Uniqueness of a class of nonlinear electrostatic field

problems

A.T.de Hoop and L.E.Lager

Abstract: The uniqueness properties of a class of nonlinear electrostatic field problems are
investigated. The study was motivated by the development of numerical algorithms to analyse the
performance of nonlinear semiconducting electron devices. Here, existence and uniqueness of the
solution are prerequisites for the numerical results to have any meaning at all.

1 Introduction

Theoretical methods to analyse electrostatic field problems
of the type that occur in nonlinear dielectric or nonlinear
semiconducting electron devices invariably make use of
computational techniques of an iterative nature. Even if a
particular technique of this kind proves to converge numer-
ically to a certain answer, the question remains whether this
answer is the correct one and not depending on the particu-
lar numerical algorithm (including its starting values)
employed. A possible ambiguity of this nature can only be
resolved if the problem at hand can be shown to have a
unique solution. For the case of linear media, the unique-
ness properties of the solution of electromagnetic field
problems in general have been studied extensively in the lit-
erature (see, for example, [1] for dynamic fields and [2, 3]
for static and stationary fields). All these proofs essentially
rely on the use of the superposition principle. In the pres-
ence of nonlinear media, however, the governing equations
become nonlinear and the superposition principle fails to
hold.

No general uniqueness proof for the solution of the elec-
tromagnetic field equations in the case of arbitrarily nonlin-
ear media seems to exist. Sufficient conditions for
uniqueness can only be derived for certain classes of prob-
lems for which additional assumptions as regards the con-
stitutive properties of the media involved are made.

In this paper we shall present some criteria that ensure
the uniqueness of the solution of a class of problems that
refer to the computation of electrostatic fields of the type
that occurs in nonlinear dielectric and nonlinear semicon-
ducting electron devices. The relevant criteria are applicable
to a wide range of problems met in electrical and electronic
engineering practice.

The configurations to be considered are inhomogeneous
in their electrical constitution, with possible jump disconti-
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nuities in their constitutive properties. They can be acti-
vated by a variety of ‘external’ means. Included are, in this
respect, the presence of ‘impressed’ electric volume charges
and ‘impressed’ electric polarisation. Of the former, we
mention as an example the electric charges that are due to
mechanical friction, accumulate in insulating parts of a
configuration, and then can give rise to electrostatic dis-
charges (ESDs). An example of the latter are objects con-
sisting of permanently electrically polarised ceramics
(electrets). Electric polarisation can also be used to repre-
sent the electrochemical action of a battery. In addition, the
configuration can be excited electrically via a finite number
of electrodes to which ‘external’ electric potentials are
applied (as in the measuring equipment for electric capaci-
tance tomography). It is important to notice that, due to
the nonlinearity in the configuration’s electrical behaviour,
the fields associated with these different excitation mecha-
nisms cannot be constructed with the aid of the superposi-
tion principle (as would be a natural way to do in the case
of a configuration with linear electrical properties).

A rather detailed description is given of the admissible
class of inhomogeneity and the admissible distributions in
space of the source quantities. This description is not only
necessary for stating the uniqueness theorem and construct-
ing its proof, but it also serves as a guideline as to what fea-
tures are to be accommodated in a numerical algorithm for
solving field problems of the kind under consideration.

Most of the conditions that are invoked are sufficient
conditions that have to do with existence of solutions of the
partial differential equations and the associated boundary
conditions involved (although we refrain from entering into
the difficult area of existence proofs themselves), the appli-
cability of Gauss’ divergence theorem, and the kind of con-
ditions for uniqueness. Moreover, some emphasis is placed
on the so-called ‘compatibility relations’ (the term stems
from the theory of elasticity, [4], p. 49). These are conse-
quential relations that are automatically satisfied by any
exact solution to the problem. However, as soon as solu-
tions are constructed with the aid of numerical algorithms
{(which is almost a necessity in the case of nonlinear prob-
lems), a compatibility relation is no longer automatically
satisfied. Experience with the computation of both dynamic
and static electromagnetic fields has shown that a numeri-
cal solution can fail to converge and be highly erroneous if
the relevant compatibility relations are not (numerically)
taken into account as separate (and independent) condi-
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tions [5, 6]. A clear explanation for this phenomenon is not
yet known, but the facts are there.

The cases for configurations of bounded extent (where
the field exterior to the configuration is negligibly small), as
in a large class of (shielded) electronic devices, and for con-
figurations embedded in a vacuum exterior domain (where
the exterior field extends to infinity) will be investigated
separately.

2 Formulation of field problem

In the formulation of the problem, the following constitu-
ents are distinguished: the description of the configuration,
the nomenclature of the field quantities, the nomenclature
of the impressed volume source quantities, the (partial dif-
ferential) field equations, the specification of the interface
boundary conditions and the boundary conditions at the
electrodes, and the description of the pertaining constitutive
operators. As a corollary, the compatibility relation associ-
ated with the field equations is given.

2.1 Description of configuration

The configuration to be analysed is present in three-dimen-
sional Euclidean space R®. Position in this space is specified
by the Cartesian position vector r. The material parts of the
devices to be considered are contained in a bounded sub-
domain D of R3. The boundary surface of D is denoted as
D. The (unbounded) complement of D U 9D in R® is the
vacuum domain denoted as D”. The domain D is parti-
tioned into a, presumably finite, number N (N = 1) of sub-
domains D,, n = 1, ..., N, in such a manner that, in the
interior of each D,, the impressed volume source densities
values and the constitutive operators are continuous func-
tions of position (Cartesian scalar, vector or tensor func-
tions, as appropriate), while their limiting values on
approaching the closed boundary surface 9D, of D, via its
interior are assumed to exist. Then, the only admissible dis-
continuities are jump discontinuities which may occur
across common interfaces between adjacent subdomains of
D and/or at interfaces of the latter with D*. The boundary
surfaces 9D and 0D, n = 1, ..., N, are assumed to be piece-
wise smooth.

Furthermore, in D a finite number M + 1 (M = 1) of dis-
joint electrodes, occupying the surfaces S, m =0, 1, ..., M,
is present. Through them, the configuration is electrically
accessible for acting as an electric or electronic device. Each
S,, is assumed to be either a closed surface or a two-sided,
non-closed surface of vanishing thickness. For both cases,
the surfaces are assumed to be piecewise smooth. For
closed electrode surfaces, their interior is excluded from D.
In the special case of a perfectly shielded configuration, we
take S, = D, in which case the interior of S coincides
with D, while now D* plays no role in the analysis.

2.2 Impressed volume source quantities

The impressed volume source quantities are: the impressed
electric polarisation P™ = P™P(y) and the impressed vol-
ume source density of electric charge ™ = p™(r). Here,
P™r(p) is assumed to be a piecewise continuous vector
function of position, P™P having the bounded support DP
C D, while p™P(r) is assumed to be a piecewise continuous
scalar function of position, p™P having the bounded sup-
port D, C D.

2.3 Electrostatic field quantities

The field quantities that characterise the electrostatic field

are: the electric potential ® = ®(r), the electric field strength
E = E(r), the electric flux density D = D(r) and the volume
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density of charge p = p(r). Under the assumptions stated in
Subsections 2.1 and 2.2, it may be conjectured that there
exists a solution to the field problem, in which the field
quantities are continuously differentiable throughout each
subdomain D,, n = 1, ..., N, (and D™, if applicable), while
their limiting values on approaching the closed boundary
surface 9D, of each subdomain D,, via its interior, exist.
The relevant existence proof is hard to give and is beyond
the scope of the present paper.

2.4 Field equations

In any subdomain D,, n = 1, ..., N, of the configuration
and D=, the ficld quantities are to satisty the partial differ-
ential equations

—V&(r) = E(r) (1)
and

V- D(r) = p(r) (2)
The total electric field strength E consists of the already
specified (field-value independent) impressed part E™ =

—g51 P™ (active part) and a (field-value dependent)
induced part E™ (passive part), i.e.

E(r) = E™(r) — 5" PP (r) (3)

Here, &, is the permittivity of vacuum (g5 = g ¢y, where
iy = 4r x 107H/m is the permeability of a vacuum and ¢,
= 299792458m/s is the electromagnetic wave speed in a vac-
uum, both quantities dictated by SI [7]), while the minus
sign and the factor g5 are dictated by the conventions in
physics. Similarly, the total volume density of electric
charge p consists of a (field-value independent) impressed
part p™P (active part) and a (field-value dependent) induced
part p™ (passive part), i.c.

p(r) = pi™d(r) + o™ (r) (4)

2.5 Interface boundary conditions
Across the open, smooth parts of the interfaces where the
constitutive properties jump by finite amounts, the follow-
ing interface boundary conditions are to be satisfied:
® = continuous across the interface (5)
and
v+ D = continuous across the interface  (6)

where » is the unit vector along the normal to the interface.

2.6 Boundary conditions on electrodes
On the electrodes, the activating electric potentials have the
constant values

®=V,onS,, m=1,...,M (7)
while on S, (the reference electrode) the electric potential is
held at the value zero:

& =0o0n S (8)

2.7 Constitutive operators

For a large class of materials in use in electric and elec-
tronic devices, the electrostatic constitutive behaviour can
be described by operators that locally map D(r) to E™(r)
and ®(r) to p"(r). The relevant operators are the field con-
stitutive operator and the volume charge constitutive oper-
ator, respectively.

Field constitutive operator:

Mg(r) : D(r) = End(p) (9)
is defined for any r € D,, n, ..., N, and in D”. For the
generally anisotropic dielectric medium it is a Cartesian

IEE Proc.-Sci. Meas. Technol., Vol. 146, No. 4, July 1999



tensorial operator of rank two. For a medium with iso-
tropic dielectric behaviour, the tensorial operator My has
non-zero, identical, diagonal elements only, and D(r) and
E™(r) have the same direction in space. The mapping
Mg(r) is injective, in most cases of practical interest bijec-
tive. Physical models for Mg(r) are provided by, for exam-
ple, the Lorentz theory of electrons ([8], p. 642).

Volume charge constitutive operator:
Mp(r) : &(r) — p"(r) (10)

is defined for any » € D,, n = 1, ..., N, while in D* we
assume that o™ = 0. This operator is a scalar operator.
The mapping M,, is injective, in many cases of practical
interest bijective. A physical model for M, is provided by
the quantum-statistical theory of semiconductors. In the
relevant expressions for the local equilibrium number densi-
ties of the (negatively charged) electrons and (positively
charged) holes, the quantum mechanical Fermi potential is,
by an argument of an energetic nature, equated to the local
value of the electric potential of the energising electric field.
This procedure is justified by experimental data. Details of
the analysis are given in, for example, [9] (Section 7.2) or
[10]. Figs. 1 and 2 show the relevant functional relationship
for holes and electrons, respectively. Note that, in semicon-
ducting devices, one particular electrode always serves as
the reference electrode. This electrode is chosen to be the
one that ensures the desired electronic operation of the
device. In the interior of the semiconducting material, the
pertaining Fermi levels then adjust themselves to the elec-
tronic potential distribution generated by this operational
choice.

volume density
of induced electric charge ——

electric potential ——

Fig.1 Volume density of induced electric charge in a semiconductor as a
Sumction of electric potential (holes)

electric potential —>

>

electic charge

volume density
of induced

Fig.2 Volune density of induced electric charge in a semiconductor as a
Sunction of electric potential (electrons)

It is assumed that Mg(r) and M(r) are continuous in r in
the interior of each D,, n = 1, ..., N, and approach finite
limiting values at 8D, n = 1, ..., N, while E"() = g5 D(r)
and pd(y) = 0 for r € D™, Across interfaces between adja-
cent subdomains of D, My and M, may show a jump dis-
continuity.
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2.8 Compatibility relations
Eqn. 1 entails the compatibility relation

/andA:O (11)
s

for any piecewise smooth, closed surface S with unit vector
n = n(r) along its outward normal. Eqn. 11 follows from
eqn. 1 by integrating » x V@(r) over S and dividing S arbi-
trarily into two parts S" and S”, both of which are delim-
ited by the same, piecewise smooth, closed curve.
Subsequent application of Stokes’ circulation theorem to S’
and 8" shows that the two partial surface integrals cancel
each other.
Eqn. 2 entails the compatibility relation

/ n-DdA:/pdV (12)
o2 Q

for any bounded domain Q with piecewise smooth bound-
ary surface 9 and unit vector n = n(r) along the outward
normal. Eqn. 12 follows from eqn. 2 by the application of
Gauss’ divergence theorem.

As elucidated in the introduction, the compatibility rela-
tions are automatically satisfied by any exact solution to
the partial differential eqns. 1 and 2. In numerical (or other
nonexact) procedures they play, however, a role of impor-
tance on their own.

2.9 Field properties in exterior domain
Finally, the field properties in the exterior domain D* have
to be specified. Here, two possibilities arise:

(i) the case where proper electrical shielding or dielectric
packaging of a device prevents the leakage of the field into
its exterior, in which case the exterior field is negligibly
small (see Figs. 3 and 4)

Ll

substratum

package

Fig.4 Packaged electron device with negligible exterior field

(ii) the case where the exterior field is not negligibly small,
in which case the latter’s limiting behaviour as 1| — « in
D> has to be specified (see Fig. 5).
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volume distribution
of impressed
electric charge

pimp
> :l J substratum
package

electret

Fig.5  Packaged electron device with with non-negligible exterior field

Configurations with negligible exterior field. The analysis of
configurations with negligible exterior field is covered by
prescribing explicit boundary conditions on §D. Let 9D’ be
the part of 0D that takes care of the electrical shielding of
the device and let 9D” be the part of 4D that takes care of
its dielectric packaging. Then, the nonleakage of the field
into D is mathematically covered by the boundary condi-
tions

®(r) =0 for r € 9D’ (13)
and
n(r) - D(r) = 0 for r € D" (14)
where n is the unit vector along the outward normal to dD.
Configurations with non-negligible exterior field: If the previ-
ous case does not apply, the behaviour of the field as || —
o0 in D™ has to be prescribed. As is proven in the Appendix
(Section 7), the weakest a priori sufficient condition in this
respect is
®(r) =o(1) as |r| = oo,
uniformly in all directions in D™ (15)
which involves the Landau symbol o(l), (8], p. 1020),
meaning that |®()] — 0 as || —> . Because of the special

structure of the field in the (vacuum) domain D, entailed
by the equations

-V = E™ (16)
V-D=0 (17)

and
E™ =¢5'D (18)

where use was made of the fact that (cf. Eqn. 3) P™ = 0
and p = 0 in the (vacuum) domain D%, the condition in
egn. 15 entails the properties (see the Appendix)
&(r) = O(|r|™) as |r| = oo,
uniformly in all directions in D> (19)
and

D(r) = O(]r| %) as |r| = oo,
uniformly in all directions in D> (20)
which involves the Landau order symbol O, ([8], p. 1019).

3  Uniqueness theorem

For the field problem formulated in Section 2, the follow-
ing uniqueness theorem will be proven.

Theorem 1. For given values of the volume source quanti-
ties P™P(r) and p™P(r) and given values V,,, m = 1, .., M,
of the electric potential ® at the electrodes S, m=1, .., M
(together with ® = 0 at the reference electrode Sp), there
exists at most one electrostatic field with field quantities
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{®, D, p", E*d} in UX, D, (for the case of negligible
exterior field) or {UY, D,} U D> (for the case of non-neg-
ligible exterior field) provided that the constitutive operator
My entails at each point r € U}Y; D, the monotonicity
relation

[Ds(r) = Dy ()] - [ES(r) — B (7)] > 0

for any {DQ(T),Eignd(T)} # {Dl ("’)»Eifld(?)}
(21)

and the constitutive operator M, entails at each point r €
UN, D, where p"4(r) = 0 the monotom'city relation
[®2(r) — ®1(r)] [p5(r) — p(r)] <
for any {®a(r), prd(r)} # {<I>1 ), Pt (r)}

(22)
PIOOf The proof starts in the standard manner by assum-
ing that, for {UY,D,} U D* and corresponding to the
same set of prescribed excitation quantities, two non-identi-
cal fields {®(), Dy(), p™(), E™()} and {@yr), Do),
0,2(r), E,™()} exist. Then, by subtracting the relevant
eqns. 1 and 2 for the two fields, we obtain

—V(®y — &) = Eird — pird (23)
and

V(D3 — Dy) = ppd — pi (24)
Now, consider the expression that results on multiplying

eqn. 23 by D, — D; and eqn. 24 by @, — @, and subtract-
ing the results. This yields

~V - [(®2 — @1)(D, — Dy)]
= (D; - Dy) - (B - BY)
— (@2~ @1) (o5 — ™) (25)
For the difference field, the interface boundary conditions
®, — ®; = continuous across interfaces  (26)
and
v (D; — D3) = continuous across interfaces (27)

hold, while on the electrodes (including the reference one)
we have

@2-—@1:001’18771, m:O,...,M (28)
The further proof runs differently for the two cases of neg-

ligible and non-negligible exterior fields.
Configurations with negligible exterior field. For configura-
tions with negligible exterior field, the boundary conditions
®y(r) — ®1(r) =0 for r € 8D’ (29)

and

v.[Di(r) — Da(r)] =0forr € D"  (30)

apply (cf. eqns. 13 and 14). Then, integrating eqn. 25 over
D,, n=1, .., N, applying Gauss’ divergence theorem, add-
ing the results and using the interface boundary conditions,
egns. 26 and 27, the explicit boundary conditions eqn. 28
on the electrodes and eqns. 29 and 30 on the boundary
surface 9D, it follows that

N
WRCENCES
(@ =) (5 - A | av =0 (3)
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This relation leads to eqns. 21 and 22 as sufficient condi-
tions for uniqueness, since if eqns. 22 and 21 are satisfied,
the left-hand side of eqn. 31 would be positive unless

(Do), Dor), p™), B0} = {D1@), Di(r), o™ )
Elmd(l')} forallr € U,{\—l_—l Dll'

Configurations with non-negligible exterior field. To investi-
gate the conditions for uniqueness for the case of non-
negligible exterior fields, first eqn. 25 is integrated over D,
n =1, .., N, Gauss’ divergence theorem is applied, the
results are added and the interface boundary conditions
(eqns. 26 and 27) and the explicit boundary conditions
(eqn. 28) on the electrodes are used. This leads to

3 i .
;/Dn [(Dz —Dy)- (Egld _ Ellnd>
— (2 — ®) (p;nd _ pilnd)] qv

_ _/m)n (@5 — ®;)(D; — Dy)]dA

(32)
where n is the unit vector along the outward normal to dD.

In D, the electrostatic field equations in vacuum eqgns. 16—
18 hold and hence

V(@ — ) = (E;nd . Eil“d> (33)

and

(By? - EM) =" (D: = D1)  (35)

Multiplying eqn. 33 by D, — Dy and eqn. 34 by &, — @4,
subtracting the results and invoking eqn. 35 yields

=V - [(22 — @1)(D; — Dy)]
=¢e5(Dy — Dy) - (D2 — Dy) for all r € D™
(36)

Eqgn. 36 is integrated over the domain D, interior to the
sphere S, = {r' € R3% |r — ¢'| = A} and exterior to the
boundary surface dD. It is assumed that A is so large that
dD is entirely interior to S,. Next, Gauss® divergence theo-
rem is applied. The limiting behaviour stated in eqns. 19
and 20 ensures that

/S n [(Bs — 1)(Ds — D1)] dA
=0(A™ ) as A = o0 (37)

Hence, taking the limit A — o and using eqn. 35, it then
follows that

/ n - [(By — 1)(Ds — D1)]dA
oD

_ / (D2-Dy) - (B -EM) AV (39)

Addition of eqns. 32 and 38 and using the continuity of ®,
— ®, and n(D, — D) across 9D then yields

N . N
> [ [2- Dy (Bp - Ep?)
— (85 = 1) (o = pir?) | v

+/ eg (D2 — Dy) - (Dy — Dy1)dV =0
) (39)
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Now (D, — Dy) - (D, — Dy) > O for all r € D* and any D, =
D,. Hence, employing a similar argument as for the case of
negligible exterior fields, again eqns. 21 and 22 follow as
sufficient conditions for uniqueness, which concludes our
proof.

A final observation has to be made with regard to those
subdomains of D throughout which o = 0. Here, the
uniqueness condition eqn. 21 and the condition eqn. 31
lead to E, = Ej, and hence V®, = V®,, thoughout such a
domain, i.e. ®, and ®; may differ by a non-zero constant.
In this case, we have to invoke the continuity of the electric
potential throughout D and its vanishing at the surface of
the electrode Sy to arrive at the uniqueness of @.

Corollary with regard to the field constitutive operator: First,
it should be noted that the condition eqn. 21 holds for lin-
ear isotropic dielectrics with positive permittivity ([8], p.
618) and for linear anisotropic dielectrics with a symmetric,
positive definite tensorial permittivity ([§], p. 619) of rank
two.

For nonlinear isotropic dielectrics, a sufficient condition
for eqn. 21 to be satisfied is the monotonicity relation

|E5| 2 |B™| for | Do| 2 | Dy (40)
To show this, we observe that for isotropic media
(D2 — D1) - (B3 — BY)
= (ID:| = DI (1B — |ET™)) + | Dy || ES|
— D1 E3 + |Ds||EYY| — Dy - B
(41)

where we have used the properties that E,™ has the same
direction as D, and E;™ the same direction as D;. How-
ever, in view of the Cauchy-Schwarz inequality,

|D1||ES| > | Dy - B3| (42)
and
|D||EY| > | Dy - BY| (43)
which leads to
(D; - Dy) - (B3 - ET)
> (ID2| = ID1)(|ES| — [BT))  (44)

Hence, the condition in eqn. 40 implies eqn. 21. It should
be noted that the condition in eqn. 40 is, for example, satis-
fied by the field constitutive operator illustrated in Fig. 6a,
representing the relationship between |E;™| and |D| for an
isotropic, nonlinear dielectric whose material component to
the constitutive relation follows from the well known Lan-
gevin function, i.e. |5 D — E™| as a function of |E™| ([10],
pp. 558-539; see Fig. 6b). The latter is representative for
the orientation of a collection of permanent electric dipoles
under the influence of an external electric field as it follows
from the application of the laws of classical statistical
mechanics. Finally, it is mentioned that a condition similar
to the one stated in eqn. 21 has previously been used in
[11].

For nonlinear anisotropic dielectrics, no simpler suffi-
cient condition for eqn. 21 to be satisfied seems to exlst.

Corollary with regard to the volume charge constitutive oper-
ator: A sufficient condition for eqn. 22 to be satisfied is
here the monotonicity relation

o3| s 1] for |@2] 2 @4 (45)

It should be noted that the condition in eqn. 45 is stand-
ardly met in semiconducting electron devices for the vol-
ume densities of the electric charge of electrons and holes in

179




their dependence on the electric potential ([10], pp. 572—
573; [9], p. 89; see Figs. 1 and 2).

induced electric field strength >

electric flux density —

Langevin function —>

induced electric field strength  ——>
b

Fig.6 Induced electric field strength (magnitude) as a function of electric
Slux density (magnitude)

4 Conclusions

A set of sufficient conditions for the uniqueness properties
of the electrostatic field equations in a class of nonlinear
electric and electronic devices has been derived. The materi-
als show nonlinear electric and/or nonlinear semiconduct-
ing electronic properties. The conditions are of importance
in the realm of the computational modelling of the electro-
static field in nonlinear electric and electronic devices.
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7 Appendix: Field behaviour in exterior vacuum
domain

For the uniqueness proof pertaining to configurations
where the field in the exterior vacuum domain is non-negli-
gible, conditions for the behaviour of the electrostatic field
at infinity must be specified. To this end, the field is investi-
gated in the vacuum domain D% exterior to the closed sur-
face 0D. In D>, the equations

~-V® = E™ (46)
V-D=0 (47)
End =¢71'D (48)
hold. As a consequence, @ satisfies Laplace’s equation
V2% =0 for r € D™ (49)

Now, let r be a point of observation located in D®. By
applying Green’s third identity ([1], p. 167) to the bounded
domain exterior to D and interior to the sphere Sy = {r' €
R3 |r — #'| = A}, where A is taken so large that S, com-
pletely surrounds 9D, it is found that

/6D {G(r 7’

—[n(r') - V' G(r,r/)]@{)(r’)}dA(r’)

/ {G’(r P

—[n@)-V G(r,rf>]¢>(r'>}dA(r’)

(50)

where n is the unit vector along the outward normal to the
relevant surface, the notation V' indicates that the spatial

derivatives are taken with respect to the position vector »’,
and

(r') - V'&(r')]

) V'e(r')]

1
drlr — /|
is the Green function of Laplace’s equation (eqn. 49). Since

on S, we have |r — r'| = A, the integrals in the second term
on the right-hand side of eqn. 50 can be rewritten as

G(r,v") = for r # v/ (51)

; G(r,r)[n(r") - V'®(r")]dA(r")
1 A ! ! !
= I A n(r') - V'®(r")dA(r")
(52)
and

/S () - V'G(r, )& (' )dA(r)

-1 / 1
_ MLA B(r')dA()
(53)
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However,

/ n(r')-V'&(r)dA(r') = / n(r').-V'®(r')dA(r")
Sa oD
(54)
which follows on applying Gauss’ integral theorem to the
domain D, and using eqn. 49. Combining this with
eqn. 52, it follows that
/ Gl ) [n(r') - V'(r)|dAG) = O(A—)
s
B as A —» oo (55)

since the integral on the right-hand side of eqn. 54 is
bounded. Next, imposing the condition

d(r) = o(1) as |r| = o0,
uniformly in all directions in D> (56)

we have from eqn. 53

—/[n('r") V'G(r, )@ (r")dA(r') = 0(1) as A - 0

Sa
(57)

Hence, taking the limit A — oo, it follows from eqn. 50
that, subject to the condition eqn. 56, the electric potential
admits, in the entire domain exterior to 9D, the surface
source representation

w(r) == [ {Gtrnt)- 7o)

e LGE V’G(r,r')]@(r')}dﬁl(r')
for r € D> (58)
Using in this representation the asymptotic expansions
1
G(r,7") = W[l +O(Jr|™)] as |r| =
for r' € 0D (59)
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and
V'G(r,r") L+O(r|™")] as |r| = oo

for v’ € 8D (60)

_ L[
a 4r|r|?
it follows that

&(r) = O(Jr|™") as || = oo,

uniformly in all directions in D*° (61)

which is consistent with eqn. 56.
To obtain the asymptotic representation as || — o« for D
in the domain exterior to 9D, we observe that in this region

D = —gV® (62)
and, hence, from eqn. 58 it follows that

D(r) = &V {G(r,r')[n(r’) V()]

ap
—[n(r') - v'G(r,r')]@(r')}dA(r')
for r € D> (63)
Using in this representation the asymptotic expansions

VG(r,r') = r

_W[l +O(r™)] as |r| = o0

for v' € 0D (64)
and
Vin(") - V'G(r,r)
= ;T(l:])?, - 3[n4(77;'3'|-57']r [1+0(r[™)]

as |r| = oo for ' € 9D (65)

it follows that
D(r) = O(|r|?) as |r| = oo,
uniformly in all directions in D*° (66)

Eqns. 61 and 66 are used in the main text. Note that
eqn. 66 is compatible with a differentiation of eqn. 61, but
since termwise differentiation of an asymptotic expansion is
in general not permitted ([12], p. 17), eqn. 66 had to be
derived independently.

181




