

velocity (m/s), p°is the volume density of mass (kg/ m?),
and  Sj;,, is the compliance (Pa~1). Further,
Ajpg=(8;0;,+6:,8,,)/2 is the completely symmetric unit
tensor of rank 4 and §;; is the Kronecker unit tensor of
rank 2. The compliance is the inverse of the stiffness C;;,,
(Pa), i.e.,

<

iipgCpatom=Bijim (3)
For an isotropic solid the stiffness is given by
Ciipg=28118pq+ 20 jpg5 (4)

where A and g (Pa) denote the Lamé coefficients.
Our method of analysis involves the use of a unilateral
Laplace transformation with respect to time. The
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transform-domain quantities are indicated by a diacritical
hat. For example, the Laplace transform of the acoustic
pressure in the fluid is given by

Bxs)= ft :O_ exp(—sO)p(x,1)dt, (5)

in which we take s real and positive and rely on Lerch’s
theorem for the transformation back to the time domain.
As a consequence of the Laplace transformation and the
vanishing initial conditions we have 8, s.

IIl. THE EXCITATION AND PROPAGATION OF THE
TUBE WAVE

To keep the notation transparent, we drop, wherever
possible, the indices .S and R that indicate the source and
receiving holes, respectively. Employing circularly cylin-
drical coordinates, we write the acoustic wave-field quan-
tities pertaining to a rotational axisymmetric axial wave-
guide mode in the borehole fluid as

{0, ,0,}(r,2,s) ={p,i,,w,} (r,s)exp(—syz), - (6)

in which p, ,, and w, are the modal amplitudes of the
acoustic pressure and the radial and vertical components of
the particle velocity, respectively, and ¥ is the modal slow-
ness. Using the axisymmetric Laplace-transformed version

of Eq. (1) in circularly cylindrical coordinates together

with Eq. (6), we obtain

p

= S =

ar+sp w,=0, (7a)
—syp—+sp’0,=0, (70)
awr 1~ ~ Nine

W_H w,—syw,~+sk 'p=0. (7c)

Writing the modal amplitudes in terms of their Taylor
expansions around r=0 and retaining only the lowest-
order terms, we arrive at the approximate expressions

w,=(v/p")B, (8b)
w,=s[ (¥’ —c5*)/2p”1pr, (8¢)

in which ¢ = ( pf k ©) 172 is the acoustic wave speed in the
fluid. Let 7,, be the radial stiffness at the inner borehole
wall to be determined in Sec. III. In terms of this quantity,
we have

lim (srp/w,) =1, 9)
rt b
In the quasistatic plane-strain approximation that we con-
sider, the wall stiffness is independent of s. Substitution of
Eq. (8) into Eq. (9) leads to the relation

Y—c;*=2p"/n,.
The solutions for ¥ to this equation are y= =+, where

1 1 (1+2c}pf)1/2

(10)

e (11)
[Earrary Nw
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in which y5 and ¢y denote the tube-wave slowness and
wave speed, respectively. Since these quantities are inde-
pendent of s, we infer that Eq. (9) is reactive in nature, i.e.,
nonradiating. Furthermore, we introduce the axial modal
acoustic wave admittance ¥ g=7vp/ pf , through which

(12)

The + signs above indicate tube waves propagating in the
direction of increasing and decreasing z, respectively.

Now, let a point source that injects fluid volume at the
time rate Q=Q(¢) be located at the level z=0 at the axis of
the borehole. The causal tube waves propagating away
from the source level in the direction of decreasing and
increasing z are described by

w,=+Ygp.

for z<0,

for z>0,
(13)

where p~ and p* are the corresponding modal pressure
amplitudes. The presence of a volume injection source is
accounted for by requiring the continuity of the acoustic
pressure, while enforcing a jump in the axial volume flow
according to

p~{1,— Y p}exp(sz/cp),

{P,IUZ}= i—{—{l’yB}exp( —SZ/C'B),

lim p—lim p=0, (14a)
zl 0 zt 0

lim Q@ ,—lim Q~®,=0, (14b)
zl0 z1 0

where Q™ =w(b")% Substitution of Eq. (13) into Eq.
(14) leads to

It is noted that at a source-free junction the right-hand side
of Eq. (14b) vanishes, i.e., both the acoustic pressure and
the axial volume flow are continuous across a source-free
junction (cf. White?!). The only problem left is to deter-
mine 7,,.

. THE TRANSFER OF ACOUSTIC SIGNALS ACROSS
THE BOREHOLE SHELL '

Marzetta and Schoenberg?? have demonstrated that in
order to model the propagation of the tube wave along a
fluid-filled borehole surrounded by a perfectly bonded con-
centric shell structure, the influence of the solid shell and
formation may be accounted for by using the plane-strain
elastostatic approximation for the field in the solid. The
nomenclature of the relevant quantities pertaining to the
shell structure surrounding the borehole is listed in Table 1.
To facilitate the calculations, we introduce the elastostatic
radial stiffness in the solid defined by

N=—"r1,/t,, (16)

where 7,, and u, are the elastostatic normal traction and
radial particle displacement, respectively.

In the quasistatic plane-strain approximation both the
traction and the particle velocity at % * are oriented
along v, while the particle velocity is proportional to the
traction and to s. Employing Eq. (16) then leads to

Dojpg¥ iTpg=T8muVys  at O, (17a)
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TABLE 1. Nomenclature pertaining to the shell structure of concentric
solid layers that may surround the borehole fluid.

Radial Stiffness at Plane
coordinate inner strain
Domain re boundary coefficients
D, (rn=>b7,n) 77w M 4y By
D, (rystos1) T Ay; By
Dy (rrpvryen) Nrt1 Ay Bryy
Dy (ry=b% ) IN=2y Ay; By=0

ﬁk=6kxﬁx= —_ (Sb+/7]N)’F6kKVK, at a4 +, (17b)

in which 7 is the elastodynamic normal traction at the
outer wall. Further, the amplitude of the traction is trans-
ferred from the inner to the outer borehole wall according
to '

#=—Tj, (18)

where p is the acoustic pressure associated with the tube-
wave motion at the inner wall and T is the elastic traction
transfer constant.

Via an elastostatic analysis, the radial stiffness at the
inner borehole wall, 7,,=17,, and the traction transfer con-
stant are determined from the elastic properties of the
given shell structure—if present—and the formation. In
Appendix A we present the details of this analysis leading
to the recurrence scheme [cf. Eq. (A6)]

NMN= 2.u'N = 2.“"

o rQuy—ngy)
rr1 A28 41041) 7

(19)
N (Ay+uy) (ri/rr1) By
= 1+(ry/rri 1) By
for J=N-1,...,1,
and
(A By—pry/ '
(Ag+up) By—pi(ry/ryy1) (20)

T o Qo) Bi—prra/ry)’

respectively., These results are 1n accordance with the ex-
pressions ‘obtained by Winbow,'? who used an alternative
approach that also applies to the more comphcated elasto-
static problem of concentric layers with continuously vary-
ing elastic properties.

IV. THE RADIATION OF THE TUBE WAVE INTO THE
FORMATION '

To evaluate the radiated acoustic wave field emanating -

from the wall of the source borehole into the homogeneous
isotropic formation, we employ the elastodynamic
Kirchhoff-Huygens integral representation (cf. de
Hoop23'24)_. ;
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Through this representation the particle velocity and
the acoustic stress are expressed in terms of surface inte-
grals along the outer borehole wall % § according to

Ry A N
l')\ ='; (I/P )C, pmij a kaij’ (21a)
Tqu"—‘(l/S)Cpqu 8,,,1')‘k, (21b)
in which

ékm(x_X') [ _Amqu'vjqu] (x")d4
s

A(x) = j
K(x) x'edB

is 'the elastodynamic vector potential associated with the
surface forces and '

kaij(x)= f ' . ékm(X—X')A,-quvpﬁq(x')dA
: x'€dF g
(23)

is the elastodynamic tensor potential associated with the
time rate of surface deformations. The elastodynamic
particle-velocity/force-source Green’s tensor is given by

Gion(%) = (1/65)81nGs(x) + (1/5°) 848

(22)

X [6p(x) - Gis(x)], (24)
in which
Gps(x) =exp[ —s| x| /cps] /4T x| (25)

denotes the scalar Green’s functions of the compressional
and - shear waves and cp=[(A+2u)/ p“]"l/ 2 and
cs=(u/p®) "2 denote the compressional and shear wave
speeds, respectively.

Upon using Egs. (17) and (24) and ny=2u [cf. Eq.
(19)]in Egs. (22) and (23) and neglecting the travel time
across a cross section of the borehole, we can (cf. Appen-
dix B) express the vector and tensor potentials in terms of
the scalar compressional- and shear-wave potentials

\ﬁP;S(X) =— f

x'eLyg

In this procedure an error of O[s*(b¥)%/ci+ (b3)%/ '

|x—x’|?] is made, which is negligible in many circum-
stances met in practice. For example, for a characteristic
frequency of 400 Hz, a shear wave speed of 3000 m/s, an
interwell spacing d of 20 m, and a tube radius of 10 ¢cm, we
have 27 b /cs=0.084 and bt /d=0.005. Neglecting this
error is also consistent with the fact that we have described
the acoustic wave motion inside the fluid by considering
the nondispersive tube wave only.

The radiated acoustic wave field in the formation thus
becomes

,n.(b+)2
O (x) ="

( 51 B3 akaaas)

2 1 N
+ (? a3a3_%)akw,, , (27)
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7(b3)?

Tpg(X) =

©
2 (5,,3 3,93+8,3 3,93
N 2 1
9,0,0303 )\\I’S'i‘ (? 0303 —c_g‘)

S2 A
X (,1 7 8,20 a,,aq) 9. (27b)
P.

V. THE ACOUSTIC PRESSURE IN THE RECEIVING
BOREHOLE

In this section we derive an expression for the acoustic
pressure associated with the tube wave, as it is induced in
a borehole due to seismic waves that are incident on it from
the surrounding formation. The expression is derived with
the aid of a suitable application of the reciprocity theorem
for acoustic wave fields in fluid/solid configurations (cf. de
Hoop®®). In the reciprocity relation two acoustic states 4
and B occur. The surface interaction integrals relating
these two states for the solid and for the fluid are given by

F3(4,B)=A, — P+ 725t v, dA,

(28a)

ijpq

F1(4,B)=5, (28b)

pAw ——pBwA)v ;dd,
x€dB
respectively.

We neglect multiple scattering between the boreholes
and take as state A the total wave field in the receiving
situation. The total wave field in the formation {ﬁ,Tq,ﬁ{ }is
written as the linear superposition of an incident wave field
{ p';,vk} and a scattered wave field {75 ,0%

q,vk }, i.e.,
{ ,Uk} {qu+ o 9{)\1]?+ l')\‘;:}

The corresponding total wave field inside the fluid-filled
receiving borehole is {p7,iw}}. If the receiving borehole
were absent, the incident wave field would be the total
wave field in the formation.

As state B, an auxiliary state, we take the acoustic
wave field as it would be generated by a point source of
volume injection located on the borehole axis where we
want to evaluate the received acoustic pressure. The wave-
field quantities associated with this auxiliary state in the
borehole fluid and in the surrounding solid are denoted as
{pRwf} and {0} ,1’*§q}, respectively. This auxiliary wave
field is the one that would be present in the configuration if
the receiving borehole were acting as a transmitting bore-
hole. In Fig. 2 we have schematically depicted the relevant
wave fields.

Substitution of Eq. (29) into Eq. (28a) leads to

(29)

ZS(T,R)=7"(in,R) +7°(sc,R). (30)

Since multiple scattering effects between the boreholes are
neglected, both the scattered and the auxiliary wave fields
are source-free and satisfy the causality condition at infin-
ity (outgoing waves). Hence, application of the reciprocity
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FIG. 2. Schematic depiction of the wave fields that are used in the present
application of the fluid/solid reciprocity relation.

relation relating these two states to the domain outside the

_ receiving borehole yields

Z(sc,R) =O0. (31)

- In view of the reciprocity of the elastostatic fields in the

annular region in between 0%  and 04 £, in both states T
and R, and the continuity of the radial traction and the
radial particle velocity across the interfaces, we further

~ have

F*(T,R)—F/(T,R)=O0. (32)

We use a point source of volume injection located at x =x%

on the borehole axis . 5 to generate the auxiliary state,
ie., §8=8(x—x®). Then, the reciprocity relation applied
to the fluid domain yields

2f(T,R)=f _BTgRav=pT(x). (33)

xed% p

Upon combining Egs. (30)-(33) we arrive at the general
boundary integral representation of the acoustic pressure
at the receiver

PT(xR)=7%(in,R)

=A, — ‘R+rR oMY v; dA. (34)

UL @} pa¥i
Now, in the low-frequency limit that we further consider,
the auxiliary wave field inside the borehole fluid is domi-
nated by tube waves propagating away from the cross sec-
tion x;=xX. As a consequence, we may use Eq. (17) to
express the wave-field quantities of the auxiliary state in
Eq. (34) in terms of #R which is the normal traction as-
sociated with the tube-wave motion of the auxiliary wave
field at the outer wall of the receiving hole. In Appendix C
we show that upon neglecting the travel time across a cross
section of the borehole, Eq. (34) reduces to the following
line integral along the borehole axis:
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Pr(x®)= Q+f TR(xg)( #1194t )dx3, (35)

where O} = (b )2 This approximation is consistent with
the one used to obtain Eq. (26). For the homogeneous
formation under consideration the stress ﬁf‘q is related to
the particle velocity via Eq. (21b) and, using this relation,
Eq. (35) reduces to

2
TR =0 f #R(x3) (5’; 3,60 —2 8313§“)dx3.
xeLp . Cs
‘ (36)
For the cross-hole coupling problem, the value of ﬁ",?,
needed in Eq. (36), is provided by Eq. (27a). Upon sub-
stituting Eqs. (26) and (27a) into Eq. (36) and using Eq.
(18) and the property that J,9 Gps——( — 8303457/
cP S)GP 5 outside the source point to ehmmate all deriva-

tives with respect to the horizontal coordinates, Eq. (36)
becomes

PT(xR)=40f

xelp Jx'eLy

N s
‘QRTSTRF |

PP (x)PR (x3)

11 n o
X (;g—?aaaa)aaaﬁs(x—x)

1 1 \2_, N .
+ (Zzg—? 6333) SZGP(X—-X ) dX3 dx3,

(37)
where T5.z and PSR represent the elastic traction transfer
constants and the acoustic pressures associated with the
tube-wave motion in the source and receiving holes, respec-
tively. To simplify Eq. (37) even further, we need the
explicit expressions for the acoustic pressure inside the
boreholes, given by [cf. Egs. (13)-(15)]

", s(x3—x3)
“:p;‘;ffg exp(—%—)H(&—xf) B
x5 —
+exp(—s—(3—x3)')H(x‘3g—x3) , (38a)
¢Bs
S _ LR
ARZ'P;T(;;R xp(_&—%}f—%—)—)ﬂ(x:;—xg)
R , .
+exp(—m)ﬂ(x§—x3) , . (38b)
CBR L

in which H denotes the Heaviside unit step function; while
¢gs and ¢ gg denote the tube-wave speeds in the source and
receiving boreholes, respectively.

Taking a closer look at Egs. (37) and (38), it is ap-yr

parent that eight basic contributions may be identified, viz.,
the compressional and shear cross-hole coupling contribu-
tions of the down- and upgoing tube waves in the two
boreholes, respectively. In Appendix C, Eq. (37) is further
unraveled so as to arrive at the final s-domain representa-
tion

1779 J. Acoust. Soc. Am., Vol. 95, No. 4, April 1994

PSPR Qs ‘Q’R

AT R
(xR) =0T 5T —— 7 0-0:

4S_lép

( 2c%5chr hp(cps) —hp(cag) +

¢ps+Cpr Cps—CBaR

2c55C5r hs(cps) _};S(CBR)
Cps+Cpr

—4s71G ) (39)
Cps—ChBR 5)
where the compressmnal and shear contributions are given
by

hp(cp) =c5>(ch/2c5—1)? [er(zep) +Rp(—2ep)],
(40a)

hs(ep) =c5’(c3/ck— 1) [Rs(z.cm) +Rs(—2zcn)],
(40b)
respectively. In Eq. (40) the compressional and shear sin-
gle integral constituents

- Xps(z,cp)= fw ép;s(d,o,z—-;)exp(—ié-‘-)dg, (41).
=0 ‘ Cp

form the elementary building blocks that describe the ki-
nematic aspects of the coupling of a tube wave to the
acoustic wave motion at a single point, or vice versa, the
coupling of. the acoustic wave motion at a single point to a
tube wave.

Vi. THE SPACE-TIME-DOMAIN ACOUSTIC WAVE
MOTION

For the purpose of illustrating the method, we shall
derive the time-domain expressions for the acoustic pres-
sure for the general situation in which ¢z could exceed both
¢g and cp. It is noted that the s1tuat10n cp>cp is seldom
met in practice. However, Cheng et al.® have conducted a
controlled laboratory experiment, us1ng a conﬁguratlon in
which ¢z> cp.

The space-tlme -domain counterpart of s IGP s is

ItGps(dOZ,t) H(t tPS)/47TR (4‘2)

where tp=R/cp and tg=R/cy are the arrival times of the
compressional and shear waves, respectively.

- In Appendix D, we cast the integral representation of
Xrs given by Eq. (41) in such a form that it can be rec-
ognized as a one-sided Laplace transformation of a func-
tion of time, which, according to Lerch’s theorem, can
uniquely, be identified with the space-tlme domam constit-
uent ypg. This leads to

2H(t—tc) —H(t1—1tpy)
tr[(t—z/cp)*—d*(cps—c5 )"’

: for cpg>cpg and z/d>‘cot(49¢),
Xps(z,cp) = \ ' (43)

H(t tp.s)
4l (t—z/cp)’—d(cpi— ‘cBZ)]"Z’

otherwise,

\
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FIG. 3. Depiction of the geometry pertaining to conical waves.

in which 6c=arccos(cps/cp) for cp>cpy is related to the
angle of conical refraction a via Oc=m/2—a (see Fig.
3). In Eq. (39), the constituents XAps(Z,CB) and
Xns(—z,cp) occur in pairs, and therefore the offset is pre-
critical for |z/d| <cot(6c) and posteritical  for
|z/d| > cot(8c). For precritical offsets conical waves are
absent, whereas for postcritical offsets a conical wave pre-
cedes the pertaining body wave. The arrival time of a con-
ical wave 1is found to be

te= |z|/cB+d(cPS—cj_.,2)1/2

cp>cps and |z/d|>cot(6¢). (44)
Note that for the general case, in which the two tube-wave
speeds cpg and cpp exceed both the shear wave speed cg
and the compressional wave speed cp, there are four (dif-
ferent) angles of conical refraction.

' Having determined .Gpg and yps, the time-domain
representation of the acoustic pressure at the receiver is
obtained by replacing s by d,, thus yielding

T t
Pr=3,0(1*g(1), (45)
t
in which % denotes a convolution with respect to time,
while the cross-well acoustic-pressure/volume-injection-
source Green’s function is given by

PsPR Qs ‘QR
P Q5O

g)=TsTp——

2%5C%r hp(cps) —hp(c
( Bs¢Br hp(cps) —hp( BR)+4ItGP

cps+Cpr Cps—CRR

2%shr hs(cps) —hs(car)
Ccps+Car

where the compressional and shear constituents spg are
given by

—4IGg), (46
pI—— tS) (46)
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hp(cp)=cp (EEZ'I) [xp(z.cp) +xp(—2zcp) ],
(47a)

2

hs(c3)=c;3(§§—1) [xs(z.ea) +xs(—zcp)], (47b)

respectively. For the particular case in which the tube-
wave speeds in the source and receiving boreholes are
equal, Egs. (45) and (46) reduce to

T_ 3 !
pl=0,0(t)xIg(¢) (48)
and
phpk QFQ ,dlhp
Ig(t)—-TsTR ps .Q,S .Q,R (CB dCB +4ItGP
dl, .
+c —’h5—413GS), (49)
dCB

respectively. Here, the compressional and shear constitu-
ents I hpg are given by

2 2 ., :
IthP(cB)=Cl_93(%_1) f__ [xp(z,cp)

+xp(—2z,cp)]dr, (50a)
o[ g
Ihs(cp)=cp (_2— 1) f [xs(zcp)
Cs rT=—oc
+xs(—zcp)1d7, (50b)

respectively. In Eqs. (49) and (50) both the differentia-
tions with respect to the tube-wave speed and integrations
with respect to time can be evaluated analytically, but the
resulting intricate expressions provide no further insight
and are therefore omitted.

Above, we have determined the acoustic pressure in

_the receiving borehole. Upon replacing the elementary con-

stituents ypg by their asymptotic representations, we ob-
tain a far-field approximation to the acoustic pressure.
Note that in Eq. (41), we have represented ¥ pg as Laplace
integrals. As the asymptotic representations for the ele-
mentary constituents, we take the time-domain counter-
parts of the leading terms of the asymptotic expansions for
large s of Eq. (41), which leads to [cf. Eqs. (E3), (E4),
(ES5), and (E8)]
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H(t—tps)

H(t—1c) (cr2—c32)— V4
20 (2d) 2 (t—1tc) 2 Cps—Cp

xps(z.cp) ~
H(t— tP,S)

4’7T(.R/CB—-Z/CP§3) ’

otherwise,

in which the conical-wave component results from a
saddle-point contribution, while the body-wave component
results from the contribution of the end point.

Vil. NUMERICAL EXAMPLES

The generic expressions for the acoustic pressure in-
side the receiving borehole are given by Egs. (42)-(47),
while their far-field asymptotic approximations are ob-
tained by replacing Eq. (43) by Eq. (51): All observed
phenomena have also been studied by alternative, more
numerical methods. The advantage of the present method
is that the effects of conical refraction, tunneling, and the
like can be attributed to specific terms in our closed-form
expressions for the total wave field. To elucidate these ex-
pressions and the physical phenomena described by them,
we present numerical results pertaining to two different
cross-well experiments, one in a slow and one in a fast
formation. The distance between the boreholes in both ex-
periments is 20 m. The vertical offsets have been chosen
such that the figures optimally display the manifest phe-
nomena. For the source signature 6°Q with which the
Green’s functions are convolved, we take the second deriv-
ative of the four-point optimum Blackman—Harris?® pulse
with a pulsewidth of 4 ms.

In the experiments, the point source of volume injec-
tion is located on the axis of an uncased borehole, while the
receivers are located on the axis of a receiving borehole
with a perfectly bonded steel casing. The values of the
borehole parameters are listed in Table II. The values of
the formation parameters, as well as the resulting tube-
wave speeds and traction-transfer constants are listed in
Table III. In the figures, the solid lines represent the full
closed-form solutions, while the dashed lines represent the
far-field asymptotic approximate solutions. We note that
through a suitable application of the reciprocity theorem to
the far-field asymptotic expressions for the wave-field
quantities in a fast formation given by Lee and Balch,® we

TABLE II. Parameter values pertaining to the boreholes.

VY ar(R/cg—z/cps)’

for cp>cps and z/d>cot(6c),

(51)

I

can obtain the equivalent cross-well far-field asymptotic
expression for the acoustic pressure in the receiving bore-
hole. In Appendix E we have shown that for fast forma-
tions and for precritical offsets in slow formations, this
asymptotic expression is in perfect agreement with our as-
ymptotic expression (the dashed lines). The markers with
labels P, C, and S indicate the arrivals of the compres-
sional, shear-conical, and shear-body wave, respectively.
Let us first comment on the numerical results pertain-
ing to the cross-well experiment in our slow formation.
Since only the tube-wave speed in the receiving borehole

~ exceeds the shear-wave speed, there is but one angle of

conical refraction a-=64.3 deg, which for the given inter-
well spacing of 20 m corresponds to a critical vertical offset
of z=41.57 m. In Fig. 4, we have displayed the Green’s
functions for various pre- and postcritical vertical offsets.
The corresponding pressure responses have been displayed
in Fig. 5. At zero vertical offset, the leading term of the
asymptotic expansion for the shear-wave contribution van-
ishes, whereas the full expression does yield a nonvanishing
contribution. Note that for precritical offsets the Green’s
functions remain bounded, whereas for postcritical offsets
the Green’s functions become singular at the arrival time
of the conical wave. However, even as the offset changes
from pre- to postcritical, the acoustic pressure remains
continuous provided that the time rate of volume injection
Q(¢) is differentiable. Further, we infer from Figs. 4 and 5
that the far-field asymptotic expansion deteriorates near
critical offsets, as has already been pointed out by
Meredith’® (p. 104). In order to obtain the correct far-field
asymptotic representation near critical offsets, one has to
resort to the more sophisticated uniform asymptotic expan-
sions (cf. Meredith,’ pp. 262-268). However, the asymp-
totic representation thus obtained is far more complicated
than the closed-form analytic expressions given by Egs.
(45)-(50). As the vertical offset is further increased, the
shear-conical and shear-body waves eventually split up

TABLE III. Parameter values pertaining to the slow- and fast-formation
experiments.

Physical Source Receiving Physical Slow Fast

parameter borehole borehole parameter formation formation
Fluid wave speed c£ r (m/s) 1500 1500 P wave speed cp in the formation (m/s) 2360 4000
Fluid volume density of mass p§; r(kg/m®) 1000 1000 S wave speed cg in the formation (m/s) 1270 2500
Inner radius bg (cm) 8.89 Formation density of mass p* (kg/m?) 2300 2700
Outer radius bgk (cm) 10.16 10.16 Tube wave speed ¢ g in source hole (m/s) 1183.4 1409.0
P wave speed cp in the casing (m/s) . ) \ - 5750 Tube wave speed ¢y in receiving hole (m/s) 1409.3 1443.8
S wave speed cg in the casing (m/s) ‘ : 3120 Source-bore traction-transfer coefficient T's " ° 1 : 1

Receiving-bore traction-transfer coefficient 75~ = 0.179 0.482

Casing volume density of mass p* (kg/m’) ' 7910
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FIG. 4. The cross-well acoustic-pressure/volume-injection-source
Green’s functions in a slow formation (solid lines) and their far-field
asymptotic approximations (dashed lines); for z>41.57 m, the offset is
postcritical. The markers with the labels P, C, and S indicate the arrivals
of the compressional, shear-conical, and shear-body wave, respectively.
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FIG. 5. The acoustic-pressure responses from cross-well experiments in a
slow formation (solid lines) and their far-field asymptotic approximations
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the labels P, C, and § indicate the arrivals of the compressional, shear-
conical, and shear-body wave, respectively.
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FIG. 6. Enlarged display of the cross-well acoustic-pressure/volume-
injection-source Green’s function in a slow formation (solid line) and its
far-field approximation (dashed line) for a posteritical offset of z=60 m.
The markers with the labels C and S indicate the arrivals of the shear-
conical and shear-body wave, respectively.

into a conical wave with a typical (z— tc)‘l/ 2H(t—1tc)
time behavior of the -Green’s function and a body wave
with a sign-reversed step-function behavior. We have
shown the onset of this phenomenon in Fig. 6, where we
have displayed the Green’s function for a vertical offset of
z=60 m at an adapted time and amplitude scale.

Next, we comment on the numerical results pertaining
to the cross-well experiment in the fast formation. In Fig.
7, we have displayed the Green’s functions for two vertical
offsets. The corresponding pressure responses have been
displayed in Fig. 8. Note that in case the formation is a
slow formation rather than a fast formation, the received
signal is considerably stronger. The results obtained using
far-field asymptotic expressions are, as far as the direct P
and § waves are concerned, quite similar to the results
obtained using the full expressions. However, if the dis-
tance between the two boreholes is of the order of a seismic
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FIG. 7. The cross-well acoustic-pressure/volume-injection-source
Green’s functions in a fast formation (solid lines) and their far-field
asymptotic approximations (dashed lines). The markers with the labels P
and S indicate the arrivals of the compressional and shear wave, respec-
tively.

1783 J. Acoust. Soc. Am., Vol. 95, No. 4, April 1994

40} d=20m z=0m]

20r

P [4Pa
o
Lol
--Rﬁ>

20
-40 ;
g 20 10 60
@ . t [ms]
10} T d=20m z=60m
5 b
S 0
o tvVoy
= P S
-10
0 20 10 60
(b) ‘ t [ms)

FIG. 8. The acoustic-pressure responses from cross-well experiments in a
fast formation (solid lines) and their far-field asymptotic approximations
(dashed lines). The markers with the labels P and S indicate the arrivals
of the compressional and shear wave, respectively.

v

wavelength or less, then for large vertical offsets combined
P. and S-wave near-field phenomena may dominate the
received acoustic signal. In nature these phenomena resem-
ble the effect of tunneling and obviously cannot be obtained
using the present far-field asymptotic representation. This
is illustrated in Figs. 7 and 8 for a vertical offset of z=60
m. Notice the pulse broadening of the received acoustic
pressure pulse that is associated with these near-field phe-
nomena. ‘

From the discussion and the figures presented above,
we observe that regarding cross-well experiments in slow
formations at a postcritical angle, the conical wave forms a
prominent contribution to the received acoustic pressure,
while regarding cross-well experiments in fast formations
at a large vertical offset with the two boreholes being suf-
ficiently close, the near-field phenomena yield a notewor-
thy contribution to the received acoustic pressure.

VIil. SUMMARY

We have presented closed-form time-domain expres-
sions for the acoustic pressure on the axis of a receiving
borehole, due to the action of a point source of volume
injection on the axis of a source borehole, on the assump-
tion that the travel times of the elastic waves in the forma-
tion over distances of the order of the borehole diameters
can be neglected.

To arrive at these results, we have discussed the exci-
tation and propagation of the tube waves, which comprise
the dominant part of the acoustic wave motion inside the
boreholes [cf. Egs. (11)—-(15)], the quasistatic transfer of
the field quantities across the shell structure surrounding
the boreholes [cf. Egs. (16)—(20)], the elastic wave radia-
tion that emanates from the source borehole [cf. Eq. (27)],

de Hoop et al.: Cross-borehole acoustics 1783




and the reception by the receiving borehole of the elastic
waves that are incident on it [cf. Egs. (34)—(41)]. In Eqgs.
(45)-(50), we have represented the final time-domain
closed-form expression in terms of its elementary constit-
uents given by Eqs. (42) and (43), while its far-field as-
ymptotic representation has been obtained by replacing the
elementary constituents in Eq. (43) by their corresponding
far-field asymptotic representations given by Eq. (51). In
Figs. 48, we have presented numerical examples, compar-
ing our closed-form expressions represented by the solid
lines to the far-field asymptotic representations represented
by the dashed lines. Apart from the direct P- and S-wave
signals, other physical phenomena that occur in cross-well
experiments have been highlighted, such as strong conical
waves traveling through slow formations and near-field
contributions for large vertical offsets in fast formations.

APPENDIX A: THE QUASISTATIC ELASTIC RADIAL
STIFFNESS

In this Appendix, we analyze the elastostatic stress
and particle displacement in an annularly piecewise homo-
geneous isotropic solid in the axisymmetric plane-strain
approximation. The corresponding elastostatic particle dis-
placement is written as

uy=u,(r)cos(¢), u=u,(r)sin(¢), u3=0.

Now, consider a composite of N concentric annular do-
mains, including the formation, that are in rigid contact
across their interfaces. A schematic description of this con-
figuration is given in Table I. The elastostatic equation of
equilibrium for a homogeneous domain in circularly cylin-
drical coordinates is

(Al)

P +; (1,,—7Tgg) =0, (A2a)

A s u 0 A2b
(_+ ar) 73 a Tp=VY, ( \)
u, Oou,

/1(— 5’7) 2u ——7ge=0, (A2c)

Ay 2 0 A2d

The solution to the system of coupled équations in domain
9 ;is written as

‘ 2 r S

uy=|— B+ 4,, (A3a)
Trer ¥
2(A - ougr

i (Ay+us) B,— ity 45, (A3b)

Fre1 r '

: 2(As+py) 257y

T¢¢= ( rJ+1 B_]+ ) 1‘2 )AJ, (A3C)
24

== By |4,, (A3d)
Frv1 R
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by which the elastostatic field distribution in the domain
4 ;is determined once we have obtained 4;and B;. Upon
substituting Egs. (A3a) and (A3b) into Eq. (16), the elas-
tostatic radial stiffness in the bounded annular region &, is
found to be

_2uy(ry/r) =2(As+pp) (/ry41) By
h (ry/r)+(#/7141) By

b

(A4)

Both u, and ,, are continuous across the interfaces be-
tween the annular domains and, therefore, we have
lim,,, | 7n(r) = lim n(r) = 1741, which, in view of
Eq. (A4), leads to

for ri<r<r .

rl 428
N

ri(2u—m541) (A5)

Tt QA 2ty

Since the field quantities are to remain bounded through-
out the formation, we have By=0 and, hence,
Ny=2pxy=2p. Combining Eqs. (A4) and (AS5), we arrive
at the backward recurrénce scheme

NN=2uN=24,

_ r(u— Nrs1)
T QA28+ 00)

(A6)
Y. (Ay+pp) (ri/rs1) By
= 1+ (ry/7s41) By

for J=N-1,.,1,

which is used to obtain the elastostatic radial stiffness at
the inner borehole wall.

Next, the amplitude of the traction is transferred from
the inner to the outer borehole wall according to

(A7)

Using Eq. (A3b) the traction-transfer coefficient is found
to be

7, (ry)=T1,(r).

B Nt (M-EILJ) By—pu(ri/r541)
Ty Ay By—pre/r)

(A8)

APPENDIX B: A MOVING SOURCE
REPRESENTATION FOR THE VECTOR AND TENSOR
POTENTIALS

With the aid of Eqgs. (17a) and (17b), the elastody-
namic vector and tensor potentials are written as

Ak(x)z—smu - G (x—x )V#T(x3)dA,
(Bla)
. sb A ,
kaij(x)=_m Ay R Gim(x—x')
Xy, F(x3)dA, (B1b)

respectively. To approximate these surface integrals by line
integrals along the borehole axis, we replace the Green’s
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tensor by the leading terms of its Taylor expansion about a
point on the borehole axis according to

é’kmlx'e&%;'=ékm|x'éfs+b;Vl a/’lékle’Efs
+O[s (b3 )%/c3]
+O[ (b)Y |x—x'|*]

=~ (1—b§v; 03) G| wezg- (B2)
Since the radius of the borehole is much smaller than the
distance between the source borehole and the receiver
borehole, this approximation amounts to neglecting the
travel time across a cross section of the borehole. Next, we
observe that the amplitude # of the traction at dZ ¢ de-
pends on x; and s only and employ the identities
$v dI=0, ViV Al=1bF (81— 813613), and
$ViVV, dI=0, where the integrations are carried out
along a cross-sectional circular boundary. As a conse-
quence, Eq. (B1) reduces to '

2k= —Q;-‘Smy ayq;km’ (B3a)
Wimij= (/20 QF A B, (B3b)
in which QF =7 (b3 )?* and
$in= [, Gnlx—xI[—7GD1B. (B
x'eZLg

Next, we substitute the expression for the Green’s tensor
given by Eq. (24) into Eq. (B4) $0 as to express Eq. (24)
in terms of the scalar potentials ¥p ¢ according to

X 1 1 .1 N
= (C—g‘&km—? aka,,,)ws+? 0;0,,¥p. (B5)
Using the explicit expressions for the vector and tensor

potentials given by Egs. (B3)-(B5) in Eq. (21), the par-
ticle velocity in the formation becomes

+
— Qg's
5

k=

A -
(26,,,,(8,(4-; am)q>km

+
Qg's
S

p

2 15 3 la ' AL
- (C‘Zg ki K_SZ Kaxak) S_‘u( 2

Cs

1 PO | A "
_s—2 amam)ak\l’s-—? (2 8K3K+ﬁ amam)ak\l’p
| (B6)
With the aid of the relation 2+/1/J.L=c%z/c§ and the prop-
erty 9,0, ¥pg=(—050; +32/Cés)\llp;s outside the source
point, we eliminate most of the derivatives with respect to

the horizontal coordinates, thus arriving at Eq. (27a).
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Upon using Eq. (21b) we obtain the expression for the
stress, given by Eq. (27b).

APPENDIX C: DECOMPOSITION OF THE EXPRESSION
FOR THE ACOUSTIC PRESSURE INTO ITS
ELEMENTARY CONSTITUENTS

In this Appendix we derive the simplified expression
for the Laplace-transform-domain acoustic pressure given
by Egs. (39)-(41).

As the point of departure we shall rewrite the bound-
ary integral representation for the acoustic pressure given
by Eq. (34) in terms of a line integral representation. To
this end, we replace 0;"(x) and 7,,(x) by the leading terms
of their Taylor expansions about a point X on the borehole

axis according to

50wt = (1+bEv2 0wz (Cla)
%nqlx’ea.%;':(l‘}“b;V,{ a/l)é‘:ipnqlx'efxy (Clb)

respectively. This approximation is analogous to the one
used in Eq. (B2) and amounts to neglecting the travel time
across a cross section of the receiving borehole. Upon sub-
stituting Egs. (17) and (C1) into Eq. (34) and employing
the identities $v; dI=0, ¢v,v, dI=mbF (8,,—8,36,3),
and §vgv,,v, dI=0, where the integrations are carried out
along a cross-sectional circular boundary, the line integral
Eq. (35) results.

We resume our derivation with a change of the vari-
ables of integration in Eq. (37) according to x; = §;
+ x3 and x;=C,+xX. As a consequence, we have dx;}
= df, and dx;=d¢,, respectively. In terms of these new
variables, the source and receiver levels are ;=0 and
&, =0, respectively. Furthermore, the difference vector
x—Xx’ has the coordinates (d,0,z+&,—¢;) relative to our
original coordinate system. Having used the property of
the scalar Green’s functions Gpg that they depend on &,
and &, only through their difference £, —¢;, implying that
agle;S = —angﬂs, we arrive at

S .
5T(xR) =4QF QF T Tr — f f 55(
b (x") s @ TsTr s ten glefsp &1

ir- /1 1 )

A (xR —<_2+”73g1352)
CS Ay
][
S [ (z_cg

1 2
+2 agiagz) Gp(x—x")

dgydgy.  (C2)

Next, we substitute Eq. (38) into Eq. (C2) and repeatedly
employ integration by parts until all- derivatives with re-
spect to £y and &, have been eliminated. As a result, the
expression for the acoustic pressure reduces to
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Fof

1 12 1 132
_ + o
?——(GP GS)+(CBSC R+20s) (68T +65 )+(c . 2cs)

2
[Xp(z,cps) +)?P( —z,c55) 1 +—— [Xp(z,cr) +XP(—2ZCpR)]

SCBsCBR

R PSPR
TR = —Qs 0z L TsTr $*Qc pscr
+ ——
X (UP +3p) SCBRCZBS
1 1
—( + )(a ++6§')—( 7
CBSCBR CB.SCBRCS

I A A 2
X [Xs(zcps) +Xs(—2zcps) | — 7
, . : - §C BR

in which

055 (d,z,cps,CpR)

_ f f Grs(d0z+E—E)
h=—ow Jh=—w

X [exp( FsE1/c 5s) H(2£1) 1 [exp( 562/ r)
X H(££,)1dE, dEy (C4)

are the remaining double integral constituents along the
two borehole axes. The first set of signs on the left-hand
side of Eq. (C4) indicates down- or upgoing tube modes in
the source borehole; the second set of signs on theleft-hand

]

——
CBsCHR CBsCBRCs

[Xs(zcr) +Xs(—2zcpr) ] |

1 . 2
)(a;—+a§+>-— ,

(C3)

-
side of Eq. (C4) indicates up- or downgoing tube modes in

the receiving borehole. The compressional- and shear-wave
single integral constituents

o a S
Xps(z.c)= f§=0 Ggs(d,O,z—é‘)exp(———c-)dg (C5)

result from the contributions of the end points in either

borehole, while the direct compressional- and shear-wave

constituents éP,S result from the contribution of the end
points in the two boreholes.

Each of the double integrals &7 can be written in
terms of single integrals by using mtegration by parts. For
example, we rewrite 67 T as

_Ll LZ_OGP(dOz+§2 §1)exp( g)exp( gz)d§1d§2

4:7:4

——XP(Z’CBS)_ Cor L ojg agGP(dOZ+§2—§1)CXP( g;)eXP( é‘2>d§1d§2
= =

CBR , . €B @ 562
e 2 [° Guaozripen( 2]
=
c s61 562
L R S R o B L2
£6=0 Jg=0 CBS CBs
’ - e -
[XP(Z:CBS) +xp(—2cpr) ] —_’; (Cé6)
—
by virtue of which we can express the double integral 67 * USRI BSCER . . R
in terms of the single integral contributions. For the ge-  9rs =s(cas—Cmm) [Xps(z.crs) —Xrns(zcpr) ],
neric case in which both of the tube-mode wave speeds are
different, we obtain
CBsCBR
a—q__ CBSCBR . o e
o4 CBSCHR T pa—— [Xps(—zcps) —Xns(—2zcpr) -

Bs m [Xas(zcps) +RXrs(—2cmr)],

CBsCBR

= epstean) mst —z,cp5) +¥ns(zepr) ], (CT)

UP;S
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Substitution of Eqgs. (C7) into Eq. (C3) leads, after rear-
ranging the terms, to the elementary expression for the
acoustic pressure given by Eq. (39). -
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APPENDIX D: DERIVATION OF THE TIME-DOMAIN
ELEMENTARY CONSTITUENTS

To derive the expressions for the space-time-domain
elementary constituents ypg, we rewrite Eq. (41) as

» expl—s7(5)]

Trs(zep) = fg:o Wdé, (D1)
in which

D(&)=[d+(z—£)* 1V (D2a)

T(§)=§/cp+ D(§)/cps. (D2b)

The objective is to take 7 as the new variable of integration.
To this end, we have to investigate whether the Jacobian

der=(cp)'—(z—&) [epsD(£)]17! (D3)

vanishes for a certain {={,€(0,00). For cg<cpg the
Jacobian is positive definite, implying that 7 is monotonic
on (0,0). For cp>cpg, we can solve d,7=0 for {=¢,,,
which yields

Em=Cmcps) =2—d(c3/chs—1) "2 (D4)
SO’ §=§me (0,00) if

Cp>Cps,

B> Cps -

z/d=cot(0) > (cp/chs—1) " *=cot(8c),

where Oc=7/2—a¢, with ac=ac(cps,cp) being the crit-
ical angle, i.e., the angle of conical refraction. If the con-
ditions stated in Eq. (DS5) are met, the body wave is pre-
ceded by a conical wave. The latter’s arrival time is given
by
tC=T(§m
|z|/CB+d(CPs —czH)?

for 9<ec,
for 0> 6o—m.

tpscos(6c—0),

~ |tps cos(0+0c—m), (D8)

For postcritical offsets, we consider Eq. (D1) to con-
sist of the sum of two integral contributions with their
intervals of integration being [0,5,,) and (,,,« ), respec-
tively. On these intervals, the solution of Eq. (D2) for

{=¢(7) is given by
T/CB+Z/CpszI:T/CP.S + for ge(gmiw)s
Crs—Cp —  for {e[04n),
(D7)

in which
T(rdzcpeps)=[(1—z/cg)?—d*(cpz—c5 )12
(D8)
As a consequence of changing the variable of integration
from £ to 7, we have df =(c')§'r)“l dr. Upon using Eqgs.
(D2), (D3), and (D7), the Jacobian of the transformation
is found to be

+D(§) [+
T _

for {e(£,,,0),
for £€[0,6,,)-

8 ~'= (D9)
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With the aid of Eq. (D9), we rewrite Eq. (D1) as

tc o exp{(—s7)
oteen={ [+ [7 )T Gytan
XP;S(Z CB) ( fr:tp,s T=fc ) 47T,D ( ;T)

tps w0 exp( —s7) J
([ [ ),
. =ic 47T
For precritical offsets 7 increases monotonically with in-

creasing &, implying that conical waves do not occur. An
analysis similar to the one above then leads to

(D10)

R ) ® exp(—s7)
Aps(zep)= f —a.T 9

r=tpg

(D11)

In view of Lerch’s theorem, we infer from Egs. (D8),
(D10), and (D11) that the space-time-domain constitu-
ents ypg are given by Eq. (43).

APPENDIX E: THE FAR-FIELD ASYMPTOTIC
REPRESENTATION FOR THE PARTICLE VELOCITY
IN THE FORMATION

The expressions for the particle velocity measured by a
receiver inside the solid formation are given by Eq. (27a),
in terms of the scalar potentials given by Eq. (26), which
with the aid of Egs. (6), (15), and (18) are rewritten as

Y ps=Ts(Qp cp/20,) [Xps(z.c) +Xns(—2.c5) 1.
(E1)

In order to compare Eq. (27a) with the far-field expres-
sions for the particle‘displacement in.fast formations ob-
tained by Lee and Balch,? it suffices to investigate the lead-
ing order of the asymptotic expansion of the: Laplace
integral

exp[~ST(§)]

TR (E2)

=)
Xes(zcp)= f
£=0
for large s. To distinguish between the conical- and body-
wave contributions, we write
A AC ~
2rs=Rns+1Rs- (E3)
For postcritical offsets and z positive, 7 assumes its mini-
mum 7=1c(cpgs) at the critical point. {=¢,(cps), thus
giving rise to a conical-wave contribution. Applying La-
place’s method (cf. Bender and Orszag?’), the leading
term of the asymptotic expansmn for a comcal wave i’
found to be

exP(—StC) \f( itV

for < ec(Cp;s)
0, otherwise,

Pes(zen) ~ C(B4)

where tc(cps) is the wave speed of the pertaining conical
wave, given by Eq. (44). The leading term of the asymp-
totic expansion for a body-wave contribution becomes
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exp(—stps) (R 'z )—1

B
z,cp) ~ —
xrs( g B) Is

» ¢p C P.S
for O#GC(CS), (ES)
which can be obtained using integration by parts.

In view of the symmetry in z, we henceforth consider
z to be positive without loss of generality. Let us introduce
the unit vectors &, which is oriented along the vector
(xR—xS), and E=E(cps), which is at.an angle 6, with
the vertical (see Fig. 3). The unit vectors perpendicular to
£ and E are denoted as &' and B!, respectively. From Egs.
(D6), (E4), and (E5), we infer that in the far-field region,
the spatial derivatives are replaced by multiplications, ac-
cordmg to

amXPS~ - (S/ CPS)-—-m(CPs)XPs, f0f < 9c(CPS),
(E6a)

BB~ — (s/cps)emins: (E6b)

which follows after having discarded all but the leading
terms m . Upon substltutlng Eqs (E4)- (E6) into Eq.
(27a), ‘Wwe arrive at an asymptotic representation for the
particle velocity in the formation for large s.

- Now, -the space-time-domain particle velocity in the
formation is expressed in terms-of its compressional- .and
shear-, conical--and body-wave components according to .

' vk—vk +vk +v +v (E7)
Next, we make use -of the transformation rules

s_,a,, (E8a)

Q exp( —Stps)/sﬁ Q(t)*H(t tps)a (Esb)

Qexp(—stc) \/7_7_/:'—>Q(t)*[(t fc)_mH(t tc)],
(E8¢c)
and substitute Eqs. (E1)-(E7) into Eq. (27a), so as to
obtain the space-tithe-domain asymptotic expansion for the
pertalmng components of the particle velocity in the for-
mation: given.by .

” gPEPCS BS ~T (pf‘Q'.-St_/47Tps‘QS )aZQ*FCPBP'CS B(SEg)

in which the compressional- and shear-, conlcal- and body-
wave Green S functions are given by

. ,.F’?;;CB ( 652”‘_2?) 7 cp\[Iid(;t tfi:i;]l/z =i
for 0<6(cp), © (10a)
p 1—2(cs/cp)?cos’(8)  H(t—tp)
e — (el ook(B) R
for B#GC(ep), (E10b)
= TS
for ’9‘< 0c(cs), (’EIOC)
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s 2sin(0)cos(8) H(t—ts) |
k (es/eg)?—cos?(B) csR K7

for 6£0(cs), - (E10d)

respectively. Earlier, Lee and Balch® obtained the far-field
expression for the particle displacement in a fast formation
due to the action of a point source of volume injection
located on the axis of a fluid-filled open borehole. To show
that their expressions agree with the far-field expressions
for the particle velocity in the precritical regions given by
Eq. (E10), we have to carry out the substitutions

V— Oy (Ella)
Q- Vo dg(1), (E11b)
T,-1, (Ellc)
of /95 —»1 (E11d)

where u;, is the partlcle dlsplacement while ¥V, and g(¢)
are the symbols used by Lee and Balch to indicate the total
injected volume and the source signature, respectively.
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