

ElectroMagnetic Compatibility -

A brief introduction

by

Adrianus T. de Hoop

Delft University of Technology Laboratory of Electromagnetic Research Faculty of Electrical Engineering, Mathematics and Computer Science Mekelweg 4 • 2628 CD Delft • the Netherlands T: +31 15 2785203 / +31 15 2786620 F: +31 15 2786194 E: a.t.dehoop@ewi.tudelft.nl

Title

01

Copyright © 2007

Laboratory of Electromagnetic Research

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Mekelweg 4

2628 CD Delft, the Netherlands

T: +31 15 2786620 • **F:** +31 15 2786194 • **W:** www.emlab.ewi.tudelft.nl

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Laboratory of Electromagnetic Research.

Copyright statement

lc

Synopsis

- Concepts
- Terminology
- EMC triptych
- Emission test / Immunity test / Product liability
- Universal EM Field EMC properties
- Examples of industrial EMC concern
- Computational EMC challenges
- Challenges in EMC indoctrination

Synopsis

02

- **T**∪Delft

From the International Electrotechnical Vocabulary (IEV) of the International Electrotechnical Commission (IEC) (http://std.iec.ch/iec60050, click on 161: Electromagnetic Compatibility) :

• ElectroMagnetic Compatibility (EMC)

The ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment. (*Note:* "Anything" includes both living and inert matter.)

• ElectroMagnetic environment

The totality of electromagnetic phenomena existing at a given location.

ElectroMagnetic Compatibility (EMC), ElectroMagnetic Interference (EMI)

• ElectroMagnetic Interference (EMI)

Degradation of the performance of an equipment, transmission channel or system caused by an electromagnetic disturbance.

• ElectroMagnetic disturbance

Any electromagnetic phenomenon which may degrade the performance of a device, equipment or system, or adversely affect living or inert matter (*Note*: An electromagnetic disturbance may be an electromagnetic noise, an unwanted signal or a change in the propagation medium itself.)

• ElectroMagnetic emission

The phenomenon by which electromagnetic energy emanates from a source

ElectroMagnetic Compatibility (EMC), ElectroMagnetic Interference (EMI)

()4

EM Research

TUDelft Immunity (to a disturbance)

The ability of a device, equipment or system to perform without degradation in the presence of an electromagnetic disturbance

• (ElectroMagnetic) susceptibility

The inability of a device, equipment or system to perform without degradation in the presence of an electromagnetic disturbance (*Note*: Susceptibility is a lack of immunity.)

• Emitter (of electromagnetic disturbance)

Device, equipment or system which gives rise to voltages, currents or electromagnetic fields that can act as electromagnetic disturbances

• Susceptible device

Device, equipment or system whose performance can be degraded by an electromagnetic disturbance

ElectroMagnetic Compatibility (EMC), ElectroMagnetic Interference (EMI)

Universal EMC properties of ElectroMagnetic Fields:

- EM Fields are **omnipervious**: they penetrate into all **matter** as well as into **vacuum** (space devoid of matter).
- EM Fields satisfy the **Principle of Reciprocity**: each device emitting EM Fields is also susceptible to EM Fields & each device susceptible to EM Fields is also emitting EM Fields. The
 - **H. A. Lorentz Reciprocity Theorem (1896)** quantifies this property.

For extensive applications of Reciprocity, see:

• De Hoop, A. T., *Handbook of Radiation and Scattering of Waves*, London, Academic Press, 1995, xxx + 1085 pp.

H. A. Lorentz (1853 – 1928)

EM Fields (universal EMC properties)

TUDelft EM field behavior of Electrical & Electronic circuits At (circuital) **Kirchhoff** *N*-**port** $[E_r(x_m, t) = -\partial_m \Phi(x_m, t), \Phi(x_m, t) = \text{electric scalar potential}]:$ • $V_n(t) =$ electric voltage across port n (V) • $I_n(t) =$ electric current flowing into port n (A) Lorentz's reciprocity relation (interaction between two EM 'States' A and Bin linear, time-invariant, causal configuration) ($^{(t)}_{*}$ = time convolution) • $\oint_{\{\text{port apertures}\} \subset S} \epsilon_{m,r,p} \nu_m (E_r^A \overset{(t)}{*} H_p^B - E_r^B \overset{(t)}{*} H_p^A) dA =$ $\sum_{n=1}^{N} \left(V_n^A \overset{(t)}{*} I_n^B - V_n^B \overset{(t)}{*} I_n^A \right) \Big|_{\mathsf{port}_n \subset \mathcal{S}}$ n=108

EM field description at Kirchhoff ports

$$V_1 \xrightarrow{I_1} (1)$$
 (2) V_2

Impedance matrix description ([Z], time domain)

•
$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{1,1} \ \boldsymbol{Z}_{1,2} \\ \boldsymbol{Z}_{2,1} \ \boldsymbol{Z}_{1,2} \end{bmatrix} \stackrel{(t)}{*} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$
 reciprocity $\Longrightarrow \boldsymbol{Z}_{1,2} = \boldsymbol{Z}_{2,1}$

Impedance matrix description ($[\hat{Z}]$, complex frequency domain)

•
$$\begin{bmatrix} \hat{V}_1 \\ \hat{V}_2 \end{bmatrix} = \begin{bmatrix} \hat{Z}_{1,1} \ \hat{Z}_{1,2} \\ \hat{Z}_{2,1} \ \hat{Z}_{1,2} \end{bmatrix} \cdot \begin{bmatrix} \hat{I}_1 \\ \hat{I}_2 \end{bmatrix}$$
 reciprocity $\Longrightarrow \hat{Z}_{1,2} = \hat{Z}_{2,1}$
• $[\widehat{\ldots}](s) = \int_{t=0}^{\infty} \exp(-st)[\ldots](t) dt$ (Laplace transformation)

System's description of EMI (impedance matrix formulation)

09

$$V_1 \stackrel{+ \circ}{\xrightarrow{}} (1) \qquad (2) \stackrel{I_2}{\xrightarrow{}} V_2$$

Admittance matrix description ([Y], time domain)

•
$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{1,1} \ \mathbf{Y_{1,2}} \\ \mathbf{Y_{2,1}} \ Y_{1,2} \end{bmatrix} \overset{(t)}{*} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$
 reciprocity $\Longrightarrow \mathbf{Y_{1,2}} = \mathbf{Y_{2,1}}$

Admittance matrix description ($[\hat{Y}]$, complex frequency domain)

•
$$\begin{bmatrix} \hat{I}_1 \\ \hat{I}_2 \end{bmatrix} = \begin{bmatrix} \hat{Y}_{1,1} \ \hat{Y}_{1,2} \\ \hat{Y}_{2,1} \ \hat{Y}_{1,2} \end{bmatrix} \cdot \begin{bmatrix} \hat{V}_1 \\ \hat{V}_2 \end{bmatrix}$$
 reciprocity $\Longrightarrow \hat{Y}_{1,2} = \hat{Y}_{2,1}$
• $[\widehat{\ldots}](s) = \int_{t=0}^{\infty} \exp(-st)[\ldots](t) dt$ (Laplace transformation)

System's description of EMI (admittance matrix formulation)

10

Susceptibility figure (electric current excitation):

• From
$$\frac{\hat{V}_2}{\hat{V}_1}\Big|_{\hat{I}_1\neq 0}$$
 (1) \rightarrow (2) $\Longrightarrow \frac{\int_{t=0}^{\infty} |\mathbf{Z}_{2,1}(t)|^2 dt}{\int_{t=0}^{\infty} |\mathbf{Z}_{1,1}(t)|^2 dt}$ (Parseval) $\frac{\frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} |\hat{\mathbf{Z}}_{2,1}(j\omega)|^2 d\omega}{\frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} |\hat{\mathbf{Z}}_{1,1}(j\omega)|^2 d\omega}$
• From $\frac{\hat{V}_1}{\hat{V}_2}\Big|_{\hat{I}_2\neq 0}$ (2) \rightarrow (1) $\Longrightarrow \frac{\int_{t=0}^{\infty} |\mathbf{Z}_{1,2}(t)|^2 dt}{\int_{t=0}^{\infty} |\mathbf{Z}_{2,2}(t)|^2 dt}$ (Parseval) $\frac{\frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} |\hat{\mathbf{Z}}_{1,2}(j\omega)|^2 d\omega}{\frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} |\hat{\mathbf{Z}}_{2,2}(j\omega)|^2 d\omega}$
11

System's figure of susceptibility (electric-current excitation)

Susceptibility figure (voltage excitation):

System's figure of susceptibility (voltage excitation)

Delft University of Technology

Delft University of Technology

• Computer & Automation Industry

- susceptibility of multiwire flexible cable interconnects
- emission by ElectroStatic Discharge

• Aircraft Industry (less metal in fuselage and wing structures)

- fly-by-wire system susceptibility
- susceptibility to lightning stroke impact on engine
- Public Radio Broadcast
 - susceptibility to FM Digital Audio Broadcast (with guaranteed reception electric field strength)

Examples of industrial EMC concern

- Automobile Industry (electronic car control)
 - susceptibility of fuel injection and gear shift control systems to external disturbances
- Consumer Electronics & Telecommunication Industries
 - safety in household appliances (e.g., water tap control in electronically controlled washing machines)
 - susceptibility of electronic hearing aid to EM emission from cellular telephones
 - susceptibility to induction damage from lightning strokes

Develop analytical and/or computational techniques that yield EM field values in complex configurations

• fast

- in time domain
- with accuracy up to a factor of 2 (in view of 3 dB safety margins in emission and susceptibility)
- with simple expressions for upper bounds (for worst-case analysis)

Make electronics engineers aware that

- digital electronic systems and devices require time-domain EMC specifications (rather than – the customary – frequency-domain specifications)
- EM field behavior description inherently surpasses an 'explanation' in terms of Kirchhoff electric circuit quantities (voltage, electric current, impedance, admit-tance)