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Transient electromagnetic vs. seismic
prospecting—a correspondence prlnclple

Adrianus T. de Hoop2

Abstract

A correspondence principle is derived that relates the Green’s functions (point-
receiver responses to point-source excitations) for 2D transient diffusive electro-
magnetic fields with electric field in the vertical plane to 2D seismic waves (in the
acoustic approximation) with particle velocity in the vertical plane in arbitrarily
inhomogeneous media. The constituent medium parameters in the two cases are
related via two global proportionality constants. The kernels in the integral operators
that express the diffusion phenomenon in terms of the wave phenomenon are of a
smoothing nature. The fact that they are explicitly known can be of importance to
the inverse operation. The correspondence principle is the fundamental tool in
comparing the spatial resolving powers in the two methods of geophysical
prospecting.

Introduction

The study of correspondences that exist between seismic methods of geophysical
prospecting (i.e. prospecting via the physics of a transient wave propagation
phenomenon) and transient electromagnetic methods (i.e. for data acquisition in the
time windows long after the wavefront has passed, prospecting via the physics of a
transient diffusion phenomenon) is a subject of interest for several reasons. Firstly,
there is the aspect of the amount of spatial resolution that can be obtained from
processing the data in the two cases. Conclusions on this aspect can be drawn from
the correspondence principle derived in this paper, since the principle establishes a
quantitative relationship between the Green’s functions (point-receiver responses to
point-source excitations) in the two cases, for general inhomogeneous configurations
where the spatial distributions of the constituent medium parameters are the same.
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Secondly, the way in which the correspondence principle is derived reveals the
underlying structure of the formulation of the physical problem in the two cases.
This structure may be used for the development of the data processing software
in which the high degree of structural compatibility in the two cases is
incorporated.

In 3D data acquisition and interpretation there is, in general, no strict component-
by-component correspondence between seismic wave phenomena (either in the
acoustic approximation or in the full elastodynamic theory) and transient electro-
magnetic diffusion phenomena. A component-by-component correspondence does,
however, exist between 2D seismic wave phenomena in the acoustic approximation
and 2D transient electromagnetic diffusion phenomena. The correspondence
principle will be derived for this case. The relationships between the Green’s
functions in the two cases are indicative of the general behaviour when going from a
wave phenomenon to a diffusion phenomenon. The present analysis can be applied
in the 2D case, where sources with different components can generate the field and
different field components can be measured with the receivers employed. The
correspondences between the associated Green’s function components yield more
information than an analysis based solely on the scalar wave equation vs. the scalar
diffusion equation.

The mathematical derivation of the correspondence principle is based on the
Schouten—Van der Pol theorem (Schouten 1934, 1961; Van der Pol 1934, 1960; Van
der Pol and Bremmer 1950) which relates two (space-)time functions whose time
Laplace transforms are related by replacing the time Laplace transform parameter s
by a suitable function of s. Recent applications of this theorem to relate the Green’s
functions for wave propagation in a medium with relaxation to the Green’s functions
for wave propagation in a corresponding lossless medium have been described by De
Hoop (1993, 1995).

Let G = G(r,r’,¢) denote any of the Green’s functions, i.e. the causal response at
position r and tlme ¢ due to a point-source excitation at position r’ and time ¢ = 0.
Then G = G(r,r’,t) vanishes for ¢ < 0 and its time Laplace transform G =G(r,r',s)
is given by

G(r,r',s) = J exp (—st)G(r,r' ) dz (1)

for any complex s in the right half Re(s) > 0 of the complex s-plane. (In fact, for
the causal time functions under consideration, it is, according to Lerch’s theorem
(Widder 1946), sufficient to specify G at the equidistant set of points
{s =sg+mnhysy>0,h>0,n=0,1,2,...} on the positive real s-axis in order to
determine G uniquely for ¢ > 0 ) The specific case required for the present
application is the outcome of the theorem when s is replaced by s'/2. This will be
discussed below. Work related to the present correspondence theorem has been
presented by Lee, Liu and Morrison (1989) and Gershenson (1993).
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The two-dimensional seismic wave propagation problem
(Acoustic approximation)

In order to establish the desired correspondence principle, it is essential that the
governing basic field equations are written as a system of simultaneous first-order
partial differential equations. Let the 2D seismic wave propagation take place in the
vertical (x, z)-plane, where x and z are the horizontal and vertical space coordinates,
respectively. Then the governing acoustic wave equations are

0,0y + 0,0, + KO,p =g, (2)
8xp+p8t‘vx :fx’ (3)
azp + patvz :fz) (4)

where p is the acoustic pressure (in Pa), v, , is the particle velocity (in m/s), g is the
volume source density of injection rate (in s_l), fx, 5 1s the volume source density of
force (in N/m?), p is the volume density of mass (in kg/m>), k is the compressibility
(in Pa~!) and & denotes differentiation. The medium can be arbitrarily inhomoge-
neous. The medium’s acoustic constituent parameters p = p(x, £) and k = k(x, 2) are
assumed to be piecewise continuous functions of position. Across jumps in p and/or
K, p and the normal component of v, , are continuous, while p = 0 at the free surface
(which need not be horizontal). By arranging the field quantities in the 1D array

[F] = [pﬂjx"vz] (5)
and the source quantities in the 1D array

[Q] - [Qafxasz (6)

the solution to the system of equations (2)—(4) can be expressed in terms of the 2D,
square array of acoustic Green’s functions [G] as the time convolution

P = | @ | (6l r Q' - ) avie'), )

where D is the (bounded) domain in which the source distributions are active.
For the correspondence principle, the time Laplace transform counterparts of
(2)-(4) and (7) are needed. These are given by

(oe]

t'=0

0,0 + 0,0, + skp = §, (8)
8B + spiy = fr, 9)
0.0+ spd; = /> (10)
and
Fl(e9) = | 161w 1',9(01",5) av ), (1)
respectively.
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The two-dimensional transient electromagnetic diffusion problem
(Electric field in the vertical plane)

The 2D transient electromagnetic diffusion problem for which the correspondence
principle can be established, is the one in which the electric field is in the vertical
plane. The governing electromagnetic diffusion equations are then given by

—0,E, + 0, B, + pd,H, = —K,, (12)
0,H, — o, = ¥,, (13)
azlyy + UEx = —j(m (14)

where E, , is the electric field strength (in V/m), H,, is the magnetic field strength (in
A[m), ¥, . is the volume source density of electric current (in Ajm?), K, is the volume
source density of magnetic current (in V/m?), o is the (electric) conductivity (in S [m),
1 is the (magnetic) permeability (in H/m).

The medium can be arbitrarily inhomogeneous. The medium’s electromagnetic
constituent parameters o = o(x,2) and p = u(x,z) are assumed to be piecewise
continuous functions of position. Across jumps in o and/or u, H,, and the tangential
component of E, , are continuous, while H,, = 0 at the free surface (which need not
be horizontal). By arranging the field quantities in the 1D array

(9] = [H,, E,, E,] (15)
and the source quantities in the 1D array
(0] = [K,, Frr Fl, (16)

the solution to the system of equations (12)—(14) can be expressed in terms of the 2D,
square array of electromagnetic Green’s functions [['] as the time convolution

@l(r,0) = |

t'=0

o0

dz' JD (e, )W) (x', £ — ) AV (x), (17)

where D is the (bounded) domain where the sources are active.
For the correspondence principle, the time Laplace transform domain counterparts
of (12)—-(14) and (17) are needed. These are given by

~8,E, +09,E, + suI:Iy = —Ky, (18)
9.8, — o, = 4., (19)
8,H, + b, = -5, : (20)
and
80,9 = || F(r, e, 98,9 4V ), 1)
D
respectively.
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| The correspondence principle in the time Laplace transform domain

For the correspondence principle to hold, it is now assumed that

o(x,2) = ap(x, 2) : (22)
and
:u'(x72) = IBK/(xaz)v (23)

where o and (3 are global, positive constants of the proper physical dimensions. Using
(22) and (23), and by introducing the pseudo-field functions

b= (69)""H,, (24)

7, = —a'l*E,, (25)

7, = o'?E,, (26)
the pseudo-source functions

§=—a'’R,, - (27)

fe = (85)2Fs, (28)

fo = —(89)/*%,, (29)

and the pseudo-time Laplace transform parameter

§= (aps)'/?, (30)
(18)—(20) can be rewritten as

04T, + 0,0, + §kp =G, (31)

8D + 5p7, = fo (32)

0. + 500, = . (33)

T'he definitions (24)—(29) can be used to obtain the equation, similarly to (11),

Fl(r,9) = | 1610, 901", 9) V), (34
D

and comparison of (31)—(33) with (8)—(10) then leads to the conclusion that
[é](r)r,7s) = [GA](rar,aE)- (35)

From (21), (34) and (35) in conjunction with (24)—-(29), the different elements of [f‘]

can now be related to corresponding elements of [G]. Using superscripts to denote to

which received field quantity and to which excitation source quantity a particular

Green’s function element refers, it is found that

DHEK (r r'5) = —%G"q(r,r’,§), (36)
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T (e,r',5) = G¥(x,1')5), (37)
Afj(r’r/, S) = _égf(r1r/7 §)7 (38)
T (x,x')5) = GY(r,1',§), (39)
T (r, 1 5) = -GY(x,1',5), (40)
ffz(rvr/as) = _ééfc},x(r)r/as)) (41)
D5 (r,x'5) = é GY,(x,x',5), (42)
P (e,',s) == G (x,x,9), (43)
. 5 oa, _

P8, x,5) = =2 G (r,x',5). (44)

Equations (36)—(44) serve as the basis for the construction of the time-domain

A

equivalents of the elements of [I].

The correspondence principle in the space-time domain

The time-domain counterparts of the elements of [f‘] follow from application of the
Schouten—Van der Pol theorem in the theory of the time Laplace transformation to
the case in which the Laplace transform parameter s is replaced by § = (a,Bs)l/ 2. For
this case, the resultsﬂ are derived in the Appendix, where the time-domain equivalents

of [G](x,r’,5),5  [G](x,r',§) and §[G](r, r’, §) are determined. Using these results, it
is found that

MH(r 1 1) = —a “io Wo(t, 75 0, 6)GH(x, ', 7) dT] H(r), (45)
T (e,2',t) = Uio Wi(t, 70, B)GH (v, 1) 7) dT}H(z), (46)
TH (', 1) = — Uio Wi(t, 50, )G (x,1',7) dT]H(t), (47)
T2 (', 1) = [ Jio W2, 70, H)GY(x, £, 7) dT}H(Z), (48)
TEK (e 1/ 1) = — [ r:o Wi, 7 0, )G (x, ', 7) dT]H(t), (49)
T (e, 1) = —— Uio Wi (t, 7 0 B) G (x, ', 7) dTJH(t), (50)
O (e, 1) =~ Uio Wit 75 0 B) G (x, ', 7) dT]H(z), (51)
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D, x, ) = Uio Wit 7 0 B)GZa(r, 1, 7) dT]H(z), (52)

020 =+ [ wmapozer neHe, (53
where

Wo = <a—1—7—r;)1/zexp <— aff) (0), (54)

W, = % (a?)l/z ?32/5 exp (— O‘Zz)H(z), (55)

() ) w0

and H(z) denotes the Heaviside unit step function. Further,
» 6W0(t, T &, /B)

W= e (57)
and
oW (t,T;

Since the kernel functions given by (54)—(56) are smooth functions of their
arguments and the integration operation is a smoothing operation, the Green’s
functions pertaining to the diffusive case are always smoothed versions of those
pertaining to the wave propagation case. As a consequence, the operation of going
from the wave propagation case to the diffusive case is always a stable one. To
perform the operation in reverse, i.e. going from the diffusive case to the wave
propagation one, the integral equations (45)—(53) have to be solved. Due to the
nature of the relevant kernels, this operation tends to be unstable.
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Appendix

The Schouten—Van der Pol theorem for the replacement of s by (oz,@s)”2

Since the Schouten—Van der Pol theorem applies to the time behaviour only, the
spatial arguments in the functions involved will be omitted. Let g = g(¢) be a known,
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causal function of time ¢ with support {r € R,t > 0}, and let

8 = | exn(-omgtr)ar (A1)
be its Laplace transform. Further, let

A(s; &, B) = £l(eps)'/?), (A2)
then

o) = | ewl-(a9) rle(r)dr (83)

In order to derive the time-domain counterpart v = y{(t; &, 8) of 4 = 4(s; @, §), it is
observed that (cf. Abramowitz and Stegun 1964)

exp [—(aﬂs)l/Z»;-] = Joio exp (—st)w(t, 7; o, B) dt, (A4)
in which
1 1/2 2
atemn8) =5 (L) 5 e (-0 )0 (a3)

where H(z) denotes the Heaviside unit step function. Substituting (A4) in (A3),
interchanging the order of integration and applying Lerch’s theorem on the
uniqueness of the one-sided Laplace transformation (Widder 1946), it follows that

o0

) = || wemiofet ar o (86)

7=0

For the analysis, the time-domain counterparts of (aﬁs)l/ 24(s; ¢, B) and
(a,@s)"l/ ?4(s; a, B) are also needed. These can be obtained by observing that

(892 exp [~(ae) V7] = — - (exp [~(69) 7] (7)
and

(o) 4050, ) = | expl(ape)Pr)ar’ (A8)
Using these relationships, (A6) and (A7) lead to

a .
(0B 5550, 0) = - 2T E)
1 1/2 1 2 2
L (e (e
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while (A6) and (A8) lead to

(B5) 7 4(s; 0, B) = J w(t, ', B) d7’

r'=1

_ (ﬁ)uzexp <_ O‘ZZ)H(:). (A10)

Equations (A6), (A9) and (A10) are used in the main text.
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