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Abstract

A uniqueness theorem for the initial-/boundary-
value problem arising in the (analytic or compu-
tational) modeling of electromagnetic wavefields in
arbitrarily dispersive and anisotropic media is pre-
sented. It is known that for media where the disper-
sion takes place via electrically conductive and/or
linear magnetic hysteresis losses only, a uniqueness
theorem for the initial-/boundary-value problem can
be constructed by using direct time-domain argu-
ments in the pertaining energy balance (Poynting’s
theorem). The case of arbitrary dispersion in the
medium’s electric and magnetic behavior, however,
withstands such an approach. Here, as an interme-
diate step, the one-to-one correspondence between
the causal time-domain field components and mate-
rial response functions in the constitutive relations
on the one hand and their time Laplace transforms
for (a set of) real, positive values of the transform pa-
rameter on the other hand, seems a necessary tool.
It is shown that this approach leads to simple, ex-
plicit, sufficiency conditions on the relaxation ten-
sors describing the medium’s electric and magnetic
behavior, in which the property of causality proves
to play an essential role.

1. Introduction

One of the issues one is confronted with in the math-
ematical modeling — be it with analytical or numeri-
cal techniques — of electromagnetic wave phenomena
is the question about the uniqueness of the solution
to the problem as it is formulated mathematically.
Evidently, such a uniqueness should be expected on
account of the underlying physics. When investigat-
ing wave propagation and scattering problems one

expects the pertaining partial differential equations,
constitutive relations, boundary conditions at inter-
faces, excitation conditions at exciting sources, ini-
tial values at the time window one considers and the
causal relationship that is to exist between the ex-
citing sources and the generated wavefield to play
a role. For simple media with instantaneous rela-
tions between the intensive quantities (that carry the
power flow in the wavefield) and the extensive quan-
tities (that carry the momentum of the wavefield),
i.e., for lossless media, the time-domain power bal-
ance provides a tool to prove uniqueness. This is also
the case when simple loss mechanisms (such as elec-
trically conductive and/or linear magnetic hystere-
sis losses) are incorporated. A uniqueness proof for
the case of arbitrary relaxation effects in the media
seems to withstand such a direct time-domain ap-
proach. Since for the class of linear, time-invariant,
causally reacting media the constitutive relations are
expressed via time convolutions, it can be expected
that the time Laplace transformation (under which
transformation the convolution operation transforms
into a simple product of the constituents) might pro-
vide a useful tool. This approach is followed in the
present paper and applied to the general class of lin-
ear, time-invariant, causal, locally reacting, inhomo-
geneous, anisotropic media. For this class of media,
sufficient conditions for the uniqueness of the elec-
tromagnetic wavefield problem are specified for the
electric and magnetic relaxation tensors in the time
Laplace transform domain at real, postitive values of
the transform parameter. In the procedure, Lerch’s
theorem of the one-sided (= causal) Laplace trans-
formation plays an essential role.
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2. Description of the configuration

The configuration for which the uniqueness of the
electromagnetic wavefield problem will be proved
consists of a linear, time-invariant, locally reacting,
inhomogeneous, anisotropic medium with arbitrary
electric and magnetic relaxation properties and of
bounded support D C R3. This part of the con-
figuration is embedded in a linear, time-invariant,
locally reacting, homogeneous, isotropic, instanta-
neously reacting medium with permittivity e, and
permeability teo. The unbounded domain occupied
by the embedding is denoted as D*°. The common
boundary of D and D> is the bounded closed surface
0D (Figure 1). The constitutive relaxation functions
in D vary piecewise continuously with position with
finite jump discontinuities at a finite number of piece-
wise smooth, bounded surfaces (interfaces). Position
in the configuration is specified by the coordinates
{x1, %2, 23} with respect to an orthogonal Cartesian
reference frame with the origin @ and the three mu-
tually perpendicular base vectors {41, ¢, %3} of unit
length each. In the indicated order, the base vectors
form a right-handed system. The subscript notation
for Cartesian vectors and tensors is used and the
summation convention for repeated subscripts ap-
plies. Whenever appropriate, vectors are indicated
by boldface symbols, with @ as the position vector.
The time coordinate is ¢. Partial differentiation with
respect to T, will be denoted by d,,; 0 is a reserved
symbol indicating partial differentiation with respect
to t. Volume source distributions of electric polariza-
tion and/or magnetization, with bounded supports,
excite a transient electromagnetic field in the config-
uration. They start to act at the instant ¢ = 0. The
field that is causally related to the action of these
sources then vanishes throughout space for t < 0.

3. Formulation of the EM wavefield
problem

At any point in the configuration where the electro-
magnetic field quantities are differentiable they sat-
isfy the Maxwell field equations [1, p. 611]

Ek,m,pame - 0Dy =0, (1)
€jmqOnBq +0:B; = 0, (2)

where

E, = electric field strength (V/m),
H, = magnetic field strength (A/m),
Dy = electric flux density (C/m?),
B; = magnetic flux density (T),

and €gm,p is the completely antisymmetrical unit
tensor of rank three: €y, = 1 for {k,m,p} = even
permutation of {1,2,3}, €xm,p = —1 for {k,m,p} =
odd permutation of {1,2,3}, €4 m,p = 0 in all other
cases.
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Figure 1: Configuration with inhomogeneous,
anisotropic, dispersive medium (with bounded sup-
port D) embedded in a homogeneous, isotropic,
non-dispersive medium (with unbounded support
D).

The constitutive relations are:

t
Di(@,t) = Po(@, t) + enqla,t) © Eyle,t)
for x € D, (3)

1t
By(m,t) = My(@,t) + i, t) % Hy(z, )
for ¢ € D, (4)

() . .
where ¥ denotes time convolution, and

Dy(z,t) = ecnFr(z,t) for @ € D, (5)
Bj(z,t) = peoHj(m,t) forx € D*.  (6)

In these relations,

P, = electric source polarization (C/m?),
M; = source magnetization (T),

represent the active parts (source distributions) of
the medium in D,

¢k,q(z,t) = electric relaxation function (F/m-s),
{tj.p(,t) = magnetic relaxation function (H/m-s),

of the medium in D, and

€00 = electric permittivity (F/m),
oo = magnetic permeability (H/m),

of the medium in D*°. In the representation of the
constitutive behavior of the media we have chosen
to incorporate the action of field exciting source dis-
tributions in them through field-independent excita-
tion terms as is done in the Kirchhoff theory of active
networks (Thevenin and Norton representations for
the action of source voltages and source electric cur-
rents, respectively). Across any interface 3 of jump
discontinuity in constitutive properties the boundary
conditions of the continuity type

Ek,m,pVmHp = continuous across X, (7

€jn,qVnFq = continuous across %, (8)

The Radio Science Bulletin No 305 (June, 2003)



hold, where v, is the unit vector along the normal
to 3. This implies that the tangential components of
the electric and magnetic fields strengths are contin-
uous across the interface. The constitutive relaxation
functions are subject to the causality condition

hg(z,t) =0 fort<OandallzeD, (9)
pip(x,t) =0 fort<0OandallxzeD. (10)

Further conditions to be laid upon them with regard
to the uniqueness of the electromagnetic wavefield
problem are investigated further on. On the consti-
tutive coefficients of the embedding we impose the
conditions €5, > 0 and po, > 0.

In the embedding the Green’s tensors (point-
source solutions) can be determined analytically [1,
Sections 28.8 and 28.12]. From the corresponding
Huygens surface source representations over the sur-
face 0D it follows that the outgoing fields in D
admit the far-field expansions

{B,, HyY(z,t) = {eq,hp}(z;rfm—' || /Coo)

[14+0(z|™1)]

as || — oo,
(11)

where « is the position vector from the chosen far-
field reference center to the point of observation,
0 = x/|| is the unit vector in the direction of obser-
vation and oo = (Ecofloo) " */? is the electromagnetic
wavespeed in D*°. The far-field radiation character-
istics are mutually related via

€q = _(Moo/EOO)l/qu,m,pemhp’ (12)
hy = (eoo/uoo)l/%p,n,qeneq. (13)

In the following it will be shown that the problem
thus formulated has at most one solution, assuming
that, for each type of excitation at least one solu-
tion exists. The proof puts restrictions on the re-
laxation functions representing the electric and mag-
netic properties of the medium in D. For the medium
in D these simply are €, > 0 and oo > 0 (as in-
dicated already).

4. The electromagnetic field problem
in the time Laplace-transform domain

For the general type of dispersive media considered
in the present paper there is, as far as is known,
no direct uniqueness proof in the space/time domain
based on energy counsiderations as is the case for me-
dia with simple constitutive behavior [2, Section 9.2].
However, because of the causality of both the me-
dia’s passive field reponse and the field’s relation to
its activating sources, the time Laplace transforma-
tion with real, positive transform parameter offers a
tool to specify certain conditions to be imposed on
the constitutive relaxation functions in order that
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the wavefield problem has a unique solution. The
relevant transformation is given by

[e'e]

By B)(@9) = [ expl—st){Bo Hy} (o, ).
(14)

For the case of physical interest of excitation func-
tions and relaxation functions that show at most
a Dirac delta distribution time behavior, the time
Laplace transforms of the field vectors and the re-
laxation tensors exist for all {s € C;Re(s) > 0}, i.e.,
for all values of the transform parameter in the right
half of the complex s-plane. Furthermore, since all
time functions involved are real-valued, their Laplace
transforms take on real values for real values of s. In
relation to our uniqueness proof we now take s to be
a Lerch sequence: {s € R;s = sg +nh,s0 > 0,h >
0,n=0,1,2,...}. Lerch’s theorem [3, p. 63] states
that if the transformation expressed by Equation
(14) is to hold for all s belonging to this sequence,
only one (causal) time-domain original corresponds
to its related transform. Under the transformation,
the time derivative is replaced with a multiplication
by s (if zero-value initial conditions apply, as is the
case) and the time convolution transforms into the
product of the constituents. Using these properties,
Equations (1) - (6) lead, upon time Laplace trans-
formation, to

EkmpOmHp — $é5,gEy = 8B, forzeD, (15)
€jmqOnBy + sijpH, = —sM; for @ € D,(16)

and
sk,m,pamﬁp - seooE’k =0 forxzeD*® (17)
€imgOnbly + speoH; = 0 for & € D®. (18)

The interface continuity conditions (7) - (8) are upon
Laplace transformation replaced by

€kmpVmHp = continuous across X,  (19)
€jn,qVnFq = continuous across X,  (20)

and the far-field expansion (11) by
T {é ’B }(97 S)
{E%Hp}(w,s) = . 47:|33| eXp(_‘S!w!/Coo)
[1+O0(z|™)] as|z|— oo
(21)
Upon contracting Equations (15) and (17) with Ey,
and Equations (16) and (18) with H; and combining
the results we construct the relations
Em,k’jam(EA'kI:Ij) + SEk€k1qEA'q + Sﬁjﬂjmﬁp =
~sE, B, — sH;M; for @ € D, (22)
and
Em’kyjam(Ekf{j) + SEkeooEk + SI‘:’j,LJJOO.FIj =
0 for @ e D= (23)
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Integration of Equation (22) over D and application
of Gauss’ divergence theorem yields

/ Emvk,jl/mEAkadeA(w) +
oD
/ (SEkék,qEq -+ Sﬁj/:‘jmﬁp)dv(w) =
A .
_ / (s By + s 11, N1,)AV (), (24)
D

where v,, is the outward unit vector along the nor-
mal to D. Next, Equation (23) is integrated over
the domain that is bounded internally by 0D and
externally by the sphere Sp of radius A and center
at the far-field reference center, where A is chosen so
large that Sa completely surrounds 6D (Figure 2).
Subsequent application of Gauss’ divergence theorem
leads to

/ Emyk’ijEkafjdA({B) -

Sa

/ EJm,k,ijEA‘kI’AdeA(m) +
oD

/ (s Bipeon B + s H 100 H;)dV ()
DDA
=0, (25)

where D is the domain interior to Sa. With the use
of the far-field representation (21) in the integration
over Sa, the limit A — oo in Equation (25) leads
to (note that the integral over Sa goes to zero as
A — 00)

Vin

DOO

€003 Hoo

Figure 2: Configuration used in the derivation
of the time Laplace-transform domain uniqueness
identity. (The limit A — oo is taken.)

—/ Em,k,jl/mEkf{jdA(a}) -+
8D

/ (sEreco By + s 100 Hy)dV () = 0. (26)
Addition of Equations (24) and (26) finally yields

/ (sBréng By + sF; 15,5 B)AV () +
D
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/ (sEkemEk + Sﬁjuwﬁj)dV(w) =
- / (s Py + s I, 50;)dV (), (27)
D

where the surface integrals over 8D have canceled in
view of the continuity of €., ; U B ; across 0D.
Equation (27) will be used in the construction of the
uniqueness proof.

5. The uniqueness proof

The uniqueness proof starts by assuming that in
the given configuration, for one and the same ex-
citation, there exist at least two non-identical field
solutions, which we will distinguish by the super-
scripts 1 and 1. Obviously, P,£1] = P1£2] = P
and Mjm = MJP] = M;. Consider the differences

in value in the field quantities A, = ‘[12] — EE] and

AHp, = H;[,z] - Hz[,ll. Their time Laplace transforms
then satisfy the equations (cf. Equations (15) - (18))

ek,mypamAI:A[p - sék,qAE’q =0 forz €D, (28)
€5mgOnAE, + si;pAH, = 0 for z €D, (29)

and

Ek’m’PamAﬁP — sexAEy = 0 for & € D™, (30)
Ej»n,qanAEq + S/J'ooAﬁj =0 foraxec Do, (31)

The same operations that have led to Equation (27)
now yield

/D (s By g A, + sAH i pAFL)AV () +

/ w(sAEkeooAEk + SAH, oo AH)AV () =
0. (32)

Evidently, for real, positive values of s the integrand
in the integral over D>, and hence the integral it-
self, is positive for any non identically vanishing AE,
and/or any non identically vanishing AH ; through-
out D*°. The integral over D shares this property
if we impose on €4 and fi;, the condition that
throughout D they are positive definite tensors of
rank two for all real, positive values of s. Under this
condition, also the integral over D is positive for any
non identically vanishing AEy and /or any non iden-
tically vanishing AH ; throughout D. For non iden-
tically vanishing AE,, and /Jor non identically vanish-
ing Aﬁj throughout D U D* Equation (32) leads,
in view of the value zero of the right-hand side to a
contradiction. Under the given conditions we there-
fore have AE), = 0 and AH; = 0 for ¢ € {DUD>},
which implies E’,[f] = E’,[cl] and H. 3[2] =H ][»1] for ¢ €
{DUD>}. In view of Lerch’s uniqueness theorem
of the one-sided Laplace transformation this implies
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that EY = EJ) and B! = HY for @ € {DUD>}
and all ¢ > 0, i.e., there is only one electromagnetic
field in the configuration that is causally related to
the action of its exciting sources.

It is noted that the conditions imposed on
the constitutive relaxation functions are specified
through their time Laplace transforms. Strictly
speaking the pertaining conditions need only hold
on a Lerch sequence. In view of the analyticity of
the transforms in {s € C;Re(s) > 0}, however, they
hold for all real, positive values of s.. The conditions
thus specified are sufficient ones, but at present no
weaker conditions seem to be in existence. Also, a
simple time-domain counterpart does not seem to ex-
ist. This, however, is the same situation as in linear,
time-invariant, causal system’s theory.

6. Examples of relaxation functions

Some examples of relaxation functions that arise in
the physics of electric and magnetic materials are
given below. They all apply to the simple case of
isotropic materials.

Permittivity  relazation function of an isotropic
plasma

For an isotropic plasma the (isotropic, scalar) s-
domain permittivity relaxation function as based on
the Lorentz theory of electrons model is [1, pp. 639-
640]

ézﬁo[l-l*l “r }, (33)

where € is the permittivity of vacuum, w, the elec-
tron angular plasma frequency of the plasma and
v, the collison frequency. The corresponding time-
domain relaxation function is

e = eo{d(t) + (WPQ/VC)[l —exp(—vt) H(t)},
(34)

where §(t) is the Dirac delta distribution and H () is
the Heaviside unit step function. The time-domain
magnetic relaxation function is p = pod(t), where g
is the permeability of vacuum.

Lorentzian absorption line of a dielectric material

For the Lorentzian absorption line of a dielectric ma-
terial the (isotropic, scalar) s-domain permittivity
relaxation function is [1, pp. 639-640]

2
Wp

(s+T/2)2+Q2 ]’

where T' is a phenomenological damping coefficient,
0 = (w? —wp?/3 —T?/4)'/? is the natural angular

é = €p 1+ (35)
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frequency of the oscillations of the movable electric
charge, wp is the resonant angular frequency of the
(Coulomb force) mechanical model of the atom and
wp is the angular plasma frequency of the movable
electric charge distribution. The corresponding time-
domain relaxation function is

€ = €o[0(t) + (wp?/2) exp(—Tt/2) sin(Qt) H (t)].
(36)

The time-domain magnetic relaxation function is
1= pod(t), where pg is the magnetic permeability of
vacuum.

Linear hysteresis in a magnetic material

Linear hysteresis in an isotropic magnetic material
can be modeled via a Debije type of relaxation func-
tion

fo= popr(1+1/s), (37)

where y, is the relative permeability of the material
and I' is a phenomenological (Landau) damping co-
efficient. The corresponding time-domain relaxation
function is

p= pop[6(t) + T H(2)]. (38)

The electric properties of the material need further
specification.

It is observed that all these relaxation functions sat-
isfy the conditions for uniqueness discussed in Sec-
tion 5,

7. Conclusion

A time-domain uniqueness theorem for electromag-
netic wavefield modeling in arbitrarily dispersive and
anisotropic media is presented. Sufficient conditions
for the uniqueness to be laid upon the electric and
magnetic tensorial relaxation functions are formu-
lated in the (causal) time Laplace-transform domain
for real, positive values of the transform parameter.
Some simple relaxation functions arising from phys-
ical models on an atomic level in plasma and solid-
state physics are shown to be in accordance with the
criteria developed.
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