Transient Diffusive Electromagnetic Field
Computation—A Structured Approach
Based on Reciprocity

Adrianus T. de Hoop

Summary. The reciprocity theorem for transient diffusive electromagnetic fields is
taken as the point of departure for developing computational methods to model such
fields. Mathematically, the theorem is representative of any weak formulation of the
field problem. Physically, the theorem describes the interaction between (a discretized
version of ) the actual field and a suitably chosen computational state. The choice of the
computational state determines which type of computational method results from the
analysis. It is shown that the finite-element method, the integral-equation method, and
the domain-integration method can be viewed as particular cases of discretization of the
reciprocity relation. The local field representations of the electric- and the magnetic-field
strengths in terms of edge-element expansion functions are worked out in some detail.

The emphasis is on time-domain methods. The relationship with complex frequency-
domain methods is indicated and used to symmetrize the basic field equations. This
symmetrization expresses the correspondence that exists between transient electro-
magnetic wavefields in lossless media and transient diffusive electromagnetic fields in
conductive media where the electric displacement-current contribution to the field can
be neglected in the time window of observation. This aspect is also of importance in
numerical modeling.

1 Introduction

The local, pointwise behavior in space-time of transient diffusive electromagnetic (EM)
fields is governed by a parabolic system of first-order partial differential equations
(Maxwell’s equations in the diffusive approximation) that represent the EM phenom-
ena on a local scale. When supplemented with boundary conditions that join the field
values on either side of the interfaces where the constitutive parameters jump by finite
amounts, and with the requirement of causality in the relationship between the field
and its generating sources, the problem has a unique solution. A number of properties
of this solution, in particular its analyticity and reciprocity properties, follow from this
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description. The computational handling of the field problem, however, often starts
from a weak formulation, where the pointwise, or strong,;, satisfaction of the equality
signs in the equations is replaced with requirements on the equality of certain inte-
grated, or weighted, versions of the differential equations. Such weighted versions can
be considered as special cases of the global reciprocity theorem that applies to two
different admissible field states that are defined in one and the same domain in con-
figuration space. Conceptually, a computational scheme to evaluate the field then is
taken to describe the interaction between (a discretized version of) the actual field state
and a suitably chosen computational state. The latter is representative of the method at
hand (e.g., finite-element method and its related method of weighted residuals, integral-
equation method, domain-integration method). Thus, choosing the reciprocity theorem
as the point of departure offers the road to a structured approach to constructing com-
putational schemes for evaluating the field. Besides, the standard source/receiver reci-
procity properties (which are also consequences of the reciprocity theorem) can serve
as a check on the consistency of the numerical results.

The emphasis is on time-domain methods. The relationship with complex frequency-
domain methods is indicated, in particular to symmetrize the diffusive EM field equa-
tions in such a manner that the correspondence between transient diffusive EM fields
in conductive media and EM wavefields in lossless media becomes manifest.

2 Diffusive EM field

The diffusive EM field under consideration is present in 3-D Euclidean space R°.
The distribution of matter in it is assumed to be time invariant and the materials are
assumed to be linear in their EM behavior. Position in the configuration is specified
by the coordinates {x1, x,, x3} with respect to an orthogonal, Cartesian reference frame
with the origin O and the three, mutually perpendicular base vectors {ij, iy, i3} of
unit length each. In the indicated order, the base vectors form a right-handed system.
The corresponding position vector is X = x1i; + x,i; + x3i3. The time coordinate is ¢.
The subscript notation for vectors and tensors is used and the summation convention
applies. Differentiation with respect to x,, is denoted by 9,,; 9, is a reserved symbol for
differentiation with respect to ¢.

The EM constitutive properties of the media in the configuration are character-
ized by their (electrical) conductivity oy , = oy (%) and their (magnetic) permeability
M j,p = Ij p(x). The constitutive parameters are taken to be positive definite, symmet-
ric tensors of rank two, thus allowing for anisotropy in the medium. The action of
the sources that generate the field is characterized by the volume density of (exter-
nal) electric current J; = Ji(X, ¢) and the volume density of (external) magnetic cur-
rent K; = K;(x, t). In each subdomain of the configuration where the constitutive co-
efficients vary continuously with position, the field quantities electric-field strength
E, = E,(x, t) and magnetic-field strength H, = H,(x, ) then satisfy the parabolic sys-
tem of partial differential equations (Ward and Hohmann, 1989)

_Ek,m,pame + O-k,rE‘r = —J, (1)
€j,n,ranEvr + Mj,path = “‘Kja (2)
where €, , is the completely antisymmetric unit tensor of rank three (Levi-Civita

tensor): €, = +1 if {k, m, p} is an even permutation of {1, 2, 3}, €, = —1
if {k,m, p} is an odd permutation of {1, 2,3}, €, = 0 in all other cases. The
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existence of solutions of these field equations requires satisfaction of the compatibility
relations

8k(0k,rEr) = _aka, (3)
aj(/Lj’path) = —ajKj. (4)

Across interfaces where o » and/or 1}, jump by finite amounts, the field quantities
are no longer continuously differentiable and the boundary conditions

€x,m,pVm H, = continuous, (5)

€;..rVn E, = continuous, (6)

should be satisfied. Here, v,, is the unit vector along the normal to the interface. If
the configuration extends to infinity, it is assumed that outside some bounded closed
surface 3Dy the medium is homogeneous and isotropic. In this domain, denoted by
Dy, the (scalar) conductivity has the value oy and the (scalar) permeability the value
to- Because the tensor Green’s functions for such a medium are analytically known,
analytic source-type integral representations for the field quantities in D, exist. The
latter play a role in the contrast source or scattering formulation of the field problem.

In the analysis, the fime convolution operator is needed. For any two space-time
functions F(x, t) and Q(x, ), this is defined as

Ci(F, O;x,t) = / Fx,thOx,t —t)dt' forteR. (7)
teR
It has the properties
Ct(Fs Q,X: t):Ct(Q5 F;X7 t)’ (8)
0 Ci(F, O;x,1) = C(0,F, O;x,t) = C(F, 3,0; X, ). )

For causal space-time functions F(x,?) and Q(x, ¢) having the semiinfinite interval
{t € R;t > 0} as their support, C,(F, Q;X, t) is causal as well, with the same support.

The relation between the time-domain quantities and their complex frequency-
domain counterparts is given by the time Laplace transformation, which for any space-
time function F (X, t) is

F(x, )= / exp(—st)F(x,t)dt for Re(s) = sy, (10)
teR

where so is some real value of s € C for which the integral on the right-hand side
is convergent. For causal, bounded, space‘time functions F(x, t) having the semi-
infinite interval {t € R;t > 0} as their support, F(x,s) is analytic in the right half
{s € C;Re(s) > 0} of the complex s-plane.

From Eqgs. (7) and (10), the Laplace transform C,(F, 0:;x,5) of C,(F, Q;X,1) is
found as

CAF, 0;%,5) = F(x,5)0(x, 5). (11)

Further, from Eq. (10) and a subsequent integration by parts, the Laplace transform
8, F(x,s) of 8, F(x, t) is

dF(x,5)=sE(x, ). (12)

With the aid of this latter rule, the complex frequency-doinain field equations are
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|
obtained from Egs. (1) and (2) and (10) and (12):
_’Ek,m,pamﬁp + C"k,rEA‘r = “jk’ (13)

6j,n,ranEAr +S,Uvj,pﬁp = “_Iej- (14)
The complex frequency-domain compatiblity relations are obtained from Egs. (3) and
(4) and (10) and (12):

wlon, B = o Jy, (15)
59;(u;pHp) = —8;K ;. (16)

The boundary conditions across interfaces in jumps of the constitutive coefficients are
obtained from Egs. (5) and (6) and (10) and (12):

A

€,m,pVm H , = continuous, (17

€;.n,rVn £, = continuous. (18)

3 Reciprocity theorem

In the reciprocity theorem that is named after H. A. Lorentz, a certain interaction
quantity is considered that is representative for the interaction between two admissible
solutions (states) of the field equations, where the latter are defined in one and the same
(proper or improper) subdomain D of R3. The domain D is assumed to be the union
of a finite number of subdomains in each of which the field quantities of the two states
are continuously differentiable. Furthermore, each of the two states applies to its own
medium and has its own volume source distributions. The two states are indicated by
the superscripts A and Z, respectively (Fig. 1). The relevant local interaction quantity is
E€m.r,pOm[C(EA, H?)—C(EZ, HI;“)] (de Hoop, 1987, 1995). Using the standard rules
for the spatial differentiation and employing the field equations of the type (1) and (2)
for the two states gives

em,r,pam[ct(Efa HpZ) - Ct(ErZa H;)]
= —"(Ur,zk - alér)cf (E:X’ EkZ) + (Mi,j o /“L?,p)afct (H;’ HJ'Z)
+ (I B) ~ C(kf, HP) ~ QIZ B + C(KEHD). (19

Equation (19) is the local form of the EM reciprocity theorem of the time-convolution
type. The first two terms on the right-hand side are representative of the differences
(contrasts) in the EM properties of the media in the two states; these terms vanish at

State A State Z
Field A Field Z
reciprocity
Medium A 1/ Medium Z
Sources A Sources Z

Figure 1. Two admissible states in reciprocity theorem.
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those positions where 0,5(x) = o, (x) and p?% .(x) = u? (). At points where these
latter conditions hold, the media are denoted as each other’s adjoints. The last four
terms on the right-hand side are representative of the action of the volume sources in
the two states; these terms vanish at those positions where the field is source-free.

To arrive at the global form of the reciprocity theorem for some bounded domain
D, it is assumed that D is the union of a finite number of subdomains in each of which
the terms in Eq. (19) are continuous. Upon integrating Eq. (19) over each of these
subdomains, applying Gauss’s integral theorem to the resulting left-hand sides, and
adding the results, it follows that

€m,r.p /i;D Vm[Ct(E;q, HPZ) - Ct(ErZ, H;)] dA(x)
B f [—(Ur’zk B U,:},)Ct(Ef, E;f) + (’LLIZ%J' - M?’p)afcf(H;’ HJ'Z)] dV(x)
D

+/ [C:(&*, BE) - C(K, HY) = C(J7, ER) + C (K7, HY)] dV (x).
D
(20)

Equation (20) is the global form, for the domain D, of the reciprocity theorem of the
time-convolution type. Note that in the process of adding the contributions from the
subdomains of D, the contributions from common interfaces have canceled in view
of the boundary conditions (5) and (6). In view of this, in the left-hand side only a
contribution from the outer boundary 3D of D remains.

The complex frequency-domain versions of the local and the global reciprocity theo-
rems follow from their time-domain counterparts by taking the time Laplace transform.
Applying the standard rules given in Section 2, the complex frequency-domain version
of the local reciprocity theorem follows from Eq. (19) as

oot EAR] — B IL2) = (o — o BAEE + 5(u, — it ) AR
+JAEE - RIA? - JPE! + K H?, 1)
and the complex frequency-domain version of the global reciprocity theorem from
Eqg. (20) as

+ fD(kaFf,f — K{A? — JPE! + K7 H}) dV(x). (22)

3.1 Limiting case of an unbounded domain

In quite a number of cases, the global reciprocity theorems are applied to an unbounded
domain. To handle such cases, the embedding provisions of Section 2 are made and
the theorem is applied first to the sphere S(O, A) with center at the origin O of the
chosen reference frame and radius A, after which the limit A — oo is taken. From
the source-type field integral representations pertaining to the homogeneous, isotropic
embedding, it then follows that the contribution from S(O, A) vanishes in the limit
A — 0.
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In the above procedure, the EM field equations pertaining to the two states have
been taken as the point of departure, and the reciprocity theorems have been derived
by operating on the equations in the manner indicated. In the realm of the use of the
reciprocity theorems as the basis of a structured approach to the computation of the
fields, note that, reversely, a necessary and sufficient condition for the global reciprocity
theorem for arbitrary EM states Z satisfying equations of types (1) and (2) and boundary
conditions of types (3) and (4) to hold is that the field in state A satisfies equations of
types (1) and (2) and boundary conditions of types (3) and (4) as well.

4 Embedding procedure and contrast-source formulations

On many occasions the EM field computation in an entire geophysical configuration
is beyond the capabilities because of the storage capacity and the computation times
involved. In that case, it is standard practice to select a target region of bounded support
in which a detailed computation is to be carried out, while the medium in the remaining
part of the configuration (the embedding) is taken to be so simple that the field in it
can be determined with the aid of analytical methods. Examples of such embeddings
in R? as the configuration space are the homogeneous isotropic embedding, and the
embedding consisting of a finite number of parallel homogeneous layers. In these cases,
combined time Laplace and spatial Fourier transform techniques provide the analytical
tools to determine the field or, in fact, construct the relevant Green’s tensors. Once the
embedding has been chosen, the problem of computing the field in the target region can
be formulated advantageously as a contrast-source or scattering problem (Hohmann,
1989).

To this end, first the incident field {E;, H,} is introduced as the field that would be
generated by the sources as if they were present in the embedding. Let the constitutive
parameters of the embedding be oy, = op,(x) and ub , = ub (x); then, the incident
field satisfies the basic field equations

_Ek,m,pamHli; + O']l)’rE,l: - "“Jky (23)
€jmrOnEy + 10,0 H, = —K;. (24)
Next, the scattered field {E}, H}} is defined as the difference between the total field

{E,, Hp,} and the incident field {E}, H}}. Hence, {E,, H,} = {E. + E}, H, + H3}. The
field equations for the scattered field can be written alternatively as

—€m,pOn Hy + 01, By = — (o, — 0y,) Ef, (25)

€jnrOnE} + 105 p 0 Hy = —(jujp — 115, ) 8. H, (26)
or as

—€mpOn Hy + 0p, By = —(on,r — 0,) Er, @27

€jmrOnEy + 15 8 Hy = —(wjp — 15 ) 0: Hp. (28)

In both systems, the right-hand sides only differ from zero in the domain where the
constitutive properties of the medium differ from those of the embedding. Further,
in none of them do the activating source distributions occur. This has the advantage
of a smoother behavior of the right-hand sides of the differential equations, a be-
havior that is due to the fact that the (incident) field variation is smoother in space
than its generating source distributions (Hohmann, 1989). Equations (25) and (26)
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are typically the point of departure for finite-difference or finite-element computations;
Eqgs. (27) and (28) are typically the point of departure for integral-equation computations
and for the construction of absorbing boundary conditions or Dirichlet-to-Neumann
maps.

The source-type integral representations for the incident and the scattered fields are
of the type

EX(x, 1) = / (GG & X, Tt &, ]+ GG ¥, ), K )] V),

29)

HY(x, 1) = / [ClGH &%, ), TP, 9] + C[GEF (x, %, ), K¥(x, )]} dV(x),
| (30)

where D' is the support of the volume-source densities

Je =i 31
K; = Kj, (32)
generating the incident field; D* is the support of the contrast volume-source densities
I = (o0, — 0p,) Ey, (33)
K$ = (ts.p — 15,,) 8 Hp, (34)

generating the scattered field; and Gr A Gf ]K, Gf 7 GH K are the electric-field/
electric-current, electric-field/magnetic-current, magnetic- ﬁeld/electric-current, mag-
netic-field/ magnetic-current Green’s tensors of the homogeneous isotropic embedding.

The complex frequency-domain versions of Egs. (23) and (34) are found from their
time-domain counterparts by replacing the operator d, with the multiplying factor s and

replacing the time convolutions with the product of their operands.

5 Computational procedures based on reciprocity

In the structured approach to the development of computational procedures based on
reciprocity, the first step consists of selecting, in the global reciprocity theorems derived
in Section 3, a finite number of linearly independent computational states for the state
Z. The relevant states are indicated by the superscript C and their number is taken to be
NC€. Next, state A is taken to be an approximation to the scattered field as introduced in
- Section 4, in the form of an expansion into a sequence of appropriate, linearly indepen-
dent, known expansion functions and provided with unknown expansion coefficients.
The relevant state is indicated by the superscript s and its field representation contains
N* terms. Based on the knowledge (see the end of Section 3) that for any number of
arbitrary computational states and with an appropriate expansion containing an infinite
number of terms for the scattered state, the application of the reciprocity theorem would
lead to the unique, exact solution of the field problem, it is now assumed that the pro-
cedure with a finite number of computational states and a finite number of terms in the
expansion of the scattered state leads to an approximate solution to the field problem. A
quantification of the resulting error can be decided only after having introduced an ap-
propriate error criterion. The latter is beyond the scope of the present analysis, which is
focused mainly on the construction of both the computational states and the appropriate
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Figure 2. Discretized domain of computation D with boundary surface 3D
and embedding DP.

expansion functions. From the beginning, it is clear that, for N¢ < N*, the system of
linear algebraic equations in the expansion coefficients is underdetermined and hence
cannot be solved, whereas, for N¢ = N*, the system of linear algebraic equations in
the expansion coefficients has, in principle, a unique solution, whereas for N¢ > N,
the system of linear algebraic equations in the expansion coefficients is overdetermined
and, hence, is amenable to a minimum norm solution in its residual.

The computations generally are carried out on a geometrically discretized version
of the configuration. To this end, first the target region or domain of computation D is
selected and discretized (Fig. 2). The boundary surface 3D of this domain is taken to be
located in the embedding DP. Its geometric shape is taken such that it can be handled
by a mesh generator. Typical cases are the discretization into a union of 3-rectangles
or 3-simplices (tetrahedra), all of which have vertices, edges, and faces in common
(Naber, 1980). The maximum diameter of the elements of the discretized geometry is
denoted as its mesh size. The mesh size to be chosen depends on the shape of D, as
well as on the spatial variations of the constitutive coefficients and the temporal and
spatial variations of the volume-source densities and the field values in D.

The mesh size is first adapted to the spatial variations of the known quantities
(constitutive coefficients and volume-source densities in forward problems, volume-
source densities and measured field values in inverse problems) and later iteratively
adapted to the quantities to be computed (field values in forward problems, constitutive
coefficients ininverse problems). Coupled to the mesh are, next, the spatial and temporal
representatlons of the discretized known quantities. Finally, the discretized versions of
the computational states and the unknown quantities are selected.

To illustrate the procedure, the forward field problem is discussed in more detail
below. Discussion of EM inverse-source and inverse-wave-scattering problems can be
found in de Hoop (1991).

It is assumed that the incident field has been determined already, for example, by
evaluation of the relevant source-type integral representations containing the known
Green’s tensors of the embedding (see Section 4). In the forward-field computation
problem, the constitutive coefficients and the volume-source distributions are given,
and the field values are to be computed. As far as the medium properties are concerned,
the analysis is concentrated on the case of strongly heterogeneous media where the con-
stitutive coefficients may, in principle, jump from each subdomain of the discretized
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mesh
size

interface

Figure 3. Interface (<&&) and simplicial mesh with multiple nodes (@) and simple
nodes (e).

geometry to any adjacent subdomain. The mesh size is assumed to be chosen so small
that piecewise linear expansions are accurate enough to locally represent the field val-
ues, the constitutive coefficients, and the volume-source densities. A consistent theory
then can be developed for a simplicial mesh consisting of 3-simplices (tetrahedra) all
of which have vertices, edges, and faces in common (Fig. 3).

Consider one of the tetrahedra, ¥ say, of the mesh and let {x,,,(0), %, (1), X(2), X (3)}
be the position vectors of its vertices. The ordering in the sequence defines the orienta-
tion of the tetrahedron. Further, let {A,,(0), 4,,(1), A (2), A,,(3)} denote the outwardly
oriented vectorial areas of the faces of X, where the ordinal number of a face is taken
to be the ordinal number of the vertex opposite to it. The position vector X in ¥ then
can be expressed in a symmetrical fashion in terms of the barycentric coordinates
{X(0, x), A(1, x), A(2, x), A(3, x)} through

3
X =) ML X)xu (D). (35)
1=0
Inversely, the barycentric coordinates can be expressed in terms of the position vector
via the relation
AL, x)=1/4—1/3V)(xm — b)An(l) for I =0,1,2,3, (36)

where V is the volume of X and
. .y
by =7 xu(l) (37)
41

is the position vector of its barycenter. The barycentric coordinates have the property
AMILx(]=6(I,J) forl=0,1,2,3; J=0,1,2,3, (38)

‘where 8§(1, J)is the Kronecker symbol: §({, /)= 1for / = J and §({, J)=0for I #£ J.

As Egs. (35) and (38) show, the barycentric coordinates perform a linear interpola-
tion, in the interior of X%, between the function value 1 at one of the vertices and the
function value O at the remaining vertices. Consequently, they can be used as the (lin-
ear) interpolation functions for any of the quantities occurring in the field computation.
As an example, the electric-field strength is considered. This quantity admits the local
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representation
3
E(x,t)=Y AFUI,t)Aal,x) forxeX, (39)
I1==0
where
AE(1,t) = E,[x(I),t] forI=0,1,2,3. (40)

From the local representations of type (39), the global representations for the domain of
computation are constructed. In this process, the values of the constitutive coefficients
and the volume-source densities in the interior of the tetrahedron T, and hence their
limiting values upon approaching (via the interior) the vertices of 3, have no relation
to the values of these quantities in any of the neighbors of Y. As a consequence, each
nodal point of the mesh is, for these quantities, initially considered as a multiple node,
with multiplicity equal to the number of vertices that meet at that point. Subsequently,
the multiple nodes are combined to simple nodes in all of those subdomains of the
domain of computation where the quantities are known to be continuous. However, for
the electric- and the magnetic-field strengths, the situation shows additional features.
Here, all components vary continously in space as long as the constitutive coefficients
do so (even if the volume-source densities vary only piecewise continuously in space),
but across a jump discontinuity in constitutive properties of the medium, the tangential
components of the field strengths are to be continuous, whereas their normal compo-
nents should remain free to jump. A representation that meets these requirements is
furnished by the edge-element representation (Mur and de Hoop, 1985). In this rep-
resentation, AZ(1, 1) = E,[x(I), t] is expressed in terms of its projections along the
edges that leave the vertex x(7). Rather than with these projections, we work with the
numbers

af(1, J,0) = E[x(I), tllx.(J) = x:(D] for1=0,1,2,3; J=0,1,2,3, 41)

withaZ(1, I, t) = 0. In view of the fact that, at the vertex x(I), the three vectorial edges
{x,(J)—x,(I); J 5 I} and the three vectorial faces {A,(K); K # I} form an (oblique)
system of reciprocal base vectors in R, the property

[Xm(J) ~ X (D] An(K) = —3VI[8(J, K) = §(1, K)]
for/ =0,1,2,3; 7=0,1,2,3; K =0,1,2,3 (42

holds. From Eqgs. (40)-(42) it follows that
13
— E —
E.[x(I),t] = ~3v JEsooz I, J,H)A,(J) forlI=0,1,2,3. (43)

Because a (!, I, t) = 0, we indeed have, through £q. (41), at each vertex three numbers
that, through Eq. (43), represent the expanded electric-field strength. By enforcing the
numbers along a particular edge to be the same for all tetrahedra that have this edge
in common, the continuity of the tangential components of E, across edges and faces
is guaranteed, and the normal components of E, across faces are left free to jump. A
similar piecewise spatial linear expansion is used for the magnetic-field strength H,.
The piecewise linear expansions discussed above are used in the context of the
different computational methods in existence. These are indicated briefly below.
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5.1 Finite-element method

The finite-element method is characterized by taking 0,5 =0 and 1§ ; = 0 and choosing
either

E ,f € {electric-field-strength expansion functions}, (44)
Hf =0, (45)
J¢ =0, (46)
KS = —€pnitnEy, (47)
or
ES =0, (48)
H J.C € {magnetic-field-strength expansion functions}, (49)
JE = € ;0nHE, | (50)
KE =0. | (51)

For this method, the choice of the field strengths typifies the computational state.

5.2 Integral-equation method

The integral-equation method is characterized by taking for the constitutive coefficients
the values of the embedding, i.e., a,?,c = 0p8,x and ,ug, ;= o8 p,; and choosing either

JrC € {electric-current volume-source expansion functions}, (52)
K =0, (53)
B0 = [ (CIGE X0 If Ve, (54)
’DJ
HEG = [ (GO K, I5 9]0V e, (55)
DJ
where D’ is the support of J€, or
J¢ =0, (56)
K If € {magnetic-current volume-source expansion functions}, (57)
ES(x, 1) = /D (CleEf e X, ), RS, )] ave), (58)
HEn = [ (GIOH G, REG, 9] aveo), (59

where DX is the support of Kg. For this method, the choice of the volume-source
distributions, located in the embedding, typifies the computational state.

5.3 Domain-integration method

The domain-integration method is characterized by taking 0,5, = 0 and u$ ; = 0 and
choosing either

Ef = global constant with support D, (60)
Hf =0, r (61)
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J¢ =0, (62)
. ;
KS =0, (63)
o ES =0, (64)
H{ = global constant with support D, (65)
J¢ =0, (66)
K; = 0. (67)

The value of the constant drops out from the final equations and the latter are equivalent
to replacing the field equations with their integrated counterparts over the elementary
subdomains of the domain of computation, applying Gauss’s integral theorem, and
adding the relevant results. |

6 Symmetrization of transient diffusive EM field equations

The basic field equations governing the transient diffusive EM field are not symmetric
in E, and H,, as opposed to their counterparts for transient EM wave propagation in
lossless media. Recently, a symmetrization procedure has been developed that shows
the interrelation between the transient diffusive EM-field constituents and their suitably
defined lossless-medium wavefield counterparts (de Hoop, 1995). The basic idea is to
rewrite the time-domain Laplace-transform Egs. (13) and (14) as

— €t m,pOnl(s/0) 2 H 1 + (@) [ o, 1 By = —(s/a) 2 Ty, (68)
6j,n,ranEA'r + (as)l/zlu“j,p[(s/a)l/zﬁp] - '_Kja (69)

where « is an arbitrary constant. Equations (70) and (71) resemble the time Laplace-
transform EM field equations for wavefields in a lossless medium with permittivity
a~'oy,,, permeability i ; ,, electric-field strength £, magnetic-field strength (s /a)/
H ,, volume-source density of electric current (s /a)/2.f;, and volume-source density
of magnetic current K, but with s replaced with (cs)/2. The Schouten-Van der Pol
theorem for the time Laplace transform [Schouten (1934), (1961); Van der Pol (1934),
(1960); see also Van der Pol and Bremmer (1950)] provides the tool to establish the
relevant interrelation, which for computational purposes can be used to construct, by
a simple time-like integration routine, transient diffusive EM field values from their
computed wavefield counterparts in a lossless medium once the latter have been deter-
mined with the aid of standard software for computing wavefields. Details are given by
de Hoop (1996). |

7 Conclusions

A structured approach, with reciprocity as the basic principle, has been developed to
construct schemes for the computation of transient diffusive EM-fields. It is shown that
the known algorithms concerning the finite-element, integral-equation, and domain-
integration techniques all can be viewed as particular choices for the computational
state with which the interaction of (the approximating expansion of) the actual field
to be computed is set equal to zero. It is believed that the approach also can lead to
additional types of algorithms.
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