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SUMMARY

A general correspondence principle is presented that relates any time-domain electro-
magnetic diffusion field to an electromagnetic wavefield in a ‘corresponding’ con-
figuration, The principle applies to arbitrarily inhomogeneous and anisotropic media
and arbitrary transmitters and receivers. For the correspondence between the two types
of electromagnetic fields to hold, the electric conductivity in the diffusive case and the !
permittivity in the wavefield case should have the same spatial variation, while the
permeability distributions in space in the two cases are to be identical. Essential steps
in the derivation of the correspondence principle are the use of the time Laplace
transformation of causal signals, taken at real, positive values of the transform
parameter, the Schouten—Van der Pol theorem in the theory of the Laplace trans-
formation, and the reliance upon Lerch’s theorem of the uniqueness of the interrelation
between causal field quantities and their time-Laplace-transform representations at
real, positive values of the transform parameter. Correspondence is then established
between the tensorial Green’s functions in the two cases, where the Green’s functions
are the point-receiver responses (either electric or magnetic field) to point-transmitter
excitations {either electric- or magnetic-current source).

Through the correspondence principle, all transient electromagnetic wavefields (where
losses are neglected) have as a counterpart a transient diffusive electromagnetic field
(where the electric displacement current is neglected). The interrelation yields the tool
to compare quantitatively the potentialities of the two types of fields in transient
electromagnetic geophysical prospecting.

Finally, a general medium-parameter scaling law for time-domain electromagnetic
wavefields is presented.
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1 INTRODUCTION

Recent discussions on the application of transient electro-
magnetic prospecting methods have stipulated the importance
of a correspondence principle that relates transient diffusive
electromagnetic fields in an electrically conducting medium to
the electromagnetic wavefield in a ‘corresponding’ dielectric
medium (see Lee, Liu & Morrison 1989; Gershenson 1993).
To establish such a relationship, Lee et al. (1989) introduced
the ‘g-domain method’, which involves an excursion to imagin-
ary values of the angular frequency in the frequency-domain
counterpart of the second-order vector diffusion equation for
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the electric field strength, upon which an equivalent vector
wave equation is obtained. For the same purpose, Gershenson
(1993) carried out a similar analysis based on the time-Laplace-
transform domain counterparts of the second-order vector
differential equations for the electric field strength and the
magnetic flux density. For the scalar wave and diffusion
equations, Filatov (1984) carried out a correspondence analysis
with the aid of a Mellin transform with the square of the time
coordinate as a variable.

In the present paper, a correspondence theorem is derived
that is based on the first-order coupled Maxwell equations as
they apply to arbitrarily inhomogeneous and anisotropic
media, with arbitrary source distributions of the electric-
and/or magnetic-current types. In the wave-propagation case,
the medium is assumed to be lossless and its electric properties
are characterized by its (tensorial) permittivity. In the diffusive
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case, the electric displacement current is neglected and the
medium’s electric properties are characterized by its (tensorial)
conductivity. The magnetic properties of the media in the two
cases are characterized by their (tensorial) permeabilities. For
the correspondence to hold, the electric properties of the media
in the two cases should have the same spatial distributions.
The same applies to the magnetic properties in the two cases.
The spatial distribution of the magnetic properties may,
however, differ from the spatial distribution of the electric
properties.

Essential steps in establishing the correspondence principle
are: the use of the time Laplace transformation for causal
signals, taken at real, positive values of the transform parameter;
the application of the Schouten—Van der Pol theorem in the
theory of the Laplace transformation (Schouten 1934, 1961,
Van der Pol 1934, 1960; Van der Pol & Bremmer 1950); and
the reliance upon Lerch’s theorem (Widder 1946) of the
uniqueness of the interrelation between causal source and field
quantities and their time-Laplace-transform representations
for real, positive values of the transform parameter. The
correspondence theorem is derived for the four types of
Green’s functions occurring in the two cases, viz the causal
point-receiver responses (either electric or magnetic field) to
point-transmitter excitations (of either the electric- or the
magnetic-current type). Through the principle, the Green’s
functions for the diffusive case are expressed in terms of their
wave-propagation counterparts. The kernel functions that
perform the interrelation are determined explicitly. The corre-
spondence principle yields the tool to compare quantitatively
the potentialities of the two types of fields in transient
electromagnetic geophysical prospecting.

In the analysis, r is the position vector in an orthogonal,
Cartesian reference frame, ¢ is the time, V is the spatial vectorial
differentiation operator and 9, denotes differentiation with
respect to time. The field quantities are the electric field
strength E = E(r, t) and the magnetic field strength H = H(r, t).
The source quantities are the volume source density of electric
current J =J(r, t) and the volume source density of magnetic
current K = K(x, #). The field quantities are taken to be causally
related to their excitation by the sources. The medium properties
are characterized by the conductivity o = o(r), the permittivity
&=¢(r), and the permeability u = u(r). These are assumed to
be piecewise continuous tensor functions of position of rank
two for anisotropic media and piecewise continuous scalar
functions of position for isotropic media.

All source and field quantities are assumed to be bounded
functions of time, and vanish prior to the instant, taken as =0,
at which the sources are switched on. Then, their one-sided
Laplace transforms are given by

B, s)= f exp(—st)F(, t)dt  fors e #,5>0, (1)
t

=0

where F stands for any of the source or field quantities. In this
context, Lerch’s theorem (Widder 1946) states that the inter-
relation between the set of values {F(r,s,)} for s,=s,+nh,
with s, € &, 50>0,h € 4, h>0and n=0,1,2,..., (ie ata
set of equidistant points on the positive, real s-axis) and F(x, t)
for t>0 is unique. In this respect it is mentioned that a
numerical implementation based on this theorem has, in the
realm of transient electromagnetic prospecting, recently been
carried out by Lee et al. (1994). Upon transforming the

electromagnetic field equations, the Laplace transform of the
time derivative of the field quantities is also needed; for this,
the rule that, assuming zero initial values, the time derivative
8,F(r, t) of F transforms into sF(r, s} applies.

2 FORMULATION OF THE
ELECTROMAGNETIC-WAVE-
PROPAGATION PROBLEM

The electromagnetic-wave-propagation problem is governed
by the electromagnetic field equations for a lossless medium:

VxH—¢ E=J, )
VxE+u-8H=-K. (3)

Let 2 be the spatial support of the source distributions;
then, on account of the superposition principle and the time
invariance of the medium, the generated wavefield at any
receiver point r can be expressed in terms of the generating
source distributions at any transmitting point r’ through the
time convolutions

o«

E(r,t)=f dt’J. GEI ', ) I, t—1)dV
t'=0 reg

+ J dt’f GEXp v ) K(, t—)dV,  (4)
t'=0 e

H(r,t):f dt’f I, ) I, t—t)dV
=0 red

+J dt’j Ry, ¢) K, t—t)dV, (5)
t'=0 Y e

in which the wavefield Green’s tensor functions of rank two,
% =9%(r, 1), relate a certain point-transmitter excitation at r’
and t =0 to a certain point-receiver response at r, and t > 0.

2.1 Time-Laplace-transform relations

The time-Laplace-transform counterparts of eqs (2) and (3)
are

VxH—-seE=1, (6)
VxE+su-H=—-K. (7

Using the property that the Laplace transform of the con-
volution of two functions is the product of their Laplace
transforms, the time-Laplace-transform counterparts of eqs (4)
and (5) are

B, 5) = J G5, v, 5)- 3, 5) AV
red
+ f GEE(r, 1, 5) - R(r', 5) AV, (8)
rea
A, 5) = J G 1, 5) 3, 5)dV
e

+ f GHE(r v, 5)- R(r', 5) dV . (9)
rep
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3 FORMULATION OF THE
ELECTROMAGNETIC-DIFFUSION
PROBLEM

The electromagnetic-diffusion problem is governed by the
electromagnetic field equations in which the electric displacement
current is neglected, viz

VxH-0-E=1J, (10)
VxE+p-0H=—-K. (11)

If 2 is the spatial support of the source distributions, then, on
account of the superposition principle and the time invariance
of the medium, the generated diffusive field at any receiver
point r can be expressed in terms of the generating source
distributions at any transmitting point r’ through the time
convolutions

E(r,t)=f dt’f B, t) X, t—t)dV
t'=0 reD

¥ f dar J TEX(@ v, ¢) K(t,t—t)dV, (12)
t'=0 ez

H(, t)=f ar j TEI (6 1, ¢) - 3, t— ) AV
t'=0 e

+f dt’J THEE v, ¢) K, t—t)dV, (13)
t'=0 e

in which the diffusive-field Green’s tensor functions of rank
two, I' =T(r, 1, t), relate a certain point-transmitter excitation
atr’and t = 0 to a certain point-receiver response atr and ¢ > 0.

3.1 Time-Laplace-transform relations

The time-Laplace-transform counterparts of eqs (10) and (11)
are

VxH—c-B=17, (14)
VxE+su-AH=—-K. (15)

Using the property that the Laplace transform of the con-
volution of two functions is the product of their Laplace
transforms, the time-Laplace-transform counterparts of egs
(12) and (13) are

B(r, 5) = f 5, v, 5) 3, 5)dV
€D

+ J TEX (@, v, 5)- R(r, 5)- K(r, s) dV, (16)
e
H(, 5) = J 29, v, 5) 3, s)dv
r'eD
+ f TEE(r ', 5) - R(r, s)- K(r, 5) dV. (17
r'e2

4 THE CORRESPONDENCE PRINCIPLE

For the correspondence principle to hold, the permittivity in
the wave-propagation case and the conductivity in the diffusive
case are related by a(r) = ag(r), where « is an arbitrary positive
constant, with the dimensions of reciprocal time, while the
permeabilities in the two cases are the same. The first step in
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the derivation of the correspondence principle is to substitute
these relations into eqs (14) and (15), multiply eq.(14) by
(s/)t?, and rewrite the resulting equations as

V x [(s/o)>H] — (as)/2& - B = (s/a)"25 (18)
V x B+ (o) u+ [(s/0)?H] = —K.. (19)

Comparing eqs (18)—(19) with eqs (6)—(7), it is observed that
the diffusive equations in their rewritten form arise from the
wave-propagation equations upon replacing H in the latter by
(s/o)H, § by (s/m)”F and s by (as)Y?, while leaving E, &
and K as they are. Using, next, eqs (8)—(9) and (16)—(17),
together with the uniqueness of the solutions of the time-
Laplace-transform electromagnetic equations in the two cases,
it follows by inspection that

U5, v, 5) = (s/o) >G5 [1, ', (os)2], (20)
T, 5) = G571, ', (as) 2], (21)
2K, v, 5) = 95K[x, v, (as)'*], (22)
DEX(r, v, 5) = (s/o) " V24K 1, v/, (a5)?]. (23)

To obtain the time-domain expressions for each I, the
Schouten-Van der Pol theorem in the theory of Laplace
transformation is applied. This theorem relates time-domain
results that are associated with the replacement of the Laplace-
transform parameter s by a function of s, subject to some
restrictions. For the present case, the result for the replacement
of s by (as)*? is needed. Using egs (A6), (A9) and (A10) from
Appendix A, it is found that

I‘E,HIJ,K(I.’ I'/, t)

= U WEHIK (1 ¢ ) gBHTK(r 1, 1) dr] H(), (24)
=0

WE,HIJ,K

where the intervening kernel functions are given by

1/ 1N\Y2 1 /or? at?
WE,J___E<;;> t—y—2—<—2?—1>exp<—z>H(t): (25)

1/a\"? ¢ or?
gy _ (%) il
w —2<n> tWexp( 4t>H(t), (26)
1/a\'"? ¢ ot?
gx_ (%) T e
W 2<n> tmexp< 4t>H(t), 27)
a \? or?
WH’K=<;E> exp(———4t>H(t), (28)

where the Heaviside unit step function H has been included
for reasons of clarity, since the kernel functions are singular at
t=0. Note that WH/ = WEX_ as it should be on account of
reciprocity. Furthermore,

1owHI(t, 7, o)

EJ _
14 T (29)
and

1 oWHX(¢, 1,
weao LV (659 (30)

o ot

Since the kernel functions given by eqs (25)—(28) are smooth
functions of their arguments and the integration operation is
a smoothing operation, the Green’s functions pertaining to the
diffusive case are always smoothed versions of the ones per-
taining to the wave-propagation case. As a consequence, the
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operation of going from the wave-propagation case to the
diffusive case is always a stable one. To perform the operation
from the diffusive case to the wave-propagation case, the
integral equation (24), with the kernels given by egs (25)—(28),
have to be solved.

5 MEDIUM-PARAMETER SCALING LAW
FOR THE ELECTROMAGNETIC-WAVE
PROBLEM

If the distribution of the permeability in the diffusive problem
is, by a constant scale factor, off from the one in the wave-
propagation problem, a scaling up to the value pertaining to
the diffusive problem has to be carried out prior to the change
from permittivity to conductivity for the correspondence
principle. The relevant scaling falls within the wider class of a
global scaling of both permittivity and permeability, as will be
shown in this section.

Consider the electromagnetic-wave-propagation problem
that is governed by the electromagnetic field equations for a
lossless medium:

VxH—us 0E=T, (31)
VxE+pu-0H=—-K, (32)

in which o and § are arbitrary positive scalar constants, and
{E,H} ={E, H}{r, t; o, f) denotes their solution. Let & be the
spatial support of the source distributions; then, on account
of the superposition principle and the time invariance of the
medium, the generated wavefield at any receiver point r can
be expressed in terms of the generating source distributions at
any transmitting point 1’ through the time convolutions

Erta f)= J ar f GBI, o, f) T t—t)dV
t'=0 e

n f dr f GEK( ¥, ¢ 0, B) K, t—t) dV,
t'=0 e

(33)
Hr, t; a,ﬂ):f dt’J. GHI v, o, ) IO, t— 1) dV
t'=0 ' €D

,+J dt’f gBK (v, 0, B) K, t —1)dV,
t = e

=0

(34)

in which %=%(r, v, t;a B) are the relevant Green’s tensor
functions of rank two. To derive the scaling law, eq. (31) is
‘multiplied by f*/? and eq. (32) by /2, after which the resulting
equations are rewritten as

V x (BPH) — (Bo)!s- 0 E) = 11, (3)
V X (@12B) + @)\ 0,(FH) = —o K. (36)

These equations arise from their counterparts for the values
=1 and f=1 on replacing E by «'?E, H by *?H, J by
B3, K by ¢**K and t by (o)~ ¢, while leaving ¢ and u as
they are. In view of the uniqueness of the solutions to the
electromagnetic-wavefield equations, it then follows by

inspection that

GE L, o, f)= (/)™ [ x, @) 1P 1,17, (37)
G, t 0, f) =91, (@f) 125 1, 1], (38)
GEK(L Y, t; 0, f) =95, 1, (af) 1?5 1,11, (39)
G, By = (/B) PG [ 1, ()P 1, 1], (40)

Eqgs (37)—(40) are the desired scaling laws.

6 CONCLUSIONS

A correspondence theorem has been derived for time-domain
electromagnetic fields in arbitrarily inhomogeneous and aniso-
tropic media. It relates the wavefields that are present in a
lossless medium, where the permittivity and the permeability
are the constitutive parameters, with the diffusive fields that
are present in a conductive medium, where the electric displace-
ment current is neglected and the conductivity and the per-
meability are the constitutive parameters. The relationship is
expressed through the time-domain Green’s tensors for the
two cases, which yield the point-receiver response (electric or
magnetic field) due to a point-transmitter excitation (electric-
or magnetic-current dipole source). The theorem enables one
to compare quantitatively the potentialities of the two types
of fields in view of their application in transient electromagnetic
geophysical prospecting.
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APPENDIX A: THE SCHOUTEN-VAN DER
POL THEOREM FOR THE REPLACEMENT
OF s BY (as)'/?

Since the Schouten—Van der Pol theorem applies to time
behaviour only, the spatial arguments in the functions involved
will be omitted in this Appendix. Let g=g(t) be a known,
causal function of time ¢ with support {t € %, t> 0}, and let

&)= J exp(—st)g(z) dr (A1)
=0
be its Laplace transform. Further, let
7(s; o) = gL (xs)"]; (A2)
then,
Hs; o} = f exp[—(as)']g(7) dv. (A3)
=0

To arrive at the time-domain counterpart y=y(t; ) of
7 =9(s; &), it is observed that

@

exp[—(as)'1] = J

t=

exp(—st)w(t, 7; o) dt (A4)
0
(¢f. Abramowitz & Stegun 1965), in which
1/ a2 ¢ at?
w(t, oc)=5<;> ﬁexp<—I>H(t), (AS)
where the Heaviside unit step function H has been included
for reasons of clarity since the relevant kernel function is

singular at t=0. Substituting eq. (A4) into eq.(A3), inter-
changing the order of integration and using Lerch’s theorem
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on the uniqueness of the one-sided Laplace transformation
(Widder 1946), it follows that

vt o) = [f w(t, 75 0)g(r) df} H(z). (A6)
=0

In the analysis the time-domain counterparts of (s/a)Y2(s; &)

and (s/o) Y?y(s; &) are also needed. To obtain these, it is

observed that

) exp L) 2] = — - (exp[ (] (A7)
and
(s/o) " Y2 exp[—(as)? 1] = « Jw exp[—(as)20'] dr'. (A8)

Using these relations, eqs (A6) and (A7) result in

(520" expl— (e e] = — - D

VAN
“o\an/) £\ 2t
) ey (A9)
ol 2
exp 4¢ ’

while eqs (A6) and (A8) result in

<}

(/o) "% exp[—(as) 1] = o f wit, ;) dt’

‘.
T =T

1/2
=<%>/ exp<——oi4—1:>H(t)‘ (A10)

Eqgs (A6), (A9) and (A10) are used in the main text.




