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Abstract

Closed-form time-domain expressions are obtained for the particle displacement of the elastic wave motion gener-

ated by a two-dimensional SH-wave line source and reflected and transmitted by a planar, elastic bonding interface of

two homogeneous, isotropic, semi-infinite, perfectly elastic solids. The properties of the elastic bonding interface are

characterized by a matrix of Ôspring coefficientsÕ through which the traction on each of the two faces is linearly related to

the particle displacement of either of the two faces. The solution is constructed with the aid of (an extension of) the

modified Cagniard method. The obtained solution of the forward model is believed to be of importance to the inverse

problem that aims at reconstructing the elements of the matrix of Ôspring coefficientsÕ from measured values of the

reflected and/or the transmitted wavefield quantities at a number of positions.

Ó 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper the elastic-wave reflection and transmission properties of an elastic interfacial bonding of

two semi-infinite solids are investigated for the simplest possible case of a line-source excited two-dimen-

sional SH-wave. The interfacial bonding is considered to be of vanishing thickness, which implies that the

travel time of elastic waves to traverse it is negligible with respect to the pulse time width of the exciting

wave motion. As a consequence, in the direction normal to the plane of the bonding the interface acts as a
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linear, time-invariant, passive, instantaneously reacting, elastostatic system. The elastic properties of such a

system are expressed by a local linear relationship between the tractions at either side of the interface on the

one hand and the particle displacements at either side of the interface on the other hand. The coefficients

entering into this relationship form a matrix of Ôspring coefficientsÕ. From an elastodynamic point of view

such a boundary condition can be considered as a generalization of the linear-slip boundary condition that

models an imperfect fracture. The transient elastic wave reflection and transmission properties of such a

fracture have recently been investigated by Verweij and Chapman (1999). In their paper, references to other

literature on the use of linear-slip boundary conditions to describe the properties of fractures can be found.

The present boundary condition has also served to investigate the diffraction of a plane SH-wave by a

generalized linear-slip fracture of bounded extent in the Kirchhoff approximation (De Hoop, 2000).

Physical constraints on the Ôspring coefficientsÕ are that their values must satisfy the principle of reciprocity

and that their matrix must be positive definite.

The authorÕs modification of CagniardÕs method to solve transient wave propagation and diffraction

problems (De Hoop, 1958, 1960, 1988a,b; Achenbach, 1973; Miklowitz, 1978; Aki and Richards, 1980) (or

actually an extension of it that has also been employed by Verweij and Chapman (1999)) is used to obtain

analytic, closed-form expressions for the particle displacement of the generated SH-wave motion.

The characterization of an elastic interfacial bonding by a matrix of spring coefficient opens the pos-

sibility of applying inverse-scattering optimization methods to reconstruct the properties of the bonding

from observed reflected and transmitted wave data, expressed in terms of these coefficients. (For some

general aspects of procedures of this kind, see De Hoop and De Hoop, 2000.) The results of the present

study are therefore believed to be of importance in the quantitative non-destructive monitoring of inter-

facial bondings in mechanical structures.

2. Description of the configuration

The interfacial bonding under consideration joins two semi-infinite homogeneous, isotropic, perfectly

elastic solids with volume density of mass q and Lam�ee stiffness coefficients k and l. The corresponding SH-

wave speed is cS ¼ ðl=qÞ1=2. Position in the configuration is specified by the coordinates fx; y; zg with re-

spect to an orthogonal, Cartesian reference frame with the origin O and the three mutually perpendicular

base vectors fix; iy ; izg of unit length each. In the indicated order, the base vectors form a right-handed

system. The time coordinate is t. Partial differentiation is denoted by o. The interfacial bonding coincides

with the plane fz ¼ 0g. The configuration is shown in Fig. 1. The line source generating the SH-wave

motion is located at fx ¼ 0; z ¼ hg with h > 0. The particle displacement of the generated two-dimensional

wave motion is parallel to the y-axis.

Fig. 1. Reflection and transmission of a line-source excited SH-wave at an elastic interfacial bonding of two semi-infinite solids.
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3. Formulation of the problem

Let the area density of the exciting force be given by

f ¼ F ðtÞdðx; zÿ hÞiy ; ð1Þ

where F ðtÞ has the temporal support ft 2 R; tP 0g and dðx; zÿ hÞ is the two-dimensional Dirac distribution

operative at fx ¼ 0; z ¼ hg. The particle displacement uy ¼ uyðx; z; tÞ of the generated SH-wave motion then

satisfies the two-dimensional wave equation

ðo2x þ o
2
z ÿ cÿ2

S o
2
t Þuy ¼ ÿlÿ1

otF ðtÞdðx; zÿ hÞ for z 6¼ 0; ð2Þ

together with the initial conditions uyðx; z; tÞ ¼ 0 and otuyðx; z; tÞ ¼ 0 for t < 0. The total wave motion is

decomposed into the incident wave uiy ¼ uiyðx; z; tÞ with the spatial support R
2, the reflected wave ury ¼

uryðx; z; tÞ with the spatial support fz > 0g and the transmitted wave uty ¼ utyðx; z; tÞ with the spatial support

fz < 0g, according to

uy ¼ uiy þ ury for z > 0; ð3Þ

uy ¼ uty for z < 0: ð4Þ

The tractions si;r;tz;y ¼ si;r;tz;y ðx; z; tÞ normal to planes parallel to the plane of the interface associated with the

different wave constituents are related to their particle displacement counterparts via the stress/strain re-

lation

si;r;tz;y ¼ lozu
i;r;t
y for z 6¼ 0: ð5Þ

The boundary condition used to characterize the elastodynamic properties of the elastic interfacial

bonding are taken as

sz;yðx; 0þ; tÞ
ÿsz;yðx; 0ÿ; tÞ

� �

¼
C1;1 C1;2

C2;1 C2;2

� �

uyðx; 0þ; tÞ
uyðx; 0ÿ; tÞ

� �

; ð6Þ

where 0ÿ is a shorthand notation for limz"0 and 0þ is a shorthand notation for limz#0. The coefficients in

this relation can be considered as a kind of spring coefficients, which are quantitative representatives of the

properties of the bonding considered as a linear, time-invariant, passive, instantaneously reacting elasto-

static system. In view of the principle of reciprocity we have

C1;2 ¼ C2;1; ð7Þ

while the property of passivity leads to the conditions

C1;1 > 0; C2;2 > 0;
C1;1 C1;2

C2;1 C2;2

�

�

�

�

�

�

�

�

> 0: ð8Þ

The values C1;1 ¼ C1;2 ¼ C2;1 ¼ C2;2 ¼ 0 yield the case where, on both faces of the interface, the traction

vanishes, while the values C1;1 ¼ ÿC1;2 ¼ ÿC2;1 ¼ C2;2 yield the case considered by Verweij and Chapman

(1999) of the interface characterized by a linear-slip boundary condition.

4. Determination of the complex slowness-plane wave amplitudes

The problem will be solved with the aid of (an extension of) the modified Cagniard method. In this

method, first the Laplace transformation with respect to time is carried out. To show the notation, we give

the expression for the particle displacement
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ûuyðx; z; sÞ ¼

Z 1

t¼0

expðÿstÞuyðx; z; tÞdt: ð9Þ

For the physically interesting case of bounded time signatures of the exciting force, the right-hand side of

Eq. (9) exists in the right half fs 2 C;ReðsÞ > 0g of the complex s-plane, where it is a regular, analytic

function of the complex frequency s. LerchÕs theorem of the one-sided Laplace transformation (Widder,

1946) states that a causal time function belonging to a class of functions that encompasses the one we have

specified, is in a one-to-one manner related to its Laplace transform at the equidistant set of points

fs 2 R; s ¼ s0 þ nh; s0 > 0; h > 0; n ¼ 0; 1; 2; . . .g on the positive real s-axis. With this property in mind,

the Laplace transform parameter s will, once and for all in our analysis, be restricted to real, positive

values.

Next, to account for the interfacial boundary conditions, we introduce the complex-slowness repre-

sentations

ûuiyðx; z; sÞ ¼
sF̂F ðsÞ

2pi

Z i1

p¼ÿi1

1

2lcSðpÞ
expfÿs½pxþ cSðpÞjzÿ hj�gdp for all z; ð10Þ

which follows from Eq. (2), together with

ûuryðx; z; sÞ ¼
sF̂F ðsÞ

2pi

Z i1

p¼ÿi1

Rðp; sÞ

2lcSðpÞ
expfÿs½pxþ cSðpÞðhþ zÞ�gdp for z > 0: ð11Þ

ûutyðx; z; sÞ ¼
sF̂F ðsÞ

2pi

Z i1

p¼ÿi1

T ðp; sÞ

2lcSðpÞ
expfÿs½pxþ cSðpÞðhÿ zÞ�gdp for z < 0: ð12Þ

Here, i is the imaginary unit and

cS ¼ ðcÿ2
S ÿ p2Þ

1=2
with ReðcSÞP 0 for all p 2 C: ð13Þ

The corresponding representations for the traction normal to the planes parallel to the plane of the

interface follow from Eqs. (5), (10)–(12) as

ŝsiz;yðx; z; sÞ ¼ ÿ
s2F̂F ðsÞ

4pi
signðzÿ hÞ

Z i1

p¼ÿi1

expfÿs½pxþ cSðpÞjzÿ hj�gdp for all z; ð14Þ

ŝsrz;yðx; z; sÞ ¼ ÿ
s2F̂F ðsÞ

4pi

Z i1

p¼ÿi1

Rðp; sÞ expfÿs½pxþ cSðpÞðzþ hÞ�gdp for z > 0; ð15Þ

ŝstz;yðx; z; sÞ ¼
s2F̂F ðsÞ

4pi

Z i1

p¼ÿi1

T ðp; sÞ expfÿs½pxþ cSðpÞðhÿ zÞ�gdp for z < 0: ð16Þ

The complex slowness-plane reflection coefficient R ¼ Rðp; sÞ and the complex slowness-plane trans-

mission coefficient T ¼ T ðp; sÞ remain to be determined from the boundary conditions in the plane fz ¼ 0g
of the bonding. Substitution of the representations (10)–(16) into Eq. (6) leads to

slcSðpÞ½1ÿ Rðp; sÞ� ¼ C1;1½1þ Rðp; sÞ� þ C1;2T ðp; sÞ; ð17Þ

ÿslcSðpÞT ðp; sÞ ¼ C2;1½1þ Rðp; sÞ� þ C2;2T ðp; sÞ; ð18Þ

from which we obtain

Rðp; sÞ ¼ 1ÿ
2½lscSðpÞC1;1 þ DC�

Dðp; sÞ
; ð19Þ
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T ðp; sÞ ¼ ÿ
2lscSðpÞC2;1

Dðp; sÞ
; ð20Þ

with

Dðp; sÞ ¼ ½lscSðpÞ þ C1;1�½lscSðpÞ þ C2;2� ÿ C1;2C2;1 ð21Þ

and

DC ¼ C1;1C2;2 ÿ C1;2C2;1: ð22Þ

For cSðpÞ ¼ 0, i.e. for p ¼ �cÿ1
S , we obtain Rðp; sÞ ¼ ÿ1 and T ðp0; sÞ ¼ 0. For cSðpÞ 6¼ 0, i.e. for p 6¼ �cÿ1

S ,

we rewrite the right-hand sides of Eqs. (19) and (20) as their partial-fraction decompositions. To this end,

Eq. (21) is rewritten as

Dðp; sÞ ¼ ½lcSðpÞ�
2
½sþ a1ðpÞ�½sþ a2ðpÞ�; ð23Þ

with

a1ðpÞ ¼
1

lcSðpÞ

C1;1 þ C2;2

2

8

<

:

ÿ
C1;1 þ C2;2

2

� �2
"

ÿ DC

#1=2
9

=

;

; ð24Þ

a2ðpÞ ¼
1

lcSðpÞ

C1;1 þ C2;2

2

8

<

:

þ
C1;1 þ C2;2

2

� �2
"

ÿ DC

#1=2
9

=

;

: ð25Þ

It is easily verified that, in view of the conditions laid upon the interfacial spring coefficients, the ex-

pressions in braces in both a1 and a2 are real-valued. For the reflection coefficient the partial-fraction

decomposition leads to

Rðp; sÞ ¼ 1ÿ
R1ðpÞ

sþ a1ðpÞ
ÿ

R2ðpÞ

sþ a2ðpÞ
; ð26Þ

with

R1ðpÞ ¼
2½ÿlcSðpÞa1ðpÞC1;1 þ DC�

½lcSðpÞ�
2½a2ðpÞ ÿ a1ðpÞ�

ð27Þ

and

R2ðpÞ ¼
2½lcSðpÞa2ðpÞC1;1 ÿ DC�

½lcSðpÞ�
2½a2ðpÞ ÿ a1ðpÞ�

; ð28Þ

and for the transmission coefficient to

T ðp; sÞ ¼
T1ðpÞ

sþ a1ðpÞ
ÿ

T2ðpÞ

sþ a2ðpÞ
; ð29Þ

with

T1ðpÞ ¼
2a1ðpÞC2;1

lcSðpÞ½a2ðpÞ ÿ a1ðpÞ�
ð30Þ

and

T2ðpÞ ¼
2a2ðpÞC2;1

lcSðpÞ½a2ðpÞ ÿ a1ðpÞ�
: ð31Þ
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These results will be used to construct the time-domain expressions for the particle displacements of the

reflected and transmitted waves.

5. Transformation back to the time domain

In this section, the Laplace transformed reflected and transmitted wave particle displacements will be

transformed back to the time domain through the application of (an extension of) the modified Cagniard

method. The starting points are the representations (10)–(12), in which for the complex slowness do-

main reflected- and transmitted-wave amplitudes Rðp; sÞ and T ðp; sÞ the expressions (26) and (29) are

substituted.

The first step consists of replacing the original path of integration in the complex p-plane (the imaginary

axis) by a path along which the exponential functions in the integrands take the form expðÿssÞ, where s is a
real variable of integration. Once this has been accomplished (for details, see Appendix A), the application

of LerchÕs theorem in conjunction with some standard rules of the one-sided Laplace transformation suffice

to construct the final time-domain expressions for the particle displacement. Elements in this procedure are

the convolution theorem and the inverse Laplace Transforms

InverseLaplaceTransform ½expðÿssÞ� ¼ dðt ÿ sÞ ð32Þ

InverseLaplaceTransform
expðÿssÞ

sþ bðsÞ

� �

¼ exp½ÿbðsÞðt ÿ sÞ�Hðt ÿ sÞ; ð33Þ

where HðtÞ is the Heaviside unit step function. The different wave constituents are discussed separately

below.

5.1. Incident wave

Using Eq. (A.9) in Eq. (10), the time-domain expressions for the incident wave is obtained as

uiðx; z; tÞ ¼
otF ðtÞ

l
�
ðtÞ
Giðx; z; tÞ for all z; ð34Þ

in which �
ðtÞ

denotes time convolution and

Giðx; z; tÞ ¼
1

2p t2 ÿ T i2

S

� �1=2
Hðt ÿ T i

SÞ; ð35Þ

with

T i
S ¼ ½x2 þ ðzÿ hÞ

2
�
1=2

ð36Þ

as the SH-wave travel time from the location of the source to the point of observation, is the well-known

GreenÕs function of the two-dimensional scalar wave equation.

5.2. Reflected wave

Using Eq. (A.9) in Eqs. (11) and (26), the time-domain expression for the reflected wave is obtained as

urðx; z; tÞ ¼
otF ðtÞ

l
�
ðtÞ
Grðx; z; tÞ for z > 0; ð37Þ
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in which

Grðx; z; tÞ ¼

Z t

s¼T r
S

Re dðt
�

"

ÿ sÞ ÿ R1ðp
r
SÞ exp½ ÿ a1ðp

r
SÞðt ÿ sÞ� ÿ R2ðp

r
SÞ

� exp½ ÿ a2ðp
r
SÞðt ÿ sÞ�

	 1

2p s2 ÿ T r2
Sð Þ

1=2
ds

#

Hðt ÿ T r
SÞ; ð38Þ

with

prS ¼
xs

rr2
þ i

zþ h

rr2
s2

�

ÿ
rr2

c2S

�1=2

; ð39Þ

rr ¼ ½x2 þ ðzþ hÞ
2
�
1=2

; ð40Þ

and

T r
S ¼ rr=cS ð41Þ

as the SH-wave travel time from the image of the location of the source in the interface to the point of

observation in the half-space fz > 0g.

5.3. Transmitted wave

Using Eq. (A.9) in Eqs. (12) and (29), the time-domain expression for the transmitted wave is obtained as

utðx; z; tÞ ¼
otF ðtÞ

l
�
ðtÞ
Gtðx; z; tÞ for z < 0; ð42Þ

in which

Gtðx; z; tÞ ¼

Z t

s¼T t
S

Re T1ðp
t
SÞ exp½

�

"

ÿ a1ðp
t
SÞðt ÿ sÞ� ÿ T2ðp

t
SÞ exp½ ÿ a2ðp

t
SÞðt ÿ sÞ�

	 1

2pðs2 ÿ T t2
S Þ

1=2
ds

#

� Hðt ÿ T t
SÞ; ð43Þ

with

ptS ¼
xs

rt2
þ i

hþ jzj

rt2
s2

�

ÿ
rt2

c2S

�1=2

; ð44Þ

rt ¼
h

x2 þ ðhþ jzjÞ
2
i1=2

; ð45Þ

and

T t
S ¼ rt=cS ð46Þ

as the SH-wave travel time from the location of the source in the half-space fz > 0g to the point of ob-

servation in the half-space fz < 0g.

6. Discussion of the results

The expressions for the incident, reflected and transmitted particle displacement constituents of the

generated SH-wave motion obtained in Section 5 are of the closed-form, analytic type. In them, the con-

volution integral with the source signature F ¼ F ðtÞ and the integrations with respect to s in the expressions
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for the GreenÕs functions Gr and Gt need be evaluated numerically. The physical behavior of the interfacial

bonding manisfests itself via the expressions for a1, a2, R1, R2, T1 and T2 obtained in Section 4. To illus-

trate the kind of transient behavior that can be expected, the case of a symmetrically behaving bonding,

for which C1;1 ¼ C2;2, is further investigated. Let for this case C1;1 ¼ C2;2 ¼ C1 > 0 and let further C1;2 ¼
C2;1 ¼ C2, with, in view of the condition of passivity, jC2j < C1. Then,

a1 ¼
C1 ÿ jC2j

lcSðpÞ
; ð47Þ

a2 ¼
C1 þ jC2j

lcSðpÞ
; ð48Þ

R1 ¼
C1 ÿ jC2j

lcSðpÞ
; ð49Þ

R2 ¼
C1 þ jC2j

lcSðpÞ
; ð50Þ

T1 ¼ signðC2Þ
C1 ÿ jC2j

lcSðpÞ
; ð51Þ

T2 ¼ signðC2Þ
C1 þ jC2j

lcSðpÞ
: ð52Þ

In the following some numerical results are presented for an exciting force having the unipolar time

signature

F ðtÞ ¼ F0ðt=trÞ expðÿt=tr þ 1ÞHðtÞ; ð53Þ

where F0 is the amplitude (maximum value) of the force, tr is the pulse rise time (defined through F ðtrÞ ¼ F0)

and HðtÞ is the Heaviside unit step function. The pulse time width associated with (53) (defined through
R1

t¼0
F ðtÞdt ¼ F0tw) is tw ¼ tr expð1Þ. Fig. 2 shows this force source signature for F0 ¼ 1 N and tr ¼ 10 ls. The

line source is located at x ¼ 0, z ¼ h ¼ 10 mm and is present in a medium with shear modulus l ¼ 2� 1011

Pa and S wave speed cS ¼ 2� 103 m/s. The Ôspring coefficientsÕ characterizing the bonding have been chosen

as C1 ¼ ÿC2 ¼ 2� 1011 N/m. These values have some relationship to a much stiffer bonding material than

the adjacent material and a thickness in the order of 1 mm under the quasi-static assumption of a linearly

Fig. 2. Exciting force source signature (F0 ¼ 1 N, tr ¼ 10 ls).
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varying shear stress across the bonding. The incident and reflected waves are computed at x ¼ 0, z ¼ 0:2 m.

Fig. 3 shows the incident-wave GreenÕs function, Fig. 4 gives the reflected-wave GreenÕs function. Figs. 5

and 6 show the corresponding total wave fields. The transmitted wave is computed at x ¼ 0, z ¼ ÿ0:10 m.

Fig. 7 shows the transmitted-wave GreenÕs function, Fig. 8 the corresponding total wavefield.

Fig. 3. Incident-wave GreenÕs function at x ¼ 0 m, z ¼ 20 mm.

Fig. 4. Reflected-wave GreenÕs function at x ¼ 0 m, z ¼ 20 mm.

Fig. 5. Incident wave at x ¼ 0 m, z ¼ 20 mm.
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7. Conclusion

Closed-form time-domain expressions have been obtained for the particle displacement of the elastic

wave motion generated by a two-dimensional SH-wave line source and reflected and transmitted by a

planar, elastic bonding interface of two homogeneous, isotropic, semi-infinite, perfectly elastic solids. The

properties of the elastic bonding interface are characterized by a matrix of Ôspring coefficientsÕ through

which the traction on each of the two faces is linearly related to the particle displacement of either of the

Fig. 6. Reflected wave at x ¼ 0 m, z ¼ 20 mm.

Fig. 7. Transmitted-wave GreenÕs function at x ¼ 0 m, z ¼ ÿ10 mm.

Fig. 8. Transmitted wave at x ¼ 0 m, z ¼ ÿ10 mm.
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two faces. The solution has been constructed with the aid of (an extension of) the modified Cagniard

method. The obtained solution of the forward model is believed to be of importance to the inverse problem

that aims at reconstructing the elements of the matrix of Ôspring coefficientsÕ from measured values of the

reflected and/or the transmitted wavefield quantities at a number of positions. To generate the numerical

results certain plausable values of the Ôspring coefficientsÕ of the bonding have been used. What these values

turn out to be for bonding surfaces met in practice needs further investigation.
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Appendix A. The modified Cagniard path and its properties

In this appendix the steps related to replacing the integration along the imaginary axis in the complex

slowness plane by one along the modified Cagniard path will be briefly reviewed. The generic form of the

relevant complex slowness representation is taken as

ŵwðx; z; sÞ ¼
1

2pi

Z i1

p¼ÿi1

Aðp; sÞ

2cSðpÞ
expfÿs½pxþ cSðpÞH �gdp; ðA:1Þ

where A ¼ Aðp; sÞ is some amplitude function of p and s that is analytic in the entire complex p-plane cut

along the branch cuts associated with cS ¼ cSðpÞ, with branch points at p ¼ �cÿ1
S , and of order Oð1Þ or

lower as jpj ! 1. Note that the expressions (26) for Rðp; sÞ and (29) for T ðp; sÞ satisfy these conditions.

Furthermore, H > 0 is some propagation path in the direction normal to the interface.

As stipulated in Section 5, the principal step consists of replacing the original path of integration in the

complex p-plane (the imaginary axis) by a path along which the exponential function in the integrands takes

the form expðÿssÞ, where s is a real variable of integration. In the present case, the modified path of in-

tegration is then defined through

pxþ cSðpÞH ¼ s; ðA:2Þ

in which s is a real, positive parameter. From Eq. (A.2) it follows that the required modified path is given by

fp ¼ pSðx;H ; sÞg [ fp ¼ p�Sðx;H ; sÞg, where

pS ¼
xs

r2
þ i

H

r2
s2

�

ÿ
r2

c2S

�1=2

for r=cS6 s < 1; ðA:3Þ

with

r ¼ ðx2 þ H 2Þ1=2 ðA:4Þ

as the distance from the point with coordinates f0; 0g to the point with coordinates fx;Hg and where �

denotes complex conjugate. Eq. (A.3) represents a hyperbolic arc in the upper half of the complex p-plane

that intersects the real p-axis at the point p ¼ ðx=rÞcÿ1
S at the parameter value s ¼ TS, with

TS ¼ r=cS ðA:5Þ

as the SH-wave travel time over the distance r. The relevant point of intersection lies always in the interval

ÿcÿ1
S 6 p6 cÿ1

S (Fig. 9).
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The integral on the right-hand side of Eq. (A.1) is now replaced by the corresponding one along the

modified Cagniard path fp ¼ pSðx;H ; sÞg [ fp ¼ p�Sðx;H ; sÞg and thereby retains its value in view of the

regularity of the integrand in between this path and the original path of integration and the integrandÕs

behavior at infinity. On account of this, CauchyÕs theorem holds and JordanÕs lemma applies to the con-

necting circular arcs at infinity. Along the path, the contributions from p ¼ pSðx; z; sÞ and p ¼ p�Sðx; z; sÞ are
taken together under the application of SchwarzÕs reflection principle of complex function theory and s is

introduced as the variable of integration. The Jacobian of the change in variable of integration follows from

Eq. (A.3) as

opS

os
¼

iHs

r2
s2

�

ÿ
r2

c2S

�ÿ1=2

þ
x

r2
; ðA:6Þ

which, with

cSðpSÞ ¼
Hs

r2
ÿ i

x

r2
s2

�

ÿ
r2

c2S

�1=2

; ðA:7Þ

can be rewritten as

opS

os
¼

icSðpSÞ

ðs2 ÿ r2=c2SÞ
1=2

: ðA:8Þ

Under these operations, Eq. (A.1) is replaced by

ŵwðx; z; sÞ ¼

Z 1

s¼TS

expðÿssÞ
Re½AðpS; sÞ�

2pðs2 ÿ T 2
S Þ

1=2
ds: ðA:9Þ

These results are used in the main text.

Fig. 9. Modified Cagniard path, with asymptote, in the complex slowness plane at equidistant values of s.

5390 A.T. de Hoop / International Journal of Solids and Structures 39 (2002) 5379–5391



References

Achenbach, J.D., 1973. In: Wave Propagation in Elastic Solids. North-Holland Publishing Company, Amsterdam, pp. 298–310.

Aki, R., Richards, P.G., 1980. In: Quantitative Seismology. Freeman and Company, San Francisco, pp. 224–253.

De Hoop, A.T., 1958. Representation theorems for the displacement in an elastic solid and their application to elastodynamic

diffraction theory. Ph.D. thesis, Delft University of Technology, Delft, the Netherlands, p. 85.

De Hoop, A.T., 1960. A modification of CagniardÕs method for solving seismic pulse problems. Applied Scientific Research B 8,

349–356.

De Hoop, A.T., 1988a. Large-offset approximations in the modified Cagniard method for computing synthetic seismograms.

Geophysical Prospecting 36, 465–477.

De Hoop, A.T., 1988b. Acoustic radiation from impulsive sources in a layered fluid. Nieuw Archief voor Wiskunde 6 (4), 111–129

(In English).

De Hoop, A.T., 2000. Transient two-dimensional Kirchhoff diffraction of a plane elastic SH-wave by a generalized linear-slip fracture.

Geophysical Journal International 143, 319–327.

De Hoop, M.V., De Hoop, A.T., 2000. Wave-field reciprocity and optimization in remote sensing. Proceedings of the Royal Society of

London (A) 456, 641–682.

Miklowitz, J., 1978. In: The Theory of Elastic Waves and Waveguides. North-Holland Publishing Company, Amsterdam, pp. 302–

314, 351–360.

Verweij, M.D., Chapman, C.H., 1999. Transmission and reflection of transient elastodynamic waves at a linear slip interface. The

Journal of the Acoustical Society of America, Pt. 1 101 (5), 2473–2484.

Widder, D.V., 1946. In: The Laplace Transform. Princeton University Press, pp. 63–65.

A.T. de Hoop / International Journal of Solids and Structures 39 (2002) 5379–5391 5391


