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Efficient computation of apparent resistivity curves

for depth profiling of a layered earth

Umesh C. Das* and Adrianus T. de Hoop#

ABSTRACT

The problem of computing the electrical potential as
a result of a direct current electric source in a layered
earth is reformulated to avoid instability in the numer-
ical computation that may occur with the standard
propagator matrix formalism described in a number of
textbooks. The present spectral formalism involves
constituents that contain only exponential functions
with nonpositive arguments. The vertical spectral in-
put admittances at the interface levels up to the source
level are calculated recursively, starting at the upper-
most and lowermost interfaces of the layered earth.
These admittances at the source level are then used to
compute the electrical voltage at the source level.
With the known voltage and the admittances at the
source level, the spectral amplitudes at the source
level are known. Computation of the amplitudes at the

other interfaces is, progressively, carried out by ex-
pressing the amplitudes at any interface above the
source level in terms of the amplitude on the interface
just below it and expressing the amplitudes at any
interface below the source level in terms of the ampli-
tude on the interface just above it. This results in an
efficient scheme for computing electrical potential in
any arbitrary depth levels (required for imaging sub-
surface conductivity).

We simulate single-borehole and hole-to-hole exper-
iments. Neglecting the influence of the boreholes, we
consider a plane layered earth model in which point
electrodes along a vertical line (source line) inject and
extract a stationary electric current, and point elec-
trodes either along the source line or along another
vertical line (receiver line) measure a potential differ-
ence. From the potential measurements, apparent
resistivities are computed along the vertical lines.

INTRODUCTION

The propagator matrix formalism has been extensively used
in the geophysical modeling of a layered earth (Gilbert and
Backus, 1966; Fahmy and Adler, 1973; Bhattacharya and
Patra, 1968; Koefoed 1979; Kaufman and Keller, 1983). In this
formalism, the field quantities at two different levels are ex-
pressed in terms of each other via a propagator matrix in which
exponentials with positive arguments (or hyperbolic functions)
occur. This may result in a loss of computational accuracy.
When the propagation is carried out from one end (i.e., either
from the uppermost or lowermost interface) up to the source
level, exponentials with positive argument may be avoided
through appropriate mathematical manipulations (Koefoed
1979). However, for a buried source problem, when the prop-
agation has to be carried out beyond the source level, numer-
ical difficulties do occur because of positive exponentials. For

example, we refer to the work of Daniels (1978) in which the
electrical potential computations, as a result of the buried
electrical point current electrodes, are carried out with a
recursive scheme in which exponential functions of the form
exp (M) occur, where the horizontal wavelength A and the
vertical distance A are positive quantities (see Appendix in
Daniels, 1978). In such computations, numerical instability
arises because of limited computer accuracy. In this paper, we
have reformulated the problem of computing the electrical
potential caused by a direct current source at an arbitrary depth
by using only the exponentials with nonpositive arguments (as
used in the scattering matrix formalism, Kennett, 1974). This
results in a numerically stable algorithm. Using a Gauss-
Laguerre quadrature method and the method of convolution
(Ghosh, 1971), numerical computations are carried out to
produce apparent resistivity depth profiles for single-borehole
and cross-borehole measurements in layered earth models.
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CONFIGURATION

We consider a piece-wise homogeneous, isotropic, plane
layered earth model and introduce a circularly cylindrical
coordinate system {r, 0, z} with the z-axis positive down-
wards (Figure 1). The configuration consists of an upper
half-space D(0) for which —e < z < z(1), a stack of (ND —
1) layers, {D(ID); ID = 1,..., ND - 1}, for which
z(ID) < z < z(ID + 1) and a lower half-space D(ND) for
which z(ND) < z < . The conductivity of D(ID) is
o(ID)Y{ID = 0, ..., ND}. In the horizontally layered earth,
we shall compute the apparent resistivity curves for a typical
single vertical borehole setting and a typical vertical, cross-
borehole electrical sounding configuration. The influence of
the boreholes is neglected. Two point electrodes that move
along a vertical line (source line) inject and extract a station-
ary electric current, and two other point electrodes that
move cither along the same line (thus, simulating a single-
borehole experiment) or along another vertical line (receiver
line, thus simulating a cross-borehole experiment) measure a
potential difference. The aim is to reconstruct from the
measurements the vertical distribution of the resistivities (or
conductivities) in the different layers. The z-axis is taken
along the source line. The electric potential 77 is then
rotationally symmetric around the source line, i.e.,

V="V, z). 1

The vertical component of the volume density of electric
current J, is then

J, = —0cd,V, (2)

where 9, denotes differentiation with respect to z. We
represent V(r, z) as the inverse Fourier-Bessel integral

Vir, 2) = 51; fow POu hdy,  (3)
D) o[_‘ RO )
D(1) o(1) .
DUIS) e o(IS)
AND—1
D(ND—l) o(ND —1) | |
#(ND)
D(ND) o(ND) |

Fic. 1. A layered carth with a buried point source. Each
layer is a domain D(ID), {ID = 0, ..., ND}. Two adjacent
domains D(ID) and D(ID + 1) are separated by interface
Z(ID + 1).

in which, in any homogeneous and source-free domain, ¥ =
P\, z) has to satisfy the following differential equation:

2V -\ = 0. (4)

In equation (3), J is the Bessel function of the first kind and
order zero. The expressions for ¥, and correspondingly for
J, [cf. equation (2)], in a domain D(ID) are given by
(omitting the variable A and including the domain indication
ID in the argument list of ¥)

VD, z) = AT(ID) exp [-\z — z(ID))]
+A~(ID) exp [-Mz(ID + 1) - z)], (5)
T, (D, z) = A\o(ID)[A *(ID) exp [—\(z — z(ID))]
—A™(ID) exp [-N(z(ID + 1) = z)]] (6)
for z(ID) <z <z(ID +1); ID=1,...,ND-1.

Besides, with due consideration that in the two outer half-
spaces. A T(0) = 0 and A ~(ND) = 0, we have in the upper
half-space,

7(0, z) = A7(0) exp [—M(z(1) — 2)] (7)

for —e < z < z(1),
7.(0, 2) = —\a(0)4~(0) exp [-NMz(1) = 2)]  (8)
for —o <z < z(1),
and in the lower half-space,
V(ND, z) = A1 (ND) exp [—Mz — z(ND))] (9)
for z(ND) < z < oo,
J,(ND, z) = A\a(ND)A " (ND) exp [—Mz — z(ND))] (10)
for z(ND) < z < o,

Note that the exponential functions in the representations
have been chosen such that their arguments are nonpositive.
In equations (5)-(10), the coefficients A * and A~ are to be
determined from the jump condition at the source level and
the boundary conditions at the interface levels. Using the
electrical voltage and the vertical volume density of electric
current, we define an input admittance at an arbitrary level z
[up to the source level z(ZS)] as (omitting the domain
indication):

~ _ jz(z)
Y (z)=— 7o) —w < z < z(IS), (11)
Y( )—72(2) IS) <z < 12
z)= 17(2) Z( )—Z . ( )

Through the introduction of Y~ and Y* in a recurrence
scheme (in the next section), we can directly determine the
(spectral) electric potential, uniquely, from the input admit-
tances at the source level. The electrical potential, in turn,
leads to the computation of the constants on the source
level. Starting with these known constants (at the source
level), the amplitudes at other interfaces would be obtained
easily.
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The boundary conditions

To develop the computational scheme, we introduce a
possibly fictitious horizontal interface at the source level,
z(IS), where the point source of current injection or extrac-
tion of magnitude I(IS) is located. For the given type of
excitation, the electric potential is continuous across the
interfaces, while the vertical component of the volume
density of electric current makes a nonzero jump at the
source interface. Accordingly, we have

lim PUD,z)= lim VUD -1, z) (13)
z | z(ID) z 1 z(ID)
and

lim J,ID,z)— lim J,(D - 1,z)=IID)UD, IS),
z | z(ID) z 1 z(ID)
(14)

foriID=1,...,1S,..., ND,

where 8(ID, 1S) is the Kronecker symbol, 8(ID, IS) = 1 for
ID = IS and 3(ID, IS) = 0 for ID = IS. Considering
equations (11)—(14), we note that the admittances Y~ (z) and
Y™ (z) are continuous across any source-free interface.

ELECTRICAL POTENTIAL AT THE SOURCE LEVEL
(RECURRENCE RELATION FOR THE ELECTRIC
POTENTIAL)

Using equations (5)—(8) and equation (11), we express the
vertical admittances at two consecutive interfaces z(ID) and
z(ID + 1) of any layer above and including the source level
in terms of the electric potential amplitudes 4 *(ID) and
A~ (ID), viz.

Y~ (z(ID))

ATUD) — A~(ID) exp (—\h{ID))
ATUD) + A~(ID) exp (—\h(ID))’

= —Ao(ID)

Y (z(ID + 1))

A*(ID) exp (—\w(ID)) — A ~(ID)
A™(ID) exp (—\i(ID)) + A ~(ID)

= —ho(ID)

forID=1,...,1I5 - 1.

Here, h(ID) is the thickness of the layer D(ID). Besides, the
admittance at any level above the uppermost interface is [cf.
equations (7), (8) and (11)]

Y (z) = Aa(0) for —w <z < z(1). (17)
In particular, the vertical admittance at z(1) is
Y7 (2(1)) = Na(0). (18)

In a similar manner the vertical admittance at any level z >
z(ND) is [cf. equations (9), (10), and (12)]

Y*(z) = A\a(ND) for z(ND) < z < o. (19)

In particular, the admittance at the lowermost interface
z(ND) is

Y*(z(ND)) = A\a(ND). (20)

From equation (15) we obtain a relationship between the
amplitudes on the interfaces enclosing a domain D(ID) as

AT(ID)=T"(ID)4~(ID) exp (—\r(ID)), (21)
where
No(ID) — Y (z(ID))

I ~(ID) = - (22)
Ao(ID) + Y~ (z(ID))

foriID=1,...,18 - 1.

Now, using equation (21), we express 4 " (ID) in terms of
A~ (ID) in equation (16) and obtain the following recurrence
relation [via equation (22)]:

1 = T'~(ID) exp (—2Mi(ID))

YD + 1) = ollD) e (covwiDy

foriD=1,...,1IS ~ 1.

In a similar manner as above, using vertical input admit-
tances at two consecutive interfaces below and including the
source level,

ATID) — A~(ID) exp (—\h(ID))
AT(UID) + A~(ID) exp (-\(ID))’

Y+(z(ID)) = A\a(ID)

(24)
YH(z(ID + 1))

A*(ID) exp (=Mi(ID)) — A~ (ID)
AT(ID) exp (—~M(ID)) + A ~(ID)

= \o(ID)

forID=1S,...,ND -1,
and starting from equation (25), we obtain
A~(ID) =T*(ID)A*(ID) exp (—Mi(ID)),  (26)
where
Aa(ID) — Y (z(ID + 1))
Na(ID) + Y*(z(ID + 1))

(D) = 27)

forID=ND-1,...,18S,

and the following recurrence relation [via equation (26) and
substitution in equation (24)]:

1~ T*(ID) exp (—2\h(ID))
1+ I't(ID) exp (—2Mr(ID))

Y+(z(ID)) = No(ID)

forID=ND -1, ...,1S.

Starting with the known initial values of Y (z(1)) and
Y (z(ND)) given in equations (18) and (20), the recurrence
relations, equations (23) and (28), are used to obtain
Y (z(IS)) and Y (2(IS)) at the source level. While execut-
ing the recurrence scheme, the computed values of {T' ™ (ID);
ID=1,...,IS = 1} and {T*(ID); {ID =ND - 1, ...,
IS} are stored for later use in determining the electric
potential spectral amplitude coefficients on the interfaces.
Knowing Y™ (z(IS)) and Y*(z(IS)) we can immediately
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compute from equations (11)-(14) the (unique) electrical
potential at the source level V(z(1S)) (using interface indi-
cation)

IUs)
Y (z(IS)) + Y (z(IS))

V(2(I8)) = (29)

ELECTRICAL POTENTIAL AT AN ARBITRARY
DEPTH LEVEL

From equations (5), (6), and (11) for ID = IS — 1, we can
write the field quantities at the source level as

2(IS)) = A*(IS — 1) exp (—=M(IS — 1)) + A~ (IS — 1),

(30)
Y (2(IS))(zUS)) = Ao (IS — 1)4 (IS — 1)
— oIS — 1A (IS - 1)
s exp (—M(IS — 1)). (31)

Alternatively, we have for ID = IS [cf. equations (5), (6),
and (12)]

P(z(IS)) = AT(IS) + A(IS) exp (—AA(IS)), (32)
YT (z(ISWP(2(IS)) = Na(IS)A *(IS)
— Ao(I8)A ~(IS) exp (—NA(1S)). (33)
Solving equations (30) and (31) for A~ (IS — 1), we obtain
No(IS — 1) + Y™ (2(IS))

A~(IS - 1) = T7(z(IS)) oS —1)

(34)
Substituting expression (29) for F(z(IS)), we find
IIS)  Ao(IS — 1) + Y~ (2(IS))
T 2no(IS = 1) Y (zUS)) + Y (z(IS))
(35

A(IS-1)

In a similar manner we solve equations (32) and (33) for
AT (IS) and use equation (29) to obtain

I(IS) No(S) + YT (z(IS))
2a0(IS) Y™ (2(IS) + YT (z(IS)

Once the constants 4~ (IS — 1) and 4™ (IS) on the source
level have been calculated, the constants on all the interfaces
can be calculated straightforwardly. From the boundary
condition given in equation (13), we write using equation (5)

AN(ID) + A~(ID) exp (—\(ID))

ATUS) = 36)

=A*(ID - 1) exp (—Ni(ID = 1)) + A~(ID — 1). (37)

We use the relationship equation (21), for substituting for the
AT amplitudes in equation (37), and obtain

~ 1+T-(UD)
T 14+T7(UID - 1) exp [-2Ma(ID — 1)]

A~(ID-1)

X AT(ID) exp [-MNr(ID)], (38)
forID=I1S-1,..., 1.

We repeat equation (21) for convenience,
ATID)=T~(ID)A(ID) exp (—\h(ID)), (39)
forID=1S-1,..., 1.

The left-hand sides of equations (38) and (39) are the
amplitudes on either side of an interface in terms of the
amplitude just below it. Now, starting with the known
A~ (IS — 1) at the source level [cf. equation (35)] we can
calculate all the amplitudes on the interfaces above the
source level by repeated use of equations (38) and (39). In a
similar way, using equation (26) in equation (37) for index ID
+ 1, we have

1+ T*(UD)

AYID +1) =
14 T¥(ID + 1) exp [~2M(ID + 1)]

x A*(ID) exp [—=\h(ID)] (40)
for ID =1S, ..., ND -1,

together with equation (26) which we repeat for conve-
nience,

A~(ID) = THID)A*(ID) exp (-\h(ID)),  (41)
for ID =1IS, ..., ND — 1.

The left-hand sides of equations (40) and (41) are the
amplitudes on either side of an interface in terms of the
amplitude just above it. Now, starting with the known
AT(IS) at the source level [cf. equation (36)] we can
calculate all the amplitudes on the interfaces below the
source level by repeated use of equations (40) and (41).
Knowing the amplitudes, we use equations (3) and (5) to
compute the electric potential at any point (except at the
source point) in the layered earth. For the single-borehole
computation for which r = 0 [giving J(Ar) = 1 in equation
(3)], we use a Gauss-Laguerre quadrature method for com-
puting equation (3). For the hole-to-hole computation of
electrical potential, the method of convolution (Ghosh 1971)
is used for the rapid computation of equation (3).

NUMERICAL EXAMPLES

In this section, we use the formalism presented above for
the computation of the electric potential along vertical lines,
because of the static electric current injection and extraction
by the two point electrodes at two different depths in the
layered earth models. The configuration is shown in
Figure 2. Points A4 and B represent two electric current point
electrodes at any depth along a vertical line that we will call
the source line AB. CD, EF, and GH are three vertical lines
at horizontal distances of 10, 30, and 50 m from AB that we
will call receiver lines. A set of electrodes M and N (2 m
apart) is used for the end-on-end electric potential measure-
ments along each of the vertical lines. The measurements are
converted into apparent resistivity (p,), using

AV
pa =K T (42)
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where AV is the electrical potential difference between M
and N, and the geometric factor K is given by the following
combination of various distances:

K=

47
YAM+1/AM—-1/AN—1/AN—1/BM—1/BM + 1/BN + 1/BN"’

(43)

Here, for instance, AM is the distance between 4 and M,
and AM is the distance between the image of A with respect
to the surface of the half-space and M. Similarly, we have
the other distances.

To check our computer code, we considered the electric
current point electrodes to be buried in layered models and
assigned the same resistivity to each layer to simulate a
uniform half-space model for which the exact solution is

LOCATION OF VERTICAL LINES

0 10 30 50 m
il C E [€
WA |
i D(1) o) A1) |
wol! |
O
! I
| |
i D(ID) p(ID) h(ID) |
N |
o <
= : |
E [ N |
o |
i
! I
“B l
i D(ND) o(ND) H(ND) |
= |
i |
i |
! |
8 1 D L F ! IH

FiG. 2. Layered earth models containing the static current
electrodes at.4 and B. Electrical potentials are measured by
lowering the potential electrodes M and N (2 m apart) along
the vertical lines passing through AB (source line) and CD,
EF, and GH (receiver lines) at distances 10, 30, and 50 m
from AB.

analytically known. For our computation, we have used a
Gauss-Laguerre quadrature method when the electrical po-
tentials are computed along the source line, and the convo-
lution method using the filters given in Koefoed et al. (1972)
and Anderson (1979) when the electrical potentials are
computed along the receiver lines. The computed electrical
potential values are in excellent agreement, up to five
decimal places, with the analytical results. Moreover, we
have used reciprocity as a check for our computational
accuracy. However, a small error in the potential computa-
tion is amplified in the apparent resistivity values by the
large geometric factor near the source level. To avoid
confusion in considering the apparent resistivity curves, in
Figures 3-6, we will present no apparent resistivity values
near the source levels.

First, we consider the following K-type and H-type three-
layer earth models:

K-type.—
p(1) =50 Q m, p(2) =100 Q m, p(3) =50 Q m,
h(1) =30 m, A(2) =20 m.

H-type.—
p(l) =100 O m, p(2) =50 Q m, p(3) = 100 Q m,
h(1) =30 m, A(2) = 20 m.

In the above, we have used the resistivity p (inverse of
conductivity) instead of the conductivity o of a layer. This is
preferred since we will present the computational results in
the form of apparent resistivity. The resistivity model in a
figure will be represented by a solid line. Apparent resistiv-
ities along the source line will be represented by a small-
dashed line, whereas along the receiver lines at 10, 30, and
50 m, they are given by a dotted line, a dash-dotted line, and
a large-dash line, respectively.

110 T T T T

100k |

90r

0r 1

60+ 1

5Q bz i

..........

APPARENT RESISTIVITY (ohm meter)

30 1 L L L

DEPTH (meter)

Fic. 3. Apparent resistivities along the vertical lines (i.e., the
source line and the receiver lines) in the K-type earth model.
Model parameters are: p(1) = 50 & m, p(2) = 100 Q m,
p(3) = 50 Q@ m; A(1) = 30 m, ~(2) = 20 m. Electric current
electrodes are located at 10 m and 100 m below the surface.
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Considering the electric current electrodes A and B at
depths of 10 and 100 m (represented by filled circles on the
depth axis), in Figure 3 we have plotted the apparent
resistivities at different depths (at the centers of MN) of the
given K-type layered model. It is observed that the apparent
resistivity values along the source line-(simulating a single-
borehole situation) and along the receiver line at 10 m
converge to the resistivities of the top and bottom layers of
the model away from the interfaces. In the intermediate
layer, the measured profile is close to the true resistivity only
in the farthest borehole at 50 m. The interfaces are clearly
detected in their positions by a linear change in the apparent
resistivity values in all the profiles. It may be remarked that
the apparent resistivity profile in the farthest hole at 50 m is
a close representation of the true distribution of the layered
earth parameters (i.e., resistivities and thicknesses). Now

? 110 T T T T T T T
3
g 100F i
£
S gof .
>
= 80+ .
=
E 70+ .
(95}
2
60| i
i 0
z
é 50
& T ’ ~
& dop .
30 1 1 i 1 I 1 I

DEPTH (meter)

F1c. 4. Apparent resistivities along the vertical lines in the
K-type earth model. Model parameters are the same as in
Figure 3. Electric current electrodes are located at 0 m and
80 m below the surface.
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80} :
0k .

601
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501 = b

40 1 1 1 1 1 L 1

DEPTH (meter)

F16. 5. Apparent resistivities along the vertical lines for the
H-type earth model. Model parameters are: p(1) = 100 ) m,
p(2) =50 Qm, p(3) = 100 A m; A(1) = 30 m, ~(2) = 20 m.
Electric current electrodes are located at 0 m and 80 m below
the surface.

we consider A at the surface of the earth and B at a depth of
80 m below the surface and present the computations along
the vertical lines for the K-type and H-type models. The
apparent resistivity profiles in Figures 4 and 5 for K-type and
H-type models, respectively, follow the resistivity profile of
the model. In both cases, the furthest profiles closely depict
the models. Keeping the electric current electrode A4 at the
surface and placing the electrode B at a greater depth of
100 m, we show in Figure 6 apparent resistivities for the
following five-layer model:

Five-layer model.—
p(1) =100 Q m, p(2) =50 QO m, p(3) =300 O m,
p(4) =20 Q m, p(5) =500 QO m, (1) =10 m,
A(2) =30 m, 2(3) =20 m, A(4) = 10 m.

The five segments of the curves correspond to the five layers
in the model, and the interfaces are located in their positions.
The true resistivities of the layers are reflected in the curves.
Again, the profile along the hole at 50 m is a closer repre-
sentation of the resistivity and thickness distributions of the
five-layer model.

CONCLUSION

Numerical instability, which may arise in the propagator
matrix formalism for computing the electric potentials be-
cause of the point electric current sources at any arbitrary
depths in a layered carth, is avoided in the present spectral
formalism by using only exponential functions with negative
arguments. The recurrence scheme in the vertical admit-
tance is efficient to calculate the unknown constants at the
source level at an arbitrary depth. From these known
constants and using the continuity relations of the potentials
across the interfaces, we have derived the constants on all
the interfaces for computing electric potentials at any arbi-

— 700 T T T
3
Q
g 600k
g
=]
=]
= 500}
S
E
2 400 .
=
&)
w2
ja) - -
=300
B
g 200k ]
%
aly
& i
<t
| I s J )

0 20 40 60 80 100
DEPTH (meter)

F16. 6. Apparent resistivities along the vertical lines in the
five-layer carth model. Model parameters are: p(1) = 100 Q
m, p(2§7= 50 O m, p(3) = 300 & m, p(4) = 20 Q m, p(5) = 500
Qm, A(1) = 10m, ~(2) = 30 m, 2(3) = 20 m, A(4) = 10 m.
Electric current electrodes are located at 0 m and 100 m
below the surface.
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trary depth levels. The scheme would be efficiently imple-
mented for imaging the subsurface conductivity. The method
can be similarly extended (as rightly pointed out by one of
the reviewers) to other areas such as induced polarization
and electromagnetic coupling.

The apparent resistivities obtained from the potential
measurements reflect the true resistivity distributions of a
layered earth. The numerical examples that simulate the
single-borehole and the cross-borehole experiments (ne-
glecting the borehole effects) show that injecting an electrical
current at the surface of the earth and extracting the current at
a large depth, with static potential measurements in adjacent
boreholes, would lead to the determination of resistivities and
thicknesses of a layered earth. The hole-to-hole measurements
with a suitable separation between the holes may produce an
apparent resistivity depth profile which may, reliably, repre-
sent the true resistivities and thicknesses of the layered earth.
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